5th WMO Workshop on the Impact of Various Observing Systems on NWP 22-25 May 2012, Sedona, USA

The new NWP system at KMA and some preliminary results of sensitivity test to observational data

YongSang Kim

Korea Meteorological Administration

KMA NWP System & Observation Usage

Regional & Local DA impacts

Observation System Experiments

Preliminary results of Adjoint Sensitivity Summary

Implementation Background of KMA NWP System

- KMA has operated the Global Model since 1998
- Replacing NWP system from GSM to UM at 2010
 - N320/L50(~40km/top=60km)
 - Global D.A. cycle for UM including ODB implementation ('08~'10)
 - ODB library gradually upgraded('10~'12) : observational data usage is rapidly increasing
- Global & Regional Model Update using UM ('11~'12)
 - Resolution upgraded (N320/L50(~40km/top=60km) → N512/L70(~25km/top=80km))
 - Adapting Regional D.A. system & Ingest Local/KMA operation data(COMS, Ship(auto-sonde), AWS, light house, ocean observation station)
- Forecast Sensitivity to Observation using Adjoint Sensitivity method based on UM ('12~)
- KMA has started to develop the our own NWP system ('10~'19)

Predictability and Data Assimilation

120 -+24hrs --+72hrs --+120hrs 100 80 RMSE [m] 60 40 Two days/ 10 yr 20 0 Jul 99 Jan.99 311-9⁸ Jan 98 anao suloo sano uno sano suloo MODEL : GSM T106 GSM T426 UM N320 ~ N512 **G**SM T213 Data Assm. : FGAT 1dVar 3dVar 4dVar (TOVS) 3dOI

500 hPa Geopotential Height RMS Error / N.H.

- NWP Model & Computing Infrastructure -

- 5 -

Main Model Configuration & obs. usage

Global (UM)

- N512L70/ 4DVAR (~25km / top = 80km)
 252hrs (00/12UTC) 72hrs (06/18UTC)
- ETKF ensemble (24M)

• SURFACE(synop,buoy,ship),SONDE (temp,dsonde,pilot,WPF), AIRCRAFT (amdar,airep) SCATWIND(ascat), IASI, AIRS, SSMIS, ATOVS(gtovs,rars) SATWIND(mtsat,goes,msg,met7,coms, modis,avhrr), GPSRO(cosmic,gras)

Regional (UM)

- 12kmL70 / 4DVAR (0.11°x0.11° / top=80km)
- 72hrs (6 hourly)
- Same as Global UM except hi-resolution ascat add some local observations AWS, AMEDAS, IEODO ocean research station, research vessel

E.Asia (WRF) 10kmL40 /3DVAR (top ~ 50hPa) 72hrs (6 hourly)

 SURFACE(synop,buoy,ship), SONDE(temp,pilot,WPF), AIRCRAFT

(amdar,airep) SCATWIND(ascat) RADAR(reflectivity),AMEDAS,AWS

Local (UM)

- 1.5kmL70 / 3DVAR (top ~ 39 km)
 4.0km (2 kourth)
- 12hrs (3 hourly)
- SURFACE(synop,buoy,ship),SONDE (temp,dsonde,pilot,WPF), AIRCRAFT (amdar,airep) SCATWIND(ascat)

add local observations

(RADAR(radial velocity), AMEDAS AWS, IEODO ocean research station, research vessel, local buoy, lighthouse station)

Observation Data for Global NWP vs. UKMO

UM Observational Coverage (received data)

synop 13910 ship 2884 buoy 5248 ascat 206220 METAR 43028

temp 811 pilot 231 windprofiler 3189

amdar 45750 airep 1372

UM Observational Coverage (assimilated data)

EB9703

Observation Received & Assimilated

12UTC November 30, 2011

	・●□?・▲▼□ //,▼?ГХ\$▼▲・//,●			•●_ ∪• ?? •∪	• ×┌┌ ▲₀ ○ • ⌒ ✓ ▲ ● /// ●	•×□¯▲ _□ ҂ ? ? • ◡•೧ ▾ ▲ • <i>∦</i> ●					
	? ▼ X_ ✓ [[? //,●	·✓ • X X X	?	? ✓ ▲ ◀ ● ●			0000			
□└└└● ♦└_\	↓ ▶ □ ▶ ↓ ▼	↓ □ ▼▼−	▼ ▶ □ ▼ -	◀ ▾ ▾▯▾ ▲곱	▶ ◀ ▾▯▾ ◀	▶▶₽□ _₽_	▪ ≝ ◀□► ◀ ▾	▲ ⊡⊡ ≚ ◀ -	▶ ▲ [] ▼ — —	800	▞▖▶▼◀▖ ▼▶▼
95 % received and 63 % used data come from satellite measurements											

The Comparison between # of obs. & total increments(O-B)

Impact per one analysis cycle (00UTC Aug. 30 2010)

KMA NWP System & Observation Usage

Regional DA impacts

Observation System Experiments

Preliminary results of Adjoint Sensitivity Summary

Introduction of Regional DA

Impact of Regional DA

Regional Model (3-hour accumulated precipitation)

KMA NWP System & Observation Usage

Regional & Local DA impacts

Observation System Experiments

Preliminary results of Adjoint Sensitivity Summary

COMS Impacts

- COMS : Communication, Ocean and Meteorological Satellite (Korea)
- Preparation for application of COMS AMV data to UM system (OPS / 6 hourly) is finished
- · Testing for implementation of hourly COMS AMV data is on-going

Exp. Name	assi. window / temp. thinning	Satellites
CTRL	±00h / -	MTSAT(QI85) only
COMS1	\pm 02h / 7200s	COMS(QI90)+MTSAT(QI85)
COMS2	\pm 03h / 3600s	COMS(QI90)+MTSAT(QI85)

COMS1: 2 hourly local COMS(T-2, T+0, T+2) + full MTSAT at T+0 COMS2: 1 hourly local COMS(T-3,T-2,T-1,T+1,T+2,T+3) + full MTSAT at T+0

➔ Neutral for NH and improved for the typhoon case in Asia region

OSE of Typhoon case

✤ The forecast tracks of Typhoon "DIANMU" are quite different

Additive data test for Typhoon track

Additive data test for Typhoon track

Typhoon Track Error

- \circ The experiment with all data shows the best result
- \circ The impact of aircraft per data volume is noticeable
- Scatwind shows smaller and larger error in early and last forecast time
- ATOVS and IASI contribute the positive impact

KMA NWP System & Observation Usage

Regional & Local DA impacts

Observation System Experiments

Preliminary results of Adjoint Sensitivity

Summary

Adjoint Based FSO method

Forecast Sensitivity to Observation (FSO) calculates an aspect of forecast error reduction due to analysis

(Negative value means error reduction and then it means a good impact)

 δJ is a decrease of the global energy norm error(24hours) due to analysis and negative value means reduction of forecast error and better performance.

(Reference : Met Office VSDP 63

Case study of Observation Sensitivity

18UTC Feb. 7

KMA NWP System & Observation Usage

Regional & Local DA impacts

Observation System Experiments

Preliminary results of Adjoint Sensitivity

Summary

- The development of data assimilation technique (4DVAR) and huge increase of observational data play an important role in model performance. Super computer make it possible to run 4DVAR system operationally.
- The impact on analysis depends on the choice of observation.
- Generally the more obs, the more impact on analysis. But Synoptic and aircraft shows relatively great impact with even less number of data
- Track error of typhoon is enhanced by information of steering wind due to addition of data around typhoon
- More impact studies of the observation are needed

