
# OPERATIONAL newsletter

Volume 1994 — No. 6





The WMO Secretariat would like to express its appreciation to all those who have contributed material to the "Operational Newsletter".

# **Foreword**

As you are aware, all the information on changes to the operation of the World Weather Watch (WWW) and Marine Meteorological Services (MMS) is being assembled and distributed by the Secretariat on a monthly basis to facilitate updating and follow-up action. In this connection we have created the "OPERATIONAL NEWSLETTER" to provide you with the latest operational information on WWW and MMS.

A special table is included in the "OPERATIONAL NEWSLETTER" in Annex I - Global Observing System to assist Members in reporting changes in the present status of implementation of observing programmes of SYNOP, TEMP and PILOT reporting stations.

Your co-operation in ensuring that the above information reaches the appropriate operational units of your service is greatly appreciated.

(G.O.P. Obasi)

zok

Secretary-General

# **Contents**

| FOREWORD                                                                                                                                                                                                                     | iii         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| GLOBAL OBSERVING SYSTEM                                                                                                                                                                                                      |             |
| A. GOS regulatory or guidance material                                                                                                                                                                                       | 1           |
| 3. Guidance material on instruments and observing methods                                                                                                                                                                    | 1           |
| 3.1 WMO Catalogue of radiosondes and upper-air wind systems in use by Members                                                                                                                                                |             |
| C. Information on operational status of elements of the surface-based sub-system                                                                                                                                             | 1           |
| 1. Publication No. 9, Volume A - Stations                                                                                                                                                                                    | 1           |
| 1.1 New Stations                                                                                                                                                                                                             | 1<br>3<br>4 |
| 4. Automatic Marine Stations                                                                                                                                                                                                 | 5           |
| 4.3 United States of America 4.3.1 Moored Buoys 4.3.2 Drifting Buoys 4.6 United Kingdom of Great Britain and Northern Ireland 4.6.1 Moored Buoys (including light vessels, islands and fixed platforms) 4.6.2 Drifting Buoys | 6<br>8<br>9 |
| 5. ARGOS service                                                                                                                                                                                                             |             |
| S.1 ARGOS monthly status report  Reports handled by ARGOS Service  Reports for insertion into the GTS  GTS coding statistics of platforms reporting through ARGOS and distributed over the GTS                               | 10<br>11    |
| 8. Feed-back from Members to the Secretariat on any changes in the observing network                                                                                                                                         |             |
| Appendix I  •Feed-back from Members to the Secretariat on any changes in the observing network  •Explanatory Notes                                                                                                           |             |
|                                                                                                                                                                                                                              |             |
| GLOBAL TELECOMMUNICATION SYSTEM                                                                                                                                                                                              |             |
| A. GTS regulatory or guidance material                                                                                                                                                                                       | 21          |
| 1. Telecommunication Procedures                                                                                                                                                                                              | 21          |
|                                                                                                                                                                                                                              |             |
| ORDER FORM                                                                                                                                                                                                                   |             |

# Annex i GLOBAL OBSERVING SYSTEM

# A. GOS REGULATORY OR GUIDANCE MATERIAL

# 3. Guidance material on instruments and observing methods

# 3.1 WMO Catalogue of radiosondes and upper-air wind systems in use by Members

See pages 15-19 attached at the end of Annex I.

## C. INFORMATION ON OPERATIONAL STATUS OF ELEMENTS OF THE SURFACE-BASED SUB-SYSTEM

# 1. Publication No. 9, Volume A - Stations

## 1.1 New stations

| Index |                       |          |             |        | ation  | Pressure |                 | S   | urfac | e ol | ser | yatio         | ns |    | Obs. H         | U  | ppe | er-ai              |                        | Re-   |
|-------|-----------------------|----------|-------------|--------|--------|----------|-----------------|-----|-------|------|-----|---------------|----|----|----------------|----|-----|--------------------|------------------------|-------|
| No.   | Name                  | Latitude | Longitude   | HP     | H/HA   | Level    | 00              | 03  | 06    | 09   | 12  | 15            | 18 | 21 | Obs. S         | 00 | 06  | 12                 | 18                     | marks |
|       |                       |          | Re          | gion V | - Papı | ıa New   | Gui             | nea |       |      |     |               |    |    |                |    |     |                    |                        |       |
| 94010 | Goroka                | 06°04 'S | 145° 23 'E  | -      | 1587   |          |                 |     |       | ·    |     |               |    |    | H20-08         |    |     | $\overline{}$      | $\left[ \cdot \right]$ |       |
| 94013 | Orobiga               | 05°47 'S | 140° 20 'E  | •      | 1480   |          |                 | Ŀ   |       |      |     |               |    |    |                |    |     |                    |                        |       |
| 94017 | Ambunti               | 04°13 'S | 142° 49 'E  | -      | 10     |          | 23              | 02  | 05    | 08   |     |               |    | 20 |                |    |     | $\overline{\cdot}$ |                        |       |
| 94023 | Bulolo                | 07°12 'S | 146° 39 Έ   | -      | 583    |          | 23              | 02  | 05    | 08   |     |               |    | 20 |                |    |     | •                  | $\cdot$                |       |
| 94026 | Saramandi             | 04°05 'S | 144° 05 'E  | -      | 40     |          |                 |     |       |      |     |               |    |    |                | •  |     |                    |                        |       |
| 94040 | Bípí                  | 02°01 'S | 146° 59 Έ   | -      | 4      |          | 23              | 02  | 05    | 08   | 11  |               |    | 20 |                |    |     |                    |                        |       |
| 94042 | Lemakot               | 03°01 'S | 151° 49 'E  | -      | 6      |          | 23              | 02  | 05    | 08   | •   |               |    | 20 |                |    |     |                    |                        |       |
| 94047 | Nadzab M.O.           | 05°34 'S | 146° 33 Έ   | -      | 47     |          | 23              | 02  | 05    | 08   | 11  |               | 17 | 20 | H17-12         | Р  | Ρ   |                    | $\lceil \cdot \rceil$  |       |
| 94057 | Safia                 | 09°35 'S | 148° 38 'E  | -      | 45     |          | 23              | 02  | 05    |      |     | ·             |    | 20 |                |    |     |                    |                        |       |
| 94068 | Agaun                 | 09°56 'S | 149° 23 Έ   | -      | 1005   |          | 23              | 02  | 05    | 08   |     |               |    | 20 |                |    | ·   |                    | $\overline{}$          |       |
| 94069 | Kurada                | 10°03 'S | 151° 00 'E  | -      | 3      |          | 23              | 02  | 05    | 08   |     | $\overline{}$ |    | 20 |                |    |     |                    | $\lceil \cdot \rceil$  |       |
| 94070 | Sideia                | 10°37 'S | 150° 40 E   | -      | 3      |          | 23              | 02  | 05    | 08   | 11  |               |    | 20 |                |    |     |                    | $\lceil . \rceil$      |       |
| 94071 | Uvol                  | 06°10 'S | 150° 57 'E  | -      | 3      |          | 23              | 02  | 05    | 08   |     |               |    | 20 |                | •  |     |                    | $\overline{\cdot}$     |       |
| 94075 | Dami                  | 05°29 'S | 150° 24 E   | -      | 5      |          |                 |     |       |      |     |               |    |    | ·              |    |     | $\overline{\cdot}$ |                        |       |
| 94083 | Namatanai             | 03°40 'S | 152° 27 'E  | -      | 42     |          | 23              | 02  | 05    | 80   |     |               |    | 20 |                |    | ·   |                    |                        |       |
| 94092 | Mimowa                | 11°18 'S | 153° 16 'E- | -      | 3      |          | 23              | 02  | 05    | 08   | 11  | ٠             |    | 20 |                | •  |     |                    |                        |       |
|       |                       |          |             | Regio  | n VI - | Azerbaij | an <sup>*</sup> |     |       |      |     |               |    |    |                |    |     |                    |                        |       |
| 37579 | Alibai                | 41°40 'N | 46° 48 'E   | 1539   | 1540   |          | Х               | X   | X     | X    | X   | χ             | Х  | X  |                |    |     |                    | $\lceil . \rceil$      |       |
| 37636 | Jeyranchel            | 41°18 'N | 45° 28 'E   | 404    | 403    |          | X               | X   | Х     | X    | X   | X             | X  | X  |                |    |     |                    | $\lceil . \rceil$      |       |
| 37639 | Agstapha<br>Aerodrome | 41°08 'N | 45° 25 'E   | 333    | 331    |          | X               | X   | X     | X    | X   | X             | X  | Х  | H0330<br>-1530 |    | Ŀ   | Ŀ                  |                        |       |
| 37668 | Oguz                  | 41°04 'N | 47° 28 'E   | 581    | 582    |          | Х               | Х   | Х     | X    | X   | X             | X  | Х  |                | Ŀ  |     |                    |                        |       |
| 37670 | Nabran                | 41°47 'N | 48° 42 'E   | -15    | -16    |          | Х               | X   | Х     | X    | X   | X             | X  | X  |                |    | ŀ   | ·                  |                        |       |

According to request of The State Hydrometeorological Committee, Azerbaijan Republic

