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1. Observation impact estimation



Observation impact

Two types of observation impact

® Basic definition
O The observation impact is defined as “the variations of analyses and forecasts

caused by changes of observation data”.

® Non-linear observation impact
O This is the observation impact that has no limitations on the changes of
observation data, so the changes includes perturbations in observation data
values, and additions of observation datasets.

O Estimation methods:
v' OSE (observing system experiment).

® Linear observation impact

O This is the observation impact that has an limitation on the changes of

observation data, which is Kalman gain is invariant.
O Estimation methods are

v' ADJ-based method (FSO)
® |Langland and Baker (2004), Errico (2007), Cardinali (2009), Tremolet (2008)

v' TL-based method
® Ishibashi (2011)

v DFS
® Cardinali et al (2004), Desroziers et al (2005)

These two observation impacts are different quantities, so, Iin
general, they cannot work as a proxy for each other.



ADJ-based estimation in JMA global 4D-Var

JMA global 4D-Var
v' Using Low resolution
system (T1319/T106).

Evaluation periods are:
Summer: Aug 2010,
Winter: Jan 2010.

* 00UTC analyses only.
Using dry total energy
norm.

Forecast error evaluation

time is 15hours.
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Formulation of TL-based method

The analysis increment vector can be written as a superposition of
partial increment vectors (PIVs).

SX=0X"+X+--- 5xP=Y K, d,; 6x°=Y K, d,

reP reQ

The PIV represents a linear observation impact of each dataset.

The departure vector (observations minus background) can be
written a superposition of partial departure vectors (PDVs).

d=d™® +d™ +... 4 = d reP 40 = d reQ
0 regP 0 regQ

PIVs can be written in terms of PDVs

X" =Kd™", XC=Kd™, -



TL-based method
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Analysis Increments of VarBC Coefficients

This figure shows the CNV-PIV and the TBB-PIV for VarBC (variational bias
correction) variables of the AMSU-A sensor of the NOAA16 satellite.

We can find finite contribution from the CNV.

This result suggests the existence of a stability effect of the CNV for the VarBC 7
variables (Auligné et al., 2007) at least qualitatively.



TL-based method

(d)fest error and incremant 250hPa FT48 U lat=—50
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TL-based method
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TL-based method

(d)fest error and incremant 250hPa FT48 U lat=—50
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2. Covariance matrix
optimization



Relationships between observation impact
estimations and covariance optimizations

« Two types of error covariance matrix optimization methods.

1. Expectation-based method
O This method optimizes error covariance matrices based on the theoretical relation ships;

2E[J,]=Tr[1-HK ]| 2E[J,]=Tr[KH]
O Desroziers and lvanov (2001), Desroziers et al (2005), and Chapnik et al (2004, 2006)

2. Sensitivity-based method

O This method uses sensitivity of forecast errors with respect to covariance matrices;

o) 0J
OR ' 0B

O Daescu (2008), Daescu and Todling (2010).

« Each optimization method include a linear observation impact estimation.
1. Expectation-based method includes DFS calculation.
2. Sensitivity-based method includes ADJ-based estimation.

Here, Let's see the
sensitivity-based method




Diagnoses of the JMA global 4D-Var

Sensitivity time sequence
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® Sensitivity calculation results in August 2010.
® Using dry total energy norm with 15hr forecasts.
® The results show that B is too small and R is too large in average.



Pressure
(1000 - 100 hPa)

Impact of error covariance optimization
on forecast accuracy

Improvement rate: Zonal wind Improvement rate: Temperature
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Results of a single case experiment of covariance optimization using the -
sensitivity method.

® TEST uses optimized R, CNTL uses original R (operational setting).

® The figure shows normalized forecast RMSE differences between TEST and
CNTL: (CNTL - TEST)/CNTL.

® \Warm (cold) color areas are forecast error decrease (increase) areas.



3. Analysis error estimation



3. Analysis error estimation

Background

® \We want to know analysis errors of a DAS because the analysis error information is
useful to improve current DASs and to design future observational systems which can
detect the analysis errors.

® Analysis error estimation is the same with construction of more accurate analysis than
current DASs. Such analyses can be used as “pseudo truth”.

Previous studies

® “Key analysis error” (Rabier et al 1996, Klinker et al 1998, Isaksen et al 2005) can
generate more accurate forecasts than current DASs.

® However, there are inconsistency between key analysis errors and observation
information. SOSE (Marseille 2007) can partly reduce this problem.

Our approach
1. We construct the pseudo truth based on the data assimilation theory.
2. We construct the pseudo truth based on the ADJ-based method.