# 1. Publication No. 9, Volume A - Stations /1.1 New stations(continued)

| Index |                         |          |           |         | ation | Pressure   |             | S   |           | e ol | oser | vatic |    |    | Obs. H         | Ū       | pp       | er-a     | <u>ir</u>               | Pe-   |
|-------|-------------------------|----------|-----------|---------|-------|------------|-------------|-----|-----------|------|------|-------|----|----|----------------|---------|----------|----------|-------------------------|-------|
| No.   | Name                    | Latitude | Longitude | HP      | H/HA  | Level      | 00          | _   | Ļ_        | 09   | 12   | 15    | 18 | 21 | Obs. S         | 00      | 06       | 12       | 18                      | marks |
|       |                         |          | Regi      | on VI - | Azert | oaijan (co | <u>enti</u> | nue | <u>d)</u> |      |      |       |    |    |                |         |          |          |                         |       |
| 37673 | Khachmaz<br>Aerodrome   | 41°25 'N | 48° 53 'E | 27      | 27    |            | Х           | X   | X         | X    | X    | X     | X  | Х  | H0330<br>-1530 | Ŀ       | ŀ        | ·        |                         |       |
| 37674 | Giriz                   | 41°13 'N | 48° 14 'E | 2071    | 2070  |            | Х           | X   | Х         | X    | X    | X     | X  | Х  |                | .       | ŀ        | <u>.</u> |                         |       |
| 37675 | Guba                    | 41°22 'N | 48° 31 'E | 552     | 550   |            | X           | X   | X         | X    | X    | X     | X  | Х  |                |         | ŀ        |          |                         |       |
| 37676 | Khinalig                | 41°06 'N | 48° 10 'E | 2427    | 2426  |            | X           | X   | X         | X    | X    | X     | X  | X  |                |         |          | ·        |                         |       |
| 37677 | Khaltan                 | 41°00 'N | 48° 42 'E | 1107    | 1104  |            | Х           | X   | X         | X    | Х    | X     | X  | Х  |                |         | <u> </u> |          |                         |       |
| 37734 | Shamkir                 | 40°50 'N | 46° 02 'E | 410     | 404   |            | X           | X   | X         | X    | X    | X     | X  | χ  |                |         |          |          |                         |       |
| 37736 | Gyanja Airport          | 40°44 'N | 46° 19 'E | 326     | 325   |            |             |     | X         | X    | X    | X     |    |    | H0330<br>-1530 |         |          |          | $[\cdot]$               |       |
| 37740 | Gabala                  | 40°59 'N | 47° 52 'E | 682     | 679   |            | X           | X   | X         | X    | X    | X     | X  | X  |                |         |          |          |                         |       |
| 37744 | Mingachevir             | 40°46 'N | 47° 02 'E | 94      | 93    |            | X           | X   | X         | X    | X    | X     | X  | X  |                |         |          |          |                         |       |
| 37749 | Gyoychay                | 40°39 'N | 47° 45 'E | 95      | 94    |            | X           | X   | X         | X    | X    | X     | X  | X  |                |         |          |          |                         |       |
| 37750 | Ismailly                | 40°47 'N | 48° 08 'E | 550     | 549   |            | X           | X   | X         | X    | X    | X     | X  | X  |                |         |          |          | $oxed{.}$               |       |
| 37753 | Altiagach               | 40°52 'N | 48° 56 'E | 1082    | 1099  |            | X           | X   | X         | X    | X    | X     | X  | X  |                | ·       |          | ٠        |                         |       |
| 37756 | Maraza                  | 40°32 'N | 48° 56 'E | 755     | 755   |            | X           | X   | X         | X    | X    | X     | X  | X  |                | ·       |          |          |                         |       |
| 37759 | Shamakhy                | 40°38 'N | 48° 38 E  | 749     | 710   |            | X           | X   | X         | X    | X    | X     | X  | X  |                | $\cdot$ |          |          | $oxed{\cdot}$           |       |
| 37769 | Sumgait                 | 40°36 'N | 49° 38 'E | -19     | -20   |            | X           | X   | X         | X    | X    | X     | X  | X  |                |         |          |          | ·                       |       |
| 37816 | Dashkasan               | 40°30 'N | 46° 05 'E | 1658    | 1655  |            | X           | X   | X         | X    | X    | X     | X  | X  |                |         |          | •        |                         |       |
| 37825 | Gyoy-Gyol               | 40°25 'N | 46° 20 'E | 1582    | 1562  |            | X           | X   | X         | X    | X    | X     | X  | X  |                | •       |          |          | $\lfloor \cdot \rfloor$ |       |
| 37831 | Tartar                  | 40°21 'N | 47° 01 'E | 164     | 163   |            | X           | X   | X         | X    | X    | X     | X  | X  |                |         |          |          | $\lfloor \cdot \rfloor$ |       |
| 37832 | Barda                   | 40°22 'N | 47° 08 'E | 69      | 67    |            | X           | X   | X         | X    | X    | X     | X  | X  |                |         |          |          |                         |       |
| 37835 | Zardab                  | 40°12 'N | 47° 13 Έ  | -5      | -4    |            | X           | X   | X         | X    | X    | X     | X  | X  |                | •       | •        |          |                         |       |
| 37844 | Kurdamir                | 40°20 'N | 48° 10 'E | 4       | 2     |            | X           | X   | X         | X    | X    | X     | X  | X  |                | •       | •        | •        | $\lfloor \cdot \rfloor$ |       |
| 37849 | Gazimammad<br>Aerodrome | 40°01 'N | 48° 55 'E | -5      | -7    |            | X           | X   | χ         | X    | X    | X     | X  | X  | H0330<br>-1530 | •       | •        | •        |                         |       |
| 37850 | Baku                    | 40°21 'N | 49° 50 'E | 5       | -     |            | X           | Х   | X         | X    | X    | X     | X  | X  |                |         | ·        | ·        |                         |       |
| 37851 | Baku (Dendropark)       | 40°25 'N | 49° 47 'E | 61      | 60    |            | X           | X   | X         | X    | X    | X     | X  | X  |                |         | ·        |          | ·                       |       |
| 37852 | Shubany                 | 40°22 'N | 49° 46 'E | 224     | 237   |            | X           | X   | X         | Х    | X    | X     | Х  | X  |                |         |          |          |                         |       |
| 37853 | Baku/Zabrat<br>Airport  | 40°29 'N | 49° 58 'E | 6       | 5     |            |             | •   | X         | X    | Х    | Х     |    |    | H0330<br>-1530 |         |          | -        | ŀ                       |       |
| 37860 | Mashtaga                | 40°32 'N | 50° 00 'E | 28      | 27    |            | X           | Χ   | X         | X    | X    | X     | X  | X  |                | RW      |          | RW       |                         |       |
| 37861 | Neft Dashlary           | 40°14 'N | 50° 52 'E | -15     | -17   |            | Χ           | Χ   | X         | X    | X    | X     | Х  | X  |                |         | •        | •        |                         |       |
| 37864 | Baku/Bine Airport       | 40°27 'N | 50°04 E   | -1      | -6    |            | X           | X   | X         | X    | X    | X     | X  | X  | S00-24         | Р       | Ρ        | Р        | Р                       |       |
| 37866 | Pirallahi               | 40°28 'N | 50° 19 'E | -24     | -26   |            | Х           | Х   | X         | Х    | Х    | Х     | Х  | Х  |                | ·       | Ŀ        | ·        | $\cdot$                 |       |
| 37869 | Chilov Island           | 40°20 'N | 50°37 'E  | -17     | -17   |            | Х           | X   | X         | X    | X    | X     | X  | X  |                | ·       |          |          |                         |       |
| 37877 | Sharur                  | 39°34 'N | 45°00 'E  | 817     | 817   |            | Х           | X   | X         | Х    | Х    | Х     | Х  | X  |                | Ŀ       |          |          | oxdot                   |       |
| 37883 | Istisu                  | 39°56 'N | 45° 58 'E | 2257    | 2294  |            | Χ           | X   | X         | X    | X    | Χ     | Х  | X  |                | Ŀ       | ·        | ·        |                         |       |
| 37896 | Khojaly Airport         | 39°54 'N | 46° 47 'E | 611     | 610   |            |             |     | Х         | Х    | X    | X     |    |    | H0330<br>-1530 |         |          |          |                         |       |
| 37898 | Lachin                  | 39°39 'N | 46° 32 'E | 1099    | 1094  |            | Χ           | X   | X         | X    | X    | X     | Х  | X  |                |         |          |          |                         |       |

# 1. Publication No. 9, Volume A - Stations /1.1 New stations(continued)

| Index |            |          |           | Elev    | ation | Pressure  |      |     | urfac     | ce o |    |    |    |    | Obs  |     |     |         | er-ai   |              | Pe    |
|-------|------------|----------|-----------|---------|-------|-----------|------|-----|-----------|------|----|----|----|----|------|-----|-----|---------|---------|--------------|-------|
| No.   | Name       | Latitude | Longitude | HP      | H/HA  | Level     | 00   | 03  | 06        | 09   | 12 | 15 | 18 | 21 | Obs. | . S | 00  | 06      | 12      | 18           | marks |
|       |            |          | Regio     | on VI - | Azert | aijan (co | onti | nue | <u>d)</u> |      |    |    |    |    |      |     |     |         | _       |              |       |
| 37901 | Khojavand  | 39°47 'N | 47° 06 'E | 399     | 414   |           | Х    | Х   | Х         | Х    | X  | X  | Х  | X  |      |     |     |         |         | $\Box$       |       |
| 37912 | Jafarkhan  | 39°56 'N | 48° 32 'E | -15     | -16   |           | Х    | X   | Х         | Х    | X  | X  | X  | X  |      |     |     | •       |         |              |       |
| 37913 | Salyan     | 39°35 'N | 48° 58 'E | -21     | -22   |           | X    | X   | X         | X    | X  | X  | X  | X  |      |     | •   | •       |         |              |       |
| 37914 | Imishly    | 39°52 'N | 48° 03 'E | -1      | -3    |           | X    | X   | X         | X    | X  | X  | X  | X  |      |     | Р   |         | P       |              |       |
| 37923 | Alat       | 39°58 'N | 49°24 'E  | -16     | -18   |           | X    | X   | X         | X    | X  | X  | X  | Х  |      |     |     | •       |         |              |       |
| 37925 | Neftchala  | 39°24 'N | 49°15 'E  | -24     | -25   |           | X    | X   | X         | X    | Х  | Χ  | X  | Х  |      |     |     |         | $\cdot$ |              |       |
| 37936 | Nakhchivan | 39°12 'N | 45° 25 'E | 885     | 885   |           | X    | X   | X         | X    | X  | X  | X  | X  |      |     | Р   |         | Ρ       |              |       |
| 37941 | Shahbuz    | 39°24 'N | 45° 34 'E | 1206    | 1205  |           | X    | X   | X         | X    | X  | X  | X  | X  |      |     |     |         |         | $\cdot$      |       |
| 37946 | Paragachay | 39°07 'N | 45° 57 'E | •       | 2218  |           | X    | X   | Х         | X    | X  | X  | X  | X  |      |     |     |         |         |              |       |
| 37952 | Kalvaz     | 38°40 'N | 48° 23 'E | 1832    | 1830  |           | X    | X   | X         | X    | X  | X  | X  | X  |      |     |     |         |         |              |       |
| 37957 | Ordubad    | 38°55 'N | 46°01 E   | 788     | 785   |           | X    | X   | Х         | X    | X  | X  | X  | X  |      |     |     |         |         | $\Box$       |       |
| 37968 | Minjivan   | 39°00 'N | 46° 40 'E | 315     | 312   |           | X    | X   | X         | Х    | X  | X  | X  | X  |      |     |     |         | ·       | $\perp$      |       |
| 37972 | Bilasuvar  | 39°28 'N | 48° 33 'E | 4       | 2     |           | X    | X   | Х         | Х    | X  | X  | X  | X  |      |     |     | $\cdot$ |         | $oxed{\int}$ |       |
| 37978 | Gyoytapa   | 39°67 'N | 38° 36 'E | 4       | 2     |           | X    | X   | X         | Х    | Х  | X  | X  | X  |      |     |     | $\cdot$ | ·       | $\cdot$      |       |
| 37981 | Yardimly   | 38°54 'N | 48° 15 'E | 730     | 729   |           | X    | X   | Х         | Х    | X  | X  | X  | X  |      |     | . ] | $\cdot$ |         |              |       |

# 1.2 Deleted stations

| Region          | Index No. | Name               |
|-----------------|-----------|--------------------|
| V - New Zealand | 93121     | Cape Colville AWS  |
|                 | 93377     | Havelock North EDR |
| V - Papua       | 94008     | Morehead           |
| New Guinea      | 94020     | Menyamya           |
| [               | 94024     | Wau                |
|                 | 94025     | Malala             |
|                 | 94027     | Lae M.O.           |
|                 | 94030     | Tari               |
|                 | 94034     | Garaina            |
| [               | 94050     | Gizarum (Umboi)    |
|                 | 94056     | Popondetta (Girua) |
|                 | 94058     | Tufi               |
|                 | 94059     | Amazon Bay         |
|                 | 94066     | Kupiano            |
| Į               | 94067     | Dogura             |
|                 | 94072     | Hoskins            |
|                 | 94079     | Losuia             |
|                 | 94086     | Kalamadu           |
| VI - Sweden     | 02023     | Tornehamn          |

# 1. Publication No. 9, Volume A - Stations (continued)

# 1.3 Changes to existing stations

| Index | T                 |    |      | Surfa | ce o   | bserv       | ation | is    |             | Obs. H      | Ī  | Upp | er-ai    | r                                      | Re-   |
|-------|-------------------|----|------|-------|--------|-------------|-------|-------|-------------|-------------|----|-----|----------|----------------------------------------|-------|
| No.   | Name              | 00 | 03   | 06    | 09     | 12          | 15    | 18    | 21          | Obs.S       | 00 | 06  | 12       | 18                                     | marks |
|       |                   |    |      | Regio | on IL- | Tajik       | istan | +     |             |             |    |     |          |                                        | _     |
| 38599 | Khudjand          |    |      |       |        |             |       |       |             |             |    |     | <u> </u> |                                        |       |
| 38609 | Isfara            |    |      |       |        |             |       |       |             |             |    |     |          |                                        |       |
| 38713 | Ura-Tyube         |    |      |       |        |             |       |       |             |             |    |     |          |                                        |       |
| 38836 | Dushanbe          |    |      |       |        |             |       |       |             |             |    |     |          |                                        |       |
| 38933 | Kurgan-Tyube      |    |      |       |        |             |       |       |             |             |    |     |          |                                        |       |
| 38937 | Shaartuz          |    |      |       |        |             |       |       |             |             |    |     |          |                                        |       |
| 38943 | Kulyab            |    |      |       |        |             |       |       |             |             |    |     |          |                                        |       |
| 38944 | Parkhar           |    |      |       |        |             |       |       |             |             |    |     |          |                                        |       |
| 38947 | Pyandj            |    |      |       |        |             |       |       |             |             |    |     |          |                                        |       |
| 38954 | Pyandj<br>Khorog  |    |      |       |        |             |       |       |             |             |    |     |          |                                        |       |
|       |                   |    | Regi | on V  | - Pap  | ua N        | ew G  | uinea | <u> </u>    |             |    |     |          | <u></u>                                |       |
| 94001 | Kiunga            | 23 | 02   | 05    | 08     |             |       |       | 20          | H20-08      |    |     |          |                                        |       |
| 94003 | Daru              | 23 | 02   | 05    | 08     |             |       |       | 20          | H19-08      |    | -   |          |                                        |       |
| 94004 | Wewak             | 23 | 02   | 05    | 08     | ag.         |       |       | 20          | H19-11      |    | ·   | <u> </u> |                                        |       |
| 94005 | Mt. Hagen         |    | • \  |       | 11.2   |             |       |       |             | H20-08      |    |     |          |                                        |       |
| 94006 | Koinambe          | 23 | 02   | 05    | 08     |             |       |       | 20          | <u></u>     |    |     |          |                                        |       |
| 94011 | Kundiawa          | 23 | 02   | 05    | 08     |             |       |       | 20          |             |    |     |          |                                        |       |
| 94012 | Kerema            | 23 | 02   | 05    | 08     |             |       |       | 20          |             |    |     |          | •                                      |       |
| 94016 | Aiyura            | 23 | 02   | 05    | 08     |             |       |       | 20          |             |    |     |          |                                        |       |
| 94021 | Mendi             | 23 | 02   | 05    | 80     |             |       | •     | 20          |             | ·  |     |          |                                        |       |
| 94022 | Vanimo I.P.S.     | 23 | 02   | 05    |        |             |       |       | •           |             |    |     |          |                                        |       |
| 94031 | Lake Kutubu       | 23 | 02   | 05    | 08     | •           |       |       | 20          |             | ·  |     |          |                                        |       |
| 94035 | Port Moresby M.O. | 23 | 02   | 05    | 08     | 11          | 14    | 17    | 20          | H00-24      | RW | W   | W        | W                                      |       |
| 94044 | Momote M.O.       | 23 | 02   | 05    | 08     | <b>:</b> 11 | •     | 17    | 20          | H17-12      | RW | P   | Р        | Р                                      |       |
| 94076 | Kavieng M.O.      | 23 | 02   | 05    | 08     | 11          |       |       | 20          | H19-12      | Р  | Р   |          | •                                      |       |
| 94077 | Gurney M.O.       | 23 | 02   | 05    | 80     | •           |       |       | 20          | H20-08      |    |     |          |                                        |       |
| 94082 | Nuguria           | 23 | 02   | 05    | 08     |             |       |       | 20          |             |    |     | •        |                                        |       |
| 94084 | Feni              | 23 | 02   | 05    | 08     |             |       |       | 20          |             |    | ·   |          |                                        |       |
| 94085 | Rabaul M.O.       | 23 | 02   | 05    | 08     | 11          |       | •     | 20          | H19-12      |    |     |          |                                        |       |
| 94087 | Misima M.O.       | 23 | 02   | 05    | 08     |             |       | •     | 20          | H19-08      | Р  | Р   | •        | •.                                     |       |
| 94088 | Lihir Is.         | 23 | 02   | 05    | 08     |             |       |       | 20          |             |    |     | ,        |                                        |       |
| 94090 | Jinjo             | 23 | 02   | 05    | 08     | 11          |       |       | 20          |             |    |     | Ţ,       |                                        |       |
|       |                   |    | E    | legio | n VI - | Azer        | baija | n*    |             |             |    |     |          |                                        |       |
| 37575 | Zakatala          |    |      |       |        |             |       |       |             |             |    |     |          |                                        |       |
| 37661 | Shaki             |    |      |       |        |             |       |       |             |             |    |     |          |                                        |       |
| L     | L                 |    |      |       |        |             |       |       | <del></del> | <del></del> |    |     | Ь        | لـــــــــــــــــــــــــــــــــــــ |       |

<sup>&</sup>lt;sup>+</sup> According to request of the Main Administration on Hydrometeorology of the Republic of Tajikistan

According to request of The State Hydrometeorological Committee, Azerbaijan Republic

# 1. Publication No. 9, Volume A - Stations / 1.3 Changes to existing stations(continued)

| Index |                    |    |       | Surfa  |      |       |        |       |     | Obs. H |    |    | er-ai |    | Re-   |
|-------|--------------------|----|-------|--------|------|-------|--------|-------|-----|--------|----|----|-------|----|-------|
| No.   | Name               | 00 | 03    | 06     | 09   | 12    | 15     | 18    | 21  | Obs. S | 00 | 06 | 12    | 18 | marks |
|       |                    | R  | egior | 1 VI - | Azer | baija | n (cor | ntinu | ed) |        |    |    |       |    |       |
| 37729 | Gadabay            |    |       |        |      |       |        |       |     |        |    |    |       |    |       |
| 37735 | Gyanja             | X  | Х     | Х      | X    | Х     | X      | X     | Х   |        | Р  |    | P     |    |       |
| 37747 | Evlakh Airport     | Х  | Х     | Х      | X    | X     | X      | Х     | X   | _      | Р  | ļ. | P     | •  |       |
| 37895 | Khankandy          |    |       |        |      |       |        |       |     |        |    |    |       |    |       |
| 37899 | Shusha             |    |       |        |      |       |        |       |     |        |    |    |       |    |       |
| 37905 | Beylagan Aerodrome |    |       |        |      |       |        |       |     |        |    |    |       |    |       |
| 37907 | Fizuly             |    |       |        |      |       |        |       |     |        |    |    |       |    |       |
| 37947 | Julfa              |    |       |        |      |       |        |       |     |        |    |    |       |    |       |
| 37985 | Lankaran           |    |       |        |      |       |        |       |     |        |    |    |       |    |       |

# 1.5 Temporary changes

# Notification from Tajikistan

That stations: 38937 Shaartuz, 38943 Kulyab and 38947 Pyandj are temporarily stopping broadcasts because of the absence of means of communication, but are carrying out observations.

Upper-air stations 38836 Dushanbe and 38954 Khorog will be making only one daily sounding at 0000 UTC for lack of radiosondes and envelopes, and station Khorog will be stopping sounding in mid-July 1994 for the same reason

### 4. Automatic Marine Stations

|               | <b>KEY - OBSERVED OR TECHNIC</b> | CAL PARAMETERS | 2                            |
|---------------|----------------------------------|----------------|------------------------------|
| <u>Column</u> | <u>Parameters</u>                | <u>Column</u>  | <u>Parameters</u>            |
| 1             | Wind direction and speed         | 9              | Subsurface temperatures      |
| 2             | Air temperature                  | 10             | Relative humidity            |
| 3             | Air pressure                     | 11             | Visibility                   |
| 4             | Pressure tendency                |                |                              |
| 5             | Sea-surface temperature          | -              | Parameter not observed       |
| 6             | Wave period and height           | X              | Buoy observes this parameter |
| 7             | Wave spectra                     | •              | Data under evaluation,       |
| 8             | Peak wind gust                   |                | not reported                 |

## 1. Publication No. 9, Volume A - Stations (continued)

### 4.3 United States of America

List of U.S.A. Ocean Data Acquisition System (ODAS) included in the June 1994 Data Platform Status Report of the Data Buoy Centre of the National Oceanic and Atmospheric Administration (NOAA). Data from moored buoys and platforms are collected by geostationary meteorological satellites and reports are distributed on the GTS in SHIP code. Data from drifting buoys are collected by the ARGOS system and distributed on the GTS in DRIFTER code.