Data assimilation theory based method

® Conditional PDF

P(le’xb )ocP(y|x)P(Xb |X) Ordinary 4D-Var
P (X131 %y X ) P(YIX)P (X IXJP (Xpg %) | i rerence

analyses
information

® Add reference analysis fields information

J= ‘]org +]7/2(Xref -M (Xb T 5X))TA_1(Xref -M (Xb T 5)())

=3, +12(e + MX)TA (6" + M) X: analysis
Y: observations
Jorg =1/28X'B7SX +1/2(d - Héx) R™(d - He) Xy, : background field

Xref: reference

® Analvtical solution h n error covariance matrix A of reference
alytical solution has an error covaria analyses

information in Kalman gain, and forecast error in input data, as

follows,

=B +H R™H+M AM|] {H'R'd-M"A%!' |



Accuracy of optimized forecasts

500hPa Temperature 250hPa Zonal wind
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*Inflation factor is one.

== Optimized forecast with four reference analyses of every 6hours.
Optimized forecast with only two reference analyses
= Original forecast

= Original forecast from 6 hours after initial.
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Fitting of the optimized analysis to observations
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® The inflation factor dominates the fittings of analysis to observations.
® The inflation factors larger than 500 achieve good fitting to observations.
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Pressure
(1000 - 100 hPa)

Two weeks statistics

LW_12days_ave Z irate ) LW _12days_ave T irate

Forecast time
(9days)
® Forecast accuracy improvement rate of the optimized forecasts against the original
forecasts.
® Forecast accuracy are kept 9days with 95% statistical significance until 6 or 7days.
® The inflation factor is 5000.



Optimized analvsis increments and backaround error
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® Color shade: Optimized increments, red=plus, blue=minus.
® Green contour: 500hPa height.

® Black contour: Integrated background error, solid lines=plus, dotted lines=minus.



Optimized analvsis increments and backaround error
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® Color shade: Optimized increments, red=plus, blue=minus.
® Green contour: 500hPa height.

® Black contour: Integrated background error, solid lines=plus, dotted lines=minus.



Optimized analvsis increments and backaround error
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® Color shade: Optimized increments, red=plus, blue=minus.
® Green contour: 500hPa height.

® Black contour: Integrated background error, solid lines=plus, dotted lines=minus.



Optimized analvsis increments and backaround error
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® Color shade: Optimized increments, red=plus, blue=minus.
® Green contour: 500hPa height.

® Black contour: Integrated background error, solid lines=plus, dotted lines=minus.



Optimized analvsis increments and backaround error
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® Color shade: Optimized increments, red=plus, blue=minus.

® Green contour: 500hPa height.

® Black contour: Integrated background error, solid lines=plus, dotted lines=minus.



Optimized analvsis increments and backaround error
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® Color shade: Optimized increments, red=plus, blue=minus.

® Green contour: 500hPa height.

® Black contour: Integrated background error, solid lines=plus, dotted lines=minus.



Optimized analvsis increments and backaround error
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® Color shade: Optimized increments, red=plus, blue=minus.
® Green contour: 500hPa height.

® Black contour: Integrated background error, solid lines=plus, dotted lines=minus.



Comparison between original analysis and
optimized analysis
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Pressure
(1000 - 1 hPa)

=

Pseudo truth with AC

J-based method

Improvement rate: Height

Z irate

Forecast
time
(3days)

Improvement rate: Zonal wind




Maxwell’'s demon ?

Lets think about a system on thermal
equilibrium at temperature T. We know
only statistical property of the system,
temperature T. While, if one can know
velocity of each particle, the one can get
usable energy from this max entropy
state, This is the Maxwell’'s demon.

We know only
statistical property
of data, R and B.

We know property of
each observation and
can use this
information.




Summary

Observation impact

We defined two types of observation impact; the linear impact and the non-linear
impact.

Diagnoses of the JMA global 4D-Var shows almost all observation data types
contribute forecast error reduction in monthly average.

The diagnoses imply that it is possible to derive more information from radiance data
by improving usage of these data and operators.

The TL-based method was introduced.

We can see time evolution and space distribution of linear observation impacts, and
evaluate them by comparison with those of integrated background errors.

Covariance matrix optimization

Optimization methods include observation impact estimations.
Sensitivity based method diagnosed the JMA GDAS has too large (small) R (B).

The single case experiment of optimization showed the explicit forecast error
reductions.

Analysis error estimation

We constructed new method based on data assimilation theory. The method
assimilate reference analysis fields.

The method reduce forecast error and also consistent with observations, if adequate
inflation factor is given.

ADJ-based method can be used to generate improved forecasts, so it may be
possible to be used as pseudo truth.