# 4.3.1 Moored Buoys

| WMO buoy   | ARGOS                                 | Position: 9-16 | June 1994      |     |     | 0  | bserve   | ed or | techni     | cal pa | ramet    | ers      |          |     |
|------------|---------------------------------------|----------------|----------------|-----|-----|----|----------|-------|------------|--------|----------|----------|----------|-----|
| Identifier | Identifier                            | Latitude       | Longitude      | 1   | 2   | 3  | 4        | 5     | 6          | 7      | 8        | 9        | 10       | 11_ |
| 32302      |                                       | 18.0S          | 85.1W          | Х   | Х   | Х  |          | Х     | Х          | Х      |          |          | _        |     |
| 41001*     |                                       | 34.7N          | 72.7W          | Х   | Х   | Х  | _        | X     | Х          | Х      | _        | _        | -        |     |
| 41002*     |                                       | 32.3N          | 75.2W          | Х   | Х   | X  | _        | Х     | Х          | X      |          |          | <u> </u> | _   |
| 41004      |                                       | _32.5N         | 79 <u>.</u> 1W | Х   | Х   | Х  | _        | _x    | Х          | Х      | _        | -        | -        | _   |
| 41006*     |                                       | 29.3N          | 77.3W          | Х   | Х   | X  |          | Х     | Х          | Х      | -        |          |          |     |
| 41009      |                                       | 28.5N          | 80.2W          | _ X | X   | X  |          | х     | X          | Х      |          |          |          |     |
| 41010      |                                       | 28.9N          | 78.5W          | Х   | X   | Х  |          | х     | Х          | X      |          |          |          | _   |
| 41016      |                                       | 24.6N          | 76.5W          | Х   | X   | X  |          | Х     | X          | X      |          |          |          |     |
| 42001*     | · · · · · · · · · · · · · · · · · · · | 25.9N          | 89.7W          | X   | Х   | Х  |          | X     | Х          | Х      | <u> </u> |          | <u> </u> |     |
| 42002*     |                                       | 25.9N          | 93.6W          | X   | Х   | Х  |          | _x    | Х          | Х      | -        | -        |          |     |
| 42003*     | ·                                     | 25.9N          | 85.9W          | +   | +_  | Х  |          | Х     | Х          | Х      | -        | _        |          |     |
| 42007      |                                       | 30.1N          | 88.8W          | Х   | Х   | Х  |          | Χ     |            |        | -        | •        | -        | -   |
| 42019      |                                       | 27.9N          | 95.0W          | _ X | Х   | Х  |          | х     | X          | Х      |          | -        |          |     |
| 42020      |                                       | 27.0N          | 96.5W          | Х   | Х   | х  | <u> </u> | x     | Х          | Х      | -        | -        |          |     |
| 42025      |                                       | 24.9N          | 80.4W          |     | Χ_  |    |          | Х     | X          | X      |          |          | -        |     |
| 42035      |                                       | 29.2N          | 94.4W          | _ X | Х   | Х  | _        | _x    | Х          | х      | _        |          |          |     |
| 42036      |                                       | 28.5N          | 84.5W          | Х   | X   | X  |          | х     | Х          | х      | _        |          | -        |     |
| 42037      |                                       | 24.5N          | 81.4W          | Х   | X   | Χ_ | -        | x     | X          | Х      |          | -        |          |     |
| 44004*     |                                       | 38.5N          | 70.7W          | Х   | X   | X  |          | Х     | X          | х      |          |          | -        |     |
| 44005*     |                                       | 42.9N          | 68.9W          | X   | Х   | Х  |          | _X_   | Х          | Х      |          | <u>:</u> |          |     |
| 44007      |                                       | 43.5N          | 70.1W          | X   | X   | X  |          | X     | _ X        | х      |          | -        | -        |     |
| 44008      |                                       | 40.5N          | 69.4W          | Χ_  | Х   | X  | -        | _x_   | X          | Х      |          |          |          |     |
| 44009      |                                       | 38.5N          | 74.7W          | Х   | Х   | Х  |          | X     | +          | +      |          |          |          |     |
| 44011*     |                                       | 41.1N          | 66.6W          | X   | Х   | Х  | _        | X     | X          | Х      | - ]      |          |          | -   |
| 44013      |                                       | 42.4N          | 70.7W          | Х   | Х   | X  |          | X     | X          | Х      |          |          |          |     |
| 44014      |                                       | 36.6N          | 74.8W_         | Х   | Х   | X  |          | +     | Х          | Х      | -        |          |          |     |
| 44025      |                                       | 40.3N          | 73.2W          | Χ_  | X   | Χ  | -        | _ x   | X          | Х      |          | -        | -        | -   |
| 45001*     |                                       | _48.0N         | 87.8W          | Х   | Х   | Х  | -        | Х     | Х          | Х      | _        | -        |          |     |
| 45002*     |                                       | 45.3N          | 86.4W          | X   | X   | Х  |          | _ X   | Х          | Х      |          |          |          |     |
| 45003*     |                                       | 45.3N          | 82.8W          | X   | Х   | X  |          | Х     | Х          | Χ      |          |          |          |     |
| 45004*     | ]                                     | 47.5N          | 86.5W          | Х   | Х   | Х  |          | Х     | Х          | Х      |          | -        | -        | -   |
| 45005*     |                                       | 41.7N          | 82.4W          | Х   | Х   | Х  | _        | _X    | Х          | Х      |          |          | -        |     |
| 45006*     |                                       | 47.3N          | 89.9W          | Χ_  | Х   | Х  |          | X     | Х          | Х      |          | -        |          | ]   |
| 45007*     |                                       | 42.7N          | 87.1W          | X   | _X_ | X  | -        | X     | <u>X</u> _ | Х      | _        |          |          |     |

Base funded station of National Weather Service (NWS); however, all stations report data to NWS

<sup>+</sup> Sensor/system failure

# 4. Automatic Marine Stations / 4.3 United States of America / 4.3.1 Moored Buoys (continued)

| WMO buoy   | ARGOS      | Position: 9-16 | June 1994       |     |       | 0   | oserve | d or | technic | cal pa | ramet    | ers |            |          |
|------------|------------|----------------|-----------------|-----|-------|-----|--------|------|---------|--------|----------|-----|------------|----------|
| Identifier | Identifier | Latitude       | Longitude       | 1   | 2     | 3   | 4      | 5    | 6       | 7      | 8        | 9   | 10         | 11       |
| 45008*     |            | 44,3N          | 82.4W           | X   | Х     | Х   |        | Х    | х       | X      | -        |     |            | -        |
| 46001*     |            | 56.3N          | 148.2W          | _X  | _ X _ | X   |        | X    | X       | X      | <u> </u> |     |            | <u> </u> |
| 46002*     |            | 42.5N          | 130.3W          | Х   | X     | X   |        | X    | X       | Х      |          | _   |            | <u> </u> |
| 46003*     |            | 51.9N          | 155.9W          | _X_ | X     | X   |        | Х    | X       | X      |          |     | -          |          |
| 46005*     |            | 46.1N          | 131.0W          | Х   | _ X   | _X_ |        | X    | X       | X      |          |     |            |          |
| 46006*     |            | 40.9N          | 137.5W          | X   | X     | _X  |        | Х    | Х       | _X_    |          | -   | <u>-</u> _ |          |
| 46012      |            | 37.4N          | 122.7W          | Х   | Х     | Х   |        | +    | Х       | X      |          |     | -          |          |
| 46013*     |            | 38.2N          | 123.3W          | Х   | X     | Х   |        | Χ    | X       | X      | -        |     |            | -        |
| 46014*     |            | 39.2N          | 124.0W          | Х   | х     | X   |        | Х    | Х       | Х      |          |     |            | -        |
| 46022      |            | <u>40</u> .8N  | 124.5W          | Х   | Х     | Х   |        | Х    | X       | Х      | -        |     |            |          |
| 46023      |            | 34.2N          | 120.7W          | X   | Х     | Χ   |        | X    | Х       | X      | -        | -   |            |          |
| 46025      |            | 33.7N          | 119.1W          | Х   | Х     | Х   | _      | Χ_   | Х       | X      | -        | -   |            | _        |
| 46026      |            | 37.7N          | 122.8W          | Х   | Х     | Χ   |        | Х    | Х       | Х      | _        | -   |            | -        |
| 46027      |            | 41.9N          | 124.4W          | X   | Х     | Х   | •      | Х    | Х       | Х      | •        | _   |            |          |
| 46028*     |            | 35.8N          | 121.9W          | X   | Х     | Х   | 1      | X    | X       | Х      | _        | _   |            |          |
| 46029      |            | 46.2N          | 124.2W          | Х   | Х     | X   | •      | Х    | X       | Х      | •        | -   | -          | -        |
| 46030      |            | 40.4N          | 124 <u>.5</u> W | Χ_  | X     | X   |        | X    | X       | Х      | ,        | •   |            |          |
| 46035      |            | 57.0N          | 177.7W          | Х   | Х     | X   | •      | X    | +       | +      | ,        | •   |            |          |
| 46041      |            | 47.4N          | 124.5W          | X   | Х     | X   | •      | Х    | Х       | X      |          |     | -          |          |
| 46042      |            | 36.8N          | 122.4W          | X   | Х     | +   |        | X    | X       | X      |          | _   |            |          |
| 46045      |            | 33.8N          | 118.4W          | Х   | X     | X   |        | Х    | X       | Х      | •        |     |            |          |
| 46050      |            | 44.6N          | 124.5W          | X   | Х     | Х   | -      | Х    | Х       | Х      | •        |     |            | -        |
| 46051      |            | 34.5N          | 120.7W          | X   | Х     | Х   |        | Х    | +       | +      | -        | -   |            |          |
| 46053      |            | 34.2N          | 119.8W          | Х   | X     | Х   | -      | Х    | X       | Х      | ,        |     |            | -        |
| 46054      |            | 34.3N          | 120.4W          | Х   | X     | X   | -      | Х    | Х       | Х      |          | -   | -          |          |
| 51001      |            | 23.4N          | 162.3W          | Х   | Х     | Х   |        | Х    | Х       | Х      |          |     |            |          |
| 51002      |            | 17.2N          | 157.8W          | X   | Х     | X   | _      | Х    | _X      | Х      | ,        | _   | -          |          |
| 51003*     |            | 19.1N          | 160.8W          | X   | Х     | Х   | •      | Х    | X       | Х      | ,        | -   | -          |          |
| 51004*     |            | 17.4N          | 152.5W          | Х   | Х     | Х   | •      | Х    | Х       | Х      | ,        |     | -          |          |
| 51026      |            | 21.4N          | 157.0W          | Х   | Х     | Х   |        | Х    | +       | +      | -        | _   | -          |          |
| 52009      |            | 13.7N          | 144.7E          | +   | +     | +   |        | +    | +       | +      |          |     |            |          |

| Total base funded buoys: = | 28 |
|----------------------------|----|
| Total other buoys: =       | 37 |
| TOTAL moored buoys:        | 65 |

<sup>+</sup> Sensor/system failure

Base funded station of National Weather Service (NWS); however, all stations report data to NWS

# 4. Automatic Marine Stations / 4.3 United States of America (continued)

# 4.3.2 Drifting Buoys

| WMO buoy   | ARGOS      | Position: 14-1 | 6 June 1994 |   |   | 0  | bserve | ed or | technic | cal pa | ramet | ers |    |    |
|------------|------------|----------------|-------------|---|---|----|--------|-------|---------|--------|-------|-----|----|----|
| Identifier | Identifier | Latitude       | Longitude   | 1 | 2 | 3  | 4      | 5     | 6       | 7      | 8     | 9   | 10 | 11 |
| 16811      | 17180      | 01°S           | 001°E       |   | Х | Х  | -      | х     |         |        |       | -   | -  | -  |
| 17818      | 17175      | 01°S           | 000°E       |   | X | х  | _      | +     |         |        |       | -   | -  | -  |
| 17819      | 17174      | 01°S           | 000°E       |   | X | X  |        | Х     |         |        |       | -   |    | -  |
| 17820      | 17173      | 01°S           | 000°E       |   | + | X  | -      | x     |         |        | ·     | _   | -  | -  |
| 17821      | 17176      | 01°S           | 000°E       |   | + | Х  | -      | Х     |         |        |       | -   | -  |    |
| 17822      | 17184      | 01°S           | 001°E       | • | Х | Х  |        | X     |         |        |       | -   | -  | -  |
| 32811      | 17170      | 01°S           | 005°E       | • | + | Х  |        | X     |         |        |       | -   | -  | -  |
| 32812      | 17171      | 00°S           | 004°E       | • | Х | Х  | -      | Х     |         | •      |       | -   | -  | -  |
| 32813      | 17172      | 01°S           | 005°E       | • | + | X  | -      | Х     |         |        |       | -   | -  | -  |
| 32814      | 17161      | 01°S           | 005°E       | • | + | X  | •      | X     | •       | •      |       | •   | •  | -  |
| 33833      | 1974       | 31°S           | 003°W       | • | Х | X  | •      | X     | •       |        |       | •   | •  | •  |
| 33834      | 1979       | 01°S           | 000°E       |   | X | X  | •      | X     |         |        |       | •   |    |    |
| 33838      | 17163      | 01°S           | 006°E       |   | + | X  | •      | Х     |         |        |       | •   | ,  | -  |
| 33839      | 17164      | 01°S           | 006°E       | • | + | X  | •      | X     |         |        |       | •   | ,  | -  |
| 33840      | 17165      | 01°S           | 000°E       |   | + | X  | 1      | X     |         |        | •     | •   | •  | -  |
| 33841      | 17166      | 01°S           | 006°E       | • | + | X  | •      | X     | •       | •      |       | •   | •  | -  |
| 33842      | 17167      | 01°S           | 001°E       |   | + | Х  | -      | X     | •       |        |       | -   |    | -  |
| 53823      | 5131       | 00°S           | 002°E       | • | + | X  | 1      | +     |         |        |       | •   | ,  | -  |
| 54844      | 17168      | 01°S           | 004°E       | • | + | Х  | -      | X     | •       |        |       | -   | ,  | -  |
| 56801      | 5130       | 01°S           | 001°E       | • | Х | Х  | -      | Х     |         |        |       | -   | ,  | •  |
| 56804      | 1977       | 43°S           | 121°E       |   | Х | Х  | -      | X     |         |        |       | -   | •  | •  |
| 56805      | 1990       | 01°S           | 003°E       |   | Х | X  | -      | X     |         |        |       | -   | •  | -  |
| 56806      | 1984       | 00°S           | 002°E       |   | Х | Х  | -      | Х     |         | •      |       | -   | -  | -  |
| 56807      | 20716      | 00°S           | 002°E       |   | Х | х  |        | Х     |         |        |       |     |    |    |
| 56808      | 20720      | 00°S           | 002°E       |   | Х | _X |        | X     |         |        |       |     |    |    |
| 74801      | 1982       | 01°S           | 001°E       |   | Х | Х  |        | X     |         | •      |       |     |    |    |

322 drifting buoys have been deployed in support of TOGA; 26 are operational

<sup>+</sup> Sensor failure

# 4. Automatic Marine Stations (continued)

# 4.6 United Kingdom of Great Britain and Northern Ireland

List of moored and drifting data buoys operated by the:

Operational Instrumentation Branch, Meteorological Office, Beaufort Park, Easthampstead, WOKINGHAM Berkshire RG11 3DN, United Kingdom.

# 4.6.1 Moored Buoys (including light vessels, islands and fixed platforms)

| WMO buoy   | ARGOS      | Position: 17 | June 1994 |   |   |    | Obsen      | ved or | technic | cal par | amete | rs |    |    |
|------------|------------|--------------|-----------|---|---|----|------------|--------|---------|---------|-------|----|----|----|
| Identifier | Identifier | Latitude     | Longitude | 1 | 2 | _3 | 4          | 5      | 6       | 7       | 8     | 9  | 10 | 11 |
| 03007*     |            | 60°35'N      | 01°16'W   | Х | X | -  | <b>-</b> _ | -      | -       | -       | X     | •  | X  | -  |
| 03010°     |            | 59°05'N      | 04°24'W   | Х | X | X  | X          | -      | -       | -       | Х     | -  | X  | -  |
| 03011*     |            | 59°10'N      | 05°50'W   | X | Х | Х  | X          | -      | -       | -       | Х     | -  | X  | -  |
| 03014*     |            | 60°07'N      | 02°04'W   | Х | X | X  | X          | -      | -       | -       | Х     | -  | X  | -  |
| 03695*     |            | 51°40'N      | 01°06'E   | X | Х | Х  | х          | -      | -       | -       | Х     | -  | Х  | -  |
| 62029      |            | 48°43'N      | 12°25'W   | Х | Х | Х  | Х          | Х      | Х       | -       | Х     | -  | Х  | -  |
| 62081      |            | 51°00'N      | 13°20'W   | Х | Х | Х  | Х          | Х      | •       |         | Х     | -  | Х  | -  |
| 62101      |            | 50°37'N      | 02°44'W   | X | Х | Х  | х          | -      | Х       | -       | Х     | -  | Х  | -  |
| 62103**    |            | 49°55'N      | 02°53'W   | Х | X | Х  | X          | Х      | Х       | -       | Х     | -  | X  | X  |
| 62105      |            | 55°59'N      | 14°11'W   | Х | Х | Х  | Х          | Х      | х       | -       | Х     | -  | х  | -  |
| 62106      |            | 57°00'N      | 10°00'W   | Х | х | х  | Х          | Х      | х       | -       | Х     | -  | Х  | -  |
| 62108      |            | 53°12N       | 15°07W    | Х | Х | Х  | Х          | Х      | Х       | -       | Х     | -  | Х  | -  |
| 62112*     |            | 58°42'N      | 01°17'E   | Х | Х | х  | Х          | -      | -       | -       | Х     | -  | Х  | -  |
| 62118*     |            | 57°45'N      | 00°55'E   | Х | X | Х  | Х          | -      | -       | •       | Х     | -  | Х  | -  |
| 62124*     |            | 54°35'N      | 01°26'E   | Х | X | х  | Х          | •      | -       | -       | Х     | -  | х  | -  |
| 62126*     |            | 58°51'N      | 03°35'W   | Х | Х | х  | Х          | -      | -       | -       | Х     | -  | х  | -  |
| 62129*     |            | 53°03'N      | 02°14'E   | X | X | X  | Х          | •      | •       | Х       | Х     | -  | х  | -  |
| 62301      |            | 52°10'N      | 05°05'W   | Х | X | X  | Х          | Х      | -       | -       | Х     | -  | Х  | -  |
| 62302      |            | 54°08'N      | 03°37'W   | Х | Х | Х  | Х          | Х      | •       | •       | Х     | -  | Х  | -  |
| 62304**    |            | 51°00'N      | 01°47'E   | X | Х | X  | Х          | Х      | Х       |         | Х     | -  | Х  | Х  |
| 62305      |            | 50°25'N      | 00°00'W   | X | Х | Х  | Х          | Х      | Х       | •       | Х     | -  | Х  | Х  |
| 63103°     |            | 61°14'N      | 01°09'E   | Х | Х | X  | ·X         | -      | -       | -       | Х     | •  | Х  | -  |
| 63111*     |            | 59°33'N      | 01°32'E   | Х | X | х  | Х          | •      | -       | Х       | Х     | -  | Х  | -  |

Fixed platforms or islands

<sup>\*\*</sup> Automatic light vessels

# 4. Automatic Marine Stations / 4.3 United Kingdom of Great Britain and Northern Ireland (continued) 4.6.2 Drifting Buoys

| WMO buoy   | ARGOS      | Position: 17 | June 1994 | Ϊ   |   |   | Obser | ved or   | technic | al pai | ramete | rs |     |    |
|------------|------------|--------------|-----------|-----|---|---|-------|----------|---------|--------|--------|----|-----|----|
| Identifier | Identifier | Latitude     | Longitude | 1   | 2 | 3 | 4     | 5        | 6       | 7      | 8      | 9  | 10  | 11 |
| 25013      | 4065+      | 82.4N        | 06.6E     | -   | X | X |       | <u> </u> | -       | -      | -      | -  | · _ | -  |
| 44728      | 2952       | 64.4N        | 07.4E     | -   | X | Х | -     | Х        | -       | -      | -      |    | -   |    |
| 44743      | 1370       | 31.9N        | 36.9W     | ·   | - | Х | -     | -        | -       | -      | -      | -  | -   | -  |
| 44767      | 6297       | 57.2N        | 34.0W     | · · | Х | Х | -     | Х        | -       | -      | -      | -  | -   | •  |
| 44768      | 6295       | 53.3N        | 30.7W     | -   | X | Х | -     | Х        | -       | -      | -      | -  | •   | -  |
| 44769      | 6291       | 55.0N        | 29.6W     | -   | X | X | -     | Х        | -       | -      | -      | -  | -   | -  |
| 44771      | 6290       | 56.2N        | 17.2W     | -   | Х | Х | -     | Х        | -       | -      | -      | -  | -   | -  |
| 44772      | 2960       | 61.7N        | 10.3W     | -   | х | х | •     | Х        | -       | -      | -      | -  | -   | •  |
| 44778      | 1259       | 62.1N        | 16.5W     |     | Х | Х | -     | Х        | -       | -      | -      | -  | -   | -  |
| 62524      | 4625       | 31.3N        | 17.4W     | -   | Х | Х | -     | Х        | -       | -      | -      | -  | -   | -  |
| 62695      | 2956       | 31.5N        | 17.9W     | -   | Х | Х | -     | х        | -       | -      | -      | -  | -   | -  |
| 62696      | 6288       | 61.2N        | 14.8W     | -   | Х | Х | -     | х        | -       | -      | -      | -  | -   | •  |
|            | 6289       | 52.4N        | 39.6W     | -   | х | X | -     | х        | -       | -      | -      | -  | -   | •  |
|            | 1639       | 88.0N        | 27.5W     | -   | Х | х | -     |          | -       | -      | -      | -  | -   | -  |

# 5. ARGOS service

# 5.1 ARGOS monthly status report

Date of statistics computation: 1 June 1994

# •Reports handled by ARGOS Service (list of monthly collected ARGOS platforms sorted by type of platform)

| Drifting Buoys      | :        | 1036 |
|---------------------|----------|------|
| Boats (<20 knots)   | :        |      |
| Marine Stations     | <u>:</u> | 2    |
| Moored Buoys        | :        | 309  |
| Terrestrial Animals | :        | 104  |
| Marine Animals      | :        | 76   |
| Balloons            | :        | 5    |
| Birds               | :        | 37   |
| Fixed Stations      | :        | 419  |
| TO                  | TAL:     | 1988 |
|                     |          |      |

•Reports for insertion into the GTS (list of monthly collected GTS platforms on every GTS site sorted by type of platform)

#### Transmission to RTH Paris:

| Boat (less than 20 knots) | : |     |
|---------------------------|---|-----|
| Drifting Buoys            | : | 106 |
| Fixed Stations            | : | 9   |
| Marine Stations           | : | 3   |
| Moored Buoys              | : | 1   |
| Synoptic PTT              | : |     |

#### Transmission to NWS Washington:

| : | 473 |
|---|-----|
| : | 5   |
| : |     |
| : | 72  |
|   | :   |

# •GTS coding statistics of platforms reporting through ARGOS and distributed over the GTS

| BATHY =   | 374    |  |
|-----------|--------|--|
| DRIFTER = | 144470 |  |
| SYNOP =   | 4404   |  |
| TOTAL:    | 149248 |  |

# 8. Feed-back from Members to the Secretariat on any changes in the observing network

In view of the difficulties experienced in identifying non-implemented observing stations or implemented stations which are closed or suspended for a certain period, or stations making observations but not reaching their NMCs. A special table accompanied by explanatory notes (see Appendix I) is attached, to serve as feed-back from Members to the Secretariat on any changes of the present state of implementation of observing programmes of SYNOP, TEMP and PILOT reporting stations.

Members are urged to fill in the special table as and when appropriate, and to return it to the Secretariat before the 20th of each month to enable changes to be included in the next "OPERATIONAL NEWSLETTER".



# FEED-BACK FROM MEMBERS TO THE SECRETARIAT ON ANY CHANGES IN THE OBSERVING NETWORK

# (Explanatory Notes overleaf)

# Global Exchange / Regional Exchange (delete as appropriate)

| lobal Exchi   | ange / Regional Exc     | change       | (dele        | te as i      | appro                                            | priate.      | )            |                                                  |              |                                                  | Country           |         |
|---------------|-------------------------|--------------|--------------|--------------|--------------------------------------------------|--------------|--------------|--------------------------------------------------|--------------|--------------------------------------------------|-------------------|---------|
| Station Index | Bulletin Identification |              |              | entatio      |                                                  |              |              |                                                  |              |                                                  | Alternate         |         |
| Number        | TTAAii CCCC             | 00           | 03           | 06           | 09                                               | 12           | 15           | 18                                               | 21           |                                                  | Observing Station | Remarks |
| 1. SYNOP      |                         | T            | Ī            |              |                                                  |              |              |                                                  |              |                                                  |                   |         |
|               |                         | 1            |              |              |                                                  |              |              |                                                  |              |                                                  |                   |         |
|               |                         |              |              |              |                                                  |              |              |                                                  |              |                                                  |                   |         |
|               |                         |              | 1            |              |                                                  |              |              |                                                  |              |                                                  |                   |         |
|               |                         |              |              |              |                                                  |              |              |                                                  |              |                                                  |                   |         |
|               |                         |              |              |              |                                                  |              |              |                                                  |              |                                                  |                   |         |
|               |                         |              |              |              |                                                  |              |              |                                                  |              |                                                  |                   |         |
| 2. TEMP       |                         |              |              |              |                                                  |              |              |                                                  |              |                                                  |                   |         |
|               |                         |              | <u> </u>     |              |                                                  |              |              |                                                  |              |                                                  | ·                 |         |
|               |                         |              | <u> </u>     | <u> </u>     |                                                  |              |              |                                                  |              | <u> </u>                                         |                   |         |
|               |                         |              |              | <u> </u>     |                                                  | <u> </u>     |              |                                                  |              |                                                  |                   |         |
|               |                         |              | <u> </u>     | <u> </u>     | <u> </u>                                         |              | <u> </u>     | <u> </u>                                         |              | <u> </u>                                         |                   |         |
|               |                         |              | <del> </del> | <u> </u>     |                                                  |              | <u> </u>     | <u>                                     </u>     |              | <u> </u>                                         |                   |         |
| 2 PH OT       |                         |              | <del> </del> | <del> </del> | <u> </u>                                         | <b> </b>     | <u> </u>     | <u> </u> !                                       |              | <b> </b>                                         |                   |         |
| 3. PILOT      |                         |              | <del> </del> | <b> </b>     | <del>                                     </del> |              | ↓            |                                                  | <del> </del> | <u> </u>                                         |                   |         |
|               | r <del></del>           |              | ļ            | <del></del>  | ļ                                                | ļ¹           | <del> </del> |                                                  | <del> </del> |                                                  |                   |         |
|               | <u> </u>                | <del></del>  | <del> </del> | <del> </del> | <del> </del>                                     | <del> </del> |              | <b> </b>                                         | ļ            | ļ                                                |                   |         |
|               |                         |              | —            | <b>├</b>     | —                                                | ├—           | <del> </del> | <del>                                     </del> | <u> </u>     | <u> </u>                                         |                   |         |
|               |                         |              | <del> </del> | <b>├</b>     | <del>                                     </del> | <del> </del> | ├—           | <b> </b>                                         | <del> </del> | <del> </del>                                     |                   |         |
|               | <u> </u>                |              | ↓            | <del> </del> | <del>                                     </del> | <b>├</b> ──  | <del> </del> | <b> </b>                                         | <del> </del> | <del> </del>                                     |                   |         |
|               | <del> </del>            | <del> </del> | <del> </del> | <del> </del> | —                                                | <del> </del> | <b>├</b>     | <u> </u>                                         | <del> </del> | <del>                                     </del> |                   |         |
|               |                         |              | ↓            | <del> </del> | <u> </u>                                         | <u> </u>     | <b>↓</b> _   | <b></b>                                          | <u> </u>     | <u> </u>                                         |                   |         |

# FEED-BACK FROM MEMBERS TO THE SECRETARIAT ON ANY CHANGES IN THE OBSERVING NETWORK

# **Explanatory Notes**


- Separate tables should be prepared for global exchange and regional exchange respectively. These tables should contain information
  concerning any changes of the present state of implementation of observing programmes of SYNOP, TEMP and PILOT reporting stations,
  particularly for stations included in the Regional Basic Synoptic Networks (RBSN).
- 2. For entries in these tables, the following should be taken into account:
  - (a) In the column "Station index number", the index number (IIiii) of each station should be entered in case of any changes in the observing programmes of the stations;
  - (b) In the column "Bulletin identification", the TTAAii CCCC of the abbreviated heading of the meteorological bulletins which contains reports from the station should be inserted;
  - (c) In the column "Implementation of observing programme", "X" for implementation and "-" for non-implementation should be inserted as appropriate. In order to easily identify changes in the programme, this should be marked in red;
  - (d) In the column "Alternate observing station", the index number (IIiii) of an alternate observing station should be inserted in case another station is available with a view to filling gaps which are caused by suspension of observing programmes of the original station;
  - (e) The required information concerning the observing programme of the alternate station should be inserted in the next horizontal line of the original station;
  - (f) In the column "Remarks", reasons of temporary suspension of observing programmes and an expected date of resumption of the programmes should be given as far as possible. Non-standard collection and/or distribution times should also be included.
- 3. These tables should be sent to the Secretariat before the 20th of the month for inclusion in the "OPERATIONAL NEWSLETTER", as appropriate.

WMO CATALOGUE OF RADIOSONDES AND UPPER-AIR WIND SYSTEMS IN USE BY MEMBERS — Updates WMO Name **DEGREES RADIATION** Ground WINDFINDING **PROGRAM** SONDE Technical Index of **TEMP PILOT** system equipment authority Latitude Longitude correction equipment Height regular alternative frequency correction Number Station -=S -=WMHz Y=Yes/N=No used used used over station metres **Program Program** type type used type used Region: II Date: 05/94 Kazakhstan Country: 28952 **AVK AVK** Kustanai Kazakhstan 52.22 63.62 171 0012 **MRZ** 1782 Υ 35108 Ural'sk Kazakhstan 52.15 51.53 42 0012 **MRZ** 1782 Υ **AVK** AVK Υ **AVK AVK** 35229 Aktjubinsk 57.22 MRZ 1782 Kazakhstan 50.27 219 0012 MRZ Υ **AVK** AVK 35394 Kazakhstan 71.13 553 1782 Karaganda 49.80 0012 35700 Atyray Kazakhstan 47.10 51.80 -23 0012 **MRZ** 1782 Υ **AVK** AVK 61.52 Υ **AVK** MR7 1782 **AVK** 35746 Aral'sk Kazakhstan 46.28 70 0012 **MRZ** 1782 Υ **AVK AVK** Kazakhstan 75.00 35796 Balhash 46.90 416 0012 Υ **METEORIT-1 METEORIT-1** 36177 Semipalatinsk Kazakhstan 50.42 80.30 196 0012 0618 MARS 1782 Υ **AVK** AVK 77.00 MRZ 1782 36870 Almaty Kazakhstan 43.35 663 0012 AVK Υ **AVK** Kzyl-Orda Kazakhstan 49.82 65.50 128 0012 MRZ 1782 38062 **AVK** AVK Dzambul Kazakhstan 42.85 71.38 652 0012 **MRZ** 1782 Υ 38341 Date: 05/94 Region: VI Azerbaijan Country: METEORIT-2 | SECONDARY | METEORIT-2 48.50 -13 0012 **MARS** 1782 Υ 38.44 37985 Lankaran Azerbaijan RADAR Date: 05/94 Country: Kyrgystan Region: II SECONDARY **AVK** AVK Kyrgystan 0012 MRZ 1782 Υ 42.80 74.50 756 Bishkek 38353 RADAR 05/94 Japan Date: Country: Region: 11 RADIOTHEO MEIR91 Υ THEOD. **MEISEI** 45.42 141.68 11 0012 0618 1680 Wakkanai Japan 47401 DOLITE RADIOTHEO 0012 0618 MEIR91 Υ THEOD. MEISEI 141.33 19 1680 Sapporo Japan 43.05 47412 DOLITE RADIOTHEO 39 43.33 145.58 0012 0618 MEIR91 1680 Υ THEOD. MEISEI Japan 47420 Nemuro DOLITE **RADIOTHEO** 135.77 69 0012 0618 MEIR91 1680 Υ THEOD. MEISEI 33.45 47778 Shionomisaki Japan DOLITE **RADIOTHEO** 31.55 130.55 31 0012 0618 MEIR91 1680 Y THEOD. MEISEI Japan 47827 Kagoshima -DOLITE

|         |                  | WMO CATALO   | OGUE O   | F RADIO   | SONDES   | AND UPP     | ER-AIR WIN | ND SYSTE  | MS IN U     | SE BY ME  | MBERS —    | Updates    |           |                     |            |
|---------|------------------|--------------|----------|-----------|----------|-------------|------------|-----------|-------------|-----------|------------|------------|-----------|---------------------|------------|
| WM0     | Name             | Technical    | DEG      | REES      |          | PROG        | RAM        |           | SONDE       |           | RADIA      | TION       | Ground    | WINDF               | INDING     |
| Index   | of               | authority    | Latitude | Longitude | Height   | TEMP        | PILOT      | regular   | alternative | frequency | correction | correction | equipment | system              | equipment  |
| Number  | Station          | over station | -=S      | - = W     | metres   | Program     | Program    | type used | type used   | MHz       | Y=Yes/N=No | type       | used      | used                | used       |
| 47936   | Naha             | Japan        | 26.20    | 127.68    | 27       | 0012        | 0618       | MEIR91    |             | 1680      | Y          |            | THEOD.    | RADIOTHEO DOLITE    | MEISEI     |
| 47945   | Minamidaitojima  | Japan        | 25.83    | 131.23    | 15       | 0012        | 0618       | MEIR80    |             | 1680      | Y          |            | THEOD.    | RADIOTHEO<br>DOLITE | MEISEI     |
| 47971   | Chichijima       | Japan        | 27.08    | 142.18    | 8        | 0012        |            | MEIR91    |             | 1680      | Y          |            | THEOD.    | RADIOTHEO<br>DOLITE | MEISEI     |
| 47981   | lwojima          | Japan        | 24.78    | 141.32    | 116      | 00          |            | MEIR80    |             | 1680      |            |            | theod.    | RADIOTHEO<br>DOLITE | MEISEI     |
| 47991   | Minamitorishima  | Japan        | 24.30    | 153.97    | 9        | 0012        |            | MEIR91    |             | 1680      | Y          |            | THEOD.    | RADIOTHEO<br>DOLITE | MEISEI     |
| Region: | 1                |              |          |           | Country: | South Afric | ca         |           |             |           |            |            |           | Da                  | ate: 05/94 |
| 68174   | Pietersburg      | South Africa | -23.87   | 29.45     | 1228     | 0012        |            | VRS80N    |             | 1680      |            |            | PP11      | OMEGA               | NAVAID     |
| 68263   | Pretoria (Irene) | South Africa | -25.92   | 28.22     | 1523     | 0012        |            | VRS80N    |             | 1680      |            |            | PP11      | OMEGA               | NAVAID     |
| 68424   | Upington         | South Africa | -28.40   | 21.27     | 839      | 0012        |            | VRS80N    |             | 1680      |            |            | PP11      | OMEGA               | NAVAID     |
| 68442   | Bloemfontein     | South Africa | -29.10   | 26.30     | . 1354   | 0012        |            | VRS80N    |             | 1680      |            |            | PP11      | OMEGA               | NAVAID     |
| 68461   | Bethlehem        | South Africa | -28.25   | 28.33     | 1686     | 0012        |            | VRS80N    |             | 1680      |            |            | PP11      | OMEGA               | NAVAID     |
| 68512   | Springbok        | South Africa | -29.67   | 17.88     | 1006     | 0012        |            | VRS80N    |             | 1680      |            |            | PP11      | OMEGA               | NAVAID     |
| 68538   | De Aar           | South Africa | -30.65   | 24.02     | 1287     | 0012        |            | VRS80N    | 1           | 1680      |            |            | PP11      | OMEGA               | NAVAID     |
| 68588   | Durban           | South Africa | -29.97   | 30.95     | 14       | 0012        |            | VRS80N    |             | 1680      |            |            | PP11      | OMEGA               | NAVAID     |
| 68816   | Cape Town        | South Africa | -33.97   | 18.60     | 42       | 0012        |            | VRS80N    |             | 1680      |            |            | PP11      | OMEGA               | NAVAID     |
| 68842   | Port Elizabeth   | South Africa | -33.98   | 25.60     | 61       | 0012        |            | VRS80N    |             | 1680      |            |            | PP11      | OMEGA               | NAVAID     |
| 68906   | Gough Island     | South Africa | -40.35   | -9.88     | 54       | 0012        |            | VRS80N    |             | 1680      |            |            | PP11      | OMEGA               | NAVAID     |
| 68994   | Marion Island    | South Africa | -46.88   | 37.87     | 22       | 0012        | <u> </u>   | VRS80N    |             | 1680      |            |            | PP11      | OMEGA               | NAVAID     |
| Region: | IV               |              |          |           | Country: | Colombia    |            |           |             |           |            |            |           | D                   | ate: 05/94 |
| 80001   | San Andrés-Isla  | USA NWS      | 12.58    | -81.72    | 1        | 12          |            | VIZ       |             | 1680      | N          |            | GMD-1     | RADIOTHEO<br>DOLITE | GMD-1      |
| Region: | III              |              |          |           | Country: | Colombia    |            |           |             |           |            |            |           | D                   | ate: 05/94 |
| 80222   | Bogotá/Eldorado  | Colombia     | 4.70     | -74.13    | 2548     | 0012        |            | AIR       | VIZ         | 1680      | N          |            | AIR       | RADIOTHEO DOLITE    | AIR        |

WMO CATALOGUE OF RADIOSONDES AND UPPER-AIR WIND SYSTEMS IN USE BY MEMBERS — Updates

| WMO     | Name        | Technical        | DEG      | REES      |          | PROG      | RAM      |           | SONDE       | -         | RADIA      | TION       | Ground    | WINDF               | NDING     |
|---------|-------------|------------------|----------|-----------|----------|-----------|----------|-----------|-------------|-----------|------------|------------|-----------|---------------------|-----------|
| Index   | of          | authority        | Latitude | Longitude | Height   | TEMP      | PILOT    | regular   | alternative | frequency | correction | correction | equipment | system              | equipment |
| Number  | Station     | over station     | -=S      | -=W       | metres   | Program   | Program  | type used | type used   | MHz       | Y=Yes/N=No | type       | used      | used                | used      |
| Region: | V           |                  | *        |           | Country: | Papua Nev | v Guinea |           |             |           |            |            |           | Da                  | te: 05/94 |
| 94014   | Madang M.O. | Papua New Guinea | -5.13    | 145.48    | 4        | 00        |          | VRS80N    | _           | 403       | Y          | V86        | DIGICORA  | OMEGA               | DIGICORA  |
| Region: | 0           |                  |          |           | Country: | Japan     |          |           |             |           |            |            |           | Da                  | te: 05/94 |
| JBOA    | Keifu Maru  | Japan            | 0.00     | 0.00      | 0        | 0012      | <u> </u> | MEIR91    |             | 1680      | Y          |            | THEOD     | RADIOTHEO<br>DOLITE | MEISEI    |
| JCCX    | Chofu Maru  | Japan            | 0.00     | 0.00      | 0        | 0012      |          | VRS80N    |             | 403       | Y          | V86        | DIGICORA  | OMEGA               | DIGICORA  |
| JDWX    | Kofu Maru   | Japan            | 0.00     | 0.00      | 0        | 0012      |          | VRS80N    |             | 403       | Y          | V86        | DIGICORA  | OMEGA               | DIGICORA  |
| JIVB    | Seifu Maru  | Japan            | 0.00     | 0.00      | 0        | 0012      |          | VRS80N    |             | 403       | Y          | V86        | DIGICORA  | OMEGA               | DIGICORA  |



# Feed-Back from Members to the Secretariat on any changes in the

# WMO CATALOGUE OF RADIOSONDES AND UPPER-AIR WIND SYSTEMS IN USE BY MEMBERS

| country:        | <del></del>   | <del></del>               | _                |              |                  |                 |                  |                      |                          |             |                          |                    | Date:             |                                       |                   |
|-----------------|---------------|---------------------------|------------------|--------------|------------------|-----------------|------------------|----------------------|--------------------------|-------------|--------------------------|--------------------|-------------------|---------------------------------------|-------------------|
| WMO             | Name          | Technical                 | DEC              | GREES        |                  | PROG            | RAM              |                      | SONDE                    |             | RADIA                    | TION               | Ground            | WINDF                                 | INDING            |
| Index<br>Number | of<br>Station | authority<br>over station | Latitude<br>-= S | Longitude    | Height<br>metres | TEMP<br>Program | PILOT<br>Program | regular<br>type used | alternative<br>type used |             | correction<br>Y=Yes/N=No | correction<br>type | equipment<br>used | system<br>used                        | equipment<br>used |
|                 |               | Over state.               | + -              |              | -                |                 |                  | - урс 2002           | урс 3303                 |             |                          | 71-                |                   | · · · · · · · · · · · · · · · · · · · |                   |
|                 |               |                           |                  |              |                  |                 |                  |                      |                          |             |                          |                    |                   |                                       |                   |
|                 |               |                           |                  |              |                  | į               |                  |                      |                          |             |                          |                    |                   |                                       |                   |
|                 |               |                           |                  |              |                  |                 |                  |                      |                          |             |                          |                    |                   |                                       |                   |
|                 |               |                           |                  |              |                  |                 |                  |                      |                          |             |                          |                    |                   |                                       |                   |
|                 |               |                           | }                |              |                  |                 |                  |                      |                          |             | į                        |                    |                   |                                       |                   |
|                 |               |                           |                  |              | _                |                 |                  |                      |                          |             |                          |                    |                   |                                       |                   |
|                 |               |                           |                  | -            |                  |                 |                  |                      |                          |             |                          |                    |                   |                                       |                   |
|                 | <del></del>   |                           |                  | ļ            |                  |                 |                  | <u> </u>             |                          |             |                          |                    |                   |                                       |                   |
|                 |               |                           |                  |              |                  |                 |                  |                      |                          |             | 1                        |                    |                   |                                       |                   |
|                 |               |                           |                  |              |                  |                 |                  |                      |                          |             |                          | I                  |                   |                                       |                   |
|                 |               |                           |                  |              |                  |                 |                  |                      |                          |             |                          |                    |                   |                                       |                   |
|                 |               |                           | _                |              |                  |                 |                  |                      |                          |             |                          |                    |                   |                                       |                   |
|                 |               |                           | <del></del>      | <del> </del> |                  |                 | <del> </del> -   | <del> </del>         | -                        | <del></del> | <del> </del> -           | <u> </u>           |                   | <del> </del> -                        |                   |



## A. GTS REGULATORY OR GUIDANCE MATERIAL

#### 1. Telecommunication Procedures

# GTS Operational Procedures (implementation and using addressed messages on the GTS)

# **Background**

An evolutionary change of the GTS in support of new requirements has become necessary. Extensive growth in GDPS operational centres as well as in volume and variety of data to be transmitted have brought about a need for a basic structural change in the functional characteristics of the entire WWW. The ability to request GTS messages which are already available within the WWW system and also the capability to request the generation of new data messages in support of operational meteorology to be used on an ad-hoc bases is required. It has resulted in increasing requirements for a reliable and fast transmission of messages (e.g. service messages, special data messages, request-reply messages, etc.) from an originating centre to a single addressee centre. The former procedures for addressed messages were not suited for providing an efficient point-to-point transmission service and significant improvements were needed. The CBS and Executive Council have approved the new procedure developed by the CBS Working Group on Telecommunications, which is documented in WMO-No. 784, Commission for Basic Systems, Abridged Final Report of the Tenth Session, Geneva, 2-13 November 1992, paragraphs 6.3.18 to 6.3.20 and Recommendation 6.

The relevant text of the Manual on the GTS which is in force since 3 November 1993 is provided here for reference:

#### 2.4 Addressed messages

# 2.4.1. Categories of addressed messages

## 2.4.1.1. Service messages

Priority: 1

Messages concerning the operation of the system, e.g. breakdown, resumption after breakdown, etc.

#### 2.4.1.2. Request for GTS messages

Priority: 2

Messages used for a request for bulletins normally available on the GTS, including request for repetition.

#### 2.4.1.3. Administrative messages

Priority: 4

Messages used for communicating between one administration and another. In exceptional circumstances a very urgent administrative message could be transmitted as a service message.

#### 1. Telecommunication Procedures (continued)

# 2.4.1.4. Data messages

Priority: 2

Messages consisting of meteorological data. These messages may be either replies to requests for GTS messages in the case when the reply is in the form of an addressed message, or replies to requests to databases, or data in accordance with a special agreement.

# 2.4.1.5. Request-to-database

Priority: 2

Messages used for a request for data addressed to a database.

## 2.4.2. Abbreviated headings for addressed messages

The specifications of the abbreviated headings of addressed messages are the following:

T<sub>1</sub>T<sub>2</sub>A<sub>1</sub>A<sub>2</sub>ii C<sub>a</sub>C<sub>a</sub>C<sub>a</sub>C YYGGgg (BBB)

 $T_1T_2$  = BM, designator for addressed messages in alphanumeric form;

 $T_1T_2 = BI$ , designator for addressed messages in binary form;

 $A_1A_2$ =AA, administrative message

BB, service message

RR, request for GTS messages

RQ, request-to-database

DA, data message

ii = 01

 $C_aC_aC_a = location indicator of the <u>addressed</u> centre$ 

YYGGgg = time of insertion on the GTS.

# 2.4.3. Text of addressed messages

The first line of the text of an addressed message shall contain the international location indicator of the centre originating the message. The actual content of the addressed message shall start at the second line of the text.

#### Purpose of use

The new WMO addressed message is designed to allow any national centre (NMC, RTH or WMC) to send a message to any other centre. This is to be accomplished without the need for message processing or manual handling by any intervening relay centre. This permits non adjacent centres to exchange information as if they were directly connected to each other.

# Scope of use

The WMO addressed message is for the transmission of administrative, service, request for data messages, replies to requests and special point-to-point transmission on the GTS. It complements routine distribution. It does **not** replace the general notice messages. WMO addressed messages are addressed to a specific GTS centre for its handling only, action by intermediate centres is not required nor desired.

# 1. Telecommunication Procedures (continued)

# Abbreviated heading design (New)

The alphanumeric fields in the abbreviated heading of the addressed message are defined in a unique way. The addressed message abbreviated heading structure conforms to standard format; however, the specifications of the various fields have been changed, as compared to the normal meteorological messages. The definition of the character fields (groups) are provided here to help in explanation. The complete information related to an addressed message consists of two lines of information, both of which are to be processed by automated means. Only the first line, the abbreviated heading, is used for routing purposes; the second line, which contains the source of the addressed message, is used in the generation of the response, when required. The abbreviated heading structure, as defined above, is further explained in the following:

T<sub>1</sub>T<sub>2</sub>A<sub>1</sub>A<sub>2</sub>ii C<sub>a</sub>C<sub>a</sub>C<sub>a</sub>C, YYGGgg

 $T_1T_2$  defined as:

BM designator for addressed message in alphanumeric form or BI designator for addressed message in binary form

# A<sub>1</sub>A<sub>2</sub> defines the type of addressed message

where, AA administrative message (to be passed to a person for information or action)

BB service message (to be passed to a person for action)

RR request for a GTS message specified by abbreviated heading or transmission sequence number (if by heading this addressed message can be to non adjacent centres, if by transmission sequence number it must be to adjacent centres)

RQ request-to-database for data (not available as a current GTS message and will most likely require processing by a GDPS function to generate the data [product] in response)

DA the returned data response to the RR or RQ addressed message or a special

data transmission

ii = always 01 (no exceptions allowed)

C<sub>a</sub>C<sub>a</sub>C<sub>a</sub>C<sub>a</sub> = location indicator of the addressed centre on the GTS to whom the message is addressed (DIFFERENT meaning for this field of the usual abbreviated heading)

•

YYGGgg = time of insertion on the GTS

CCCC = the international location indicator of the centre originating the message

NOTE: The abbreviated heading structure where  $T_1T_2 = BM$  or BI completely replaces and supersedes the former  $T_1 = A$  for Administrative messages,  $T_1 = B$  for Service messages,  $T_1T_2 = RR$  for request-for-repetition messages and  $T_1T_2 = MM$  for data messages.

### 1. Telecommunication Procedures (continued)

# Implementation in switching directories of RTHs on the GTS

It is anticipated that the addressed message can be automatically switched through intermediate centres without any message processing. Therefore, the abbreviated headings of all possible addressees (different  $C_aC_aC_a$ ) requiring to be switched through an RTH should already be included in the switching directory of each RTH, otherwise the automatic relay process cannot be properly implemented. This is one of the reasons for not allowing the ii group to be a variable. This restriction of ii = 01 reduces the number of possible headings that will be defined in any switching directory. Careful analyses must be made at each centre to determine which headings are most likely to be received, hence, requiring definition in the switching directory.

### Routing concepts

To help in the establishment of addressed message routing in the switching directories of the various centres of the GTS, it is recommended that the message flow on the MTN generally be in an clockwise direction using the diagram in Attachment I-2 in the Manual on the GTS WMO-386 on page A.I-2/1. Using this diagram as flow control, Offenbach (EDZW) sends an addressed message to Cairo (HECA) via Prague (OKPR) and Moscow (RUMS). A message from Toulouse (LFPW) for Beijing (BABJ) goes to Offenbach (EDZW). An addressed message from Tokyo (RJTD) to Bracknell (EGRR) goes via Washington (KWBC). Careful study must be done to help establish possible relay possibilities for a centre.

The exception to clockwise flow is when the addressed message is for an adjacent centre. Routing arrangements may also been agreed upon multi-laterally among centres concerned, in particular when a shorter path is preferred (i.e. involving a single intermediate centre instead of several).

The CBS Working Group on Telecommunications, in particular its Study Group on Operational Matters (WG-TEL/SG-OM, Chairman: Mr. J.Fenix, USA), will regularly review and consolidate routing arrangements for addressed messages

Using this approach of flow control to establish routing and also considering WMO Regional responsibility for data to be held for 24-hours, the following centres would have these addressed message headings included in their respective switching directories for the RR option of the addressed message, as example:

| TOKYO       | MELBOURNE   | JAKARTA     | NOUMEA      |
|-------------|-------------|-------------|-------------|
| (RJTD)      | (AMMC)      | (WIIX)      | (NWWB)      |
| BMRR01 AMMC | BMRR01 WSSS | BMRR01 WSSS | BMRR01 NTAA |
| BMRR01 DEMS | BMRR01 WIIX | BMRR01 AMMC | BMRR01 AMMC |
|             | BMRR01 NZKL |             |             |
|             | BMRR01 NWBB |             |             |
|             | BMRR01 NTAA |             |             |
|             | BMRR01 RJTD |             |             |
|             | BMRR01 DEMS |             |             |
|             | BMRR01 KWBC |             |             |

a partial list for illustration purposes ....

#### 1. Telecommunication Procedures (continued)

Theoretically, every centre should include a heading for every CCCC defined by WMO; however, normal expected practice, common sense and experience will reduce the number of defined headings needed to just those centres most likely to be addressed if it is for a request/reply. All centres should have the administrative and service message headings in their directories, as it would be expected that the WMCs and RTHs on the MTN would need to route all possibilities. This means that Washington would be expected to define BMAA01 MYNN (addressed to Bahamas) in their switching directory for relay of messages. Washington would not, however, be expected to define BMRR01 NWBB (addressed to Noumea) in their switching directory, as it is not likely that the heading would ever be received for relay by WMC Washington, as WMC Melbourne would be the most likely centre to have data from Noumea. In the above example Melbourne would have a very extensive list of headings for the RR option (not shown).

## Text of addressed message

# $A_1A_2 = AA$ Administrative message

The content of this type of message is a simple character free flowing text, intended for human readability. These message types should be sent to a display or printer. These are text messages about general operational and administrative discussions and co-ordination.

### $A_1A_2$ = BB Service message

The content of this type of message is a simple character free flowing text, intended for human readability. These message types should be sent to a display or printer. These are text messages about operational status and/or problem resolution matters.

## $A_1A_2$ = RR Request for GTS messages

(Note: The following procedures were developed by the WG-TEL at its thirteenth Session, February 1994, and are submitted to the CBS Extraordinary Session 1994 for endorsement)

The structure of the text for this type of message is in a specific format. The intent is for automatic computer processing.

There are two types of request for GTS messages. The "request for GTS messages" type message is for the acquisition of data contained in GTS bulletins and the bulletins are assumed to already exist.

TYPE 1: Request for (a) bulletin(s) - can be sent to any centre on the GTS, likely to an RTH

BMRR01  $C_aC_aC_a$  YYGGgg CCCC AHD  $T_1T_2A_1A_2$ ii CCCC YYGGgg = AHD  $T_1T_2A_1A_2$ ii CCCC YYGGgg RRx = etc. ...

Limit restriction: no more than eight headings in a request, and the response will be a separate data message for each heading requested.

# 1. Telecommunication Procedures (continued)

TYPE 2: Request for Repetition of GTS messages specified by transmission sequence number- to be sent between adjacent centres only.

BMRR01 C,C,C,C, YYGGgg

CCCC

SQN nnn =

[one bulletin]

or

BMRR01 CaCaCaCa YYGGgg

CCCC

SQN nnn - nnn =

[a sequence of bulletins]

or

BMRR01 C<sub>a</sub>C<sub>a</sub>C<sub>a</sub>C YYGGgg

CCCC

SQN nnn/nnn/nnn =

[a selected number of bulletins]

### $A_1A_2 = RQ$ Request-to-Database message

The format for this type of message will be in a specific format. The intent is for automatic computer processing. There is one type of request message to a data base (for GDPS use).

BMRQ01 C<sub>2</sub>C<sub>2</sub>C<sub>3</sub>C<sub>3</sub> YYGGgg

CCCC

(message request format to be determined)

# $A_1A_2 = DA$ data message

This is the returned data message type, which can also be used for special data transmission. The purpose of the "envelope" heading is to ensure that the requested data is appropriately routed back to the requesting centre, in particular if it contains a bulletin with a WMO abbreviated heading which shall not be used in the routing back to the requesting centre.

BMDA01 C<sub>a</sub>C<sub>a</sub>C<sub>a</sub>C<sub>a</sub> YYGGgg CCCC [requested bulletin]

or [requested data]

or [special data transmission]

The complete requested message is contained in the text of the response (including the WMO abbreviated heading) to permit the requesting centre to handle it as a response. It is enveloped in a data message type of addressed message to ensure that the response is correctly routed to the requesting centre. An addressed data message shall contain a single GTS bulletin. An example of request and reply:

#### Request:

**BMRR01 AMMC 031330** 

**KWBC** 

AHD SMNC01 NWBB 031200=

#### Response:

BMDA01 KWBC 031335

**AMMC** 

SMNC01 NWBB 031200

AAXX 03124

91577 NIL =

91592 32565 10812 10228 20182 40178 81800

333 10257 56200 59001 81830=

# 1. Telecommunication Procedures (continued)

# Other types of response

Message not available (the use of a key character group - the NIL response)

BMDA01 C<sub>a</sub>C<sub>a</sub>C<sub>a</sub>C<sub>a</sub> YYGGgg CCCC NIL T<sub>1</sub>T<sub>2</sub>A<sub>1</sub>A<sub>2</sub>ii CCCC YYGGgg =

Message heading not recognized (the use of a key character group - the ERR response)

BMDA01 C<sub>a</sub>C<sub>a</sub>C<sub>a</sub>C<sub>a</sub> YYGGgg CCCC ERR T<sub>1</sub>T<sub>2</sub>A<sub>1</sub>A<sub>2</sub> CCCC YYGGgg

(ii missing, as example)

# **Order Form**

# **TO NEW READERS:**

IF YOU WOULD LIKE TO RECEIVE FUTURE ISSUES OF THE
"OPERATIONAL NEWSLETTER"
FREE OF CHARGE, PLEASE FILL IN DETAILS <u>CLEARLY</u> BELOW

| "OPE               | RATIONAL NEWSLETTER"                                                |
|--------------------|---------------------------------------------------------------------|
| K<br>"OPE          | Sindly mail me future copies of the RATIONAL NEWSLETTER" (W/OIS) in |
|                    | English                                                             |
|                    | French                                                              |
|                    | Russian                                                             |
|                    | Spanish                                                             |
| Name:              |                                                                     |
| Address:           |                                                                     |
|                    |                                                                     |
|                    |                                                                     |
|                    |                                                                     |
|                    |                                                                     |
|                    |                                                                     |
| Send the coupon to |                                                                     |

Telex: Facsimile: 41 41 99 OMM CH 41 22 734 23 26