Uncertainty in Operational Atmospheric Analyses

Naval Research Laboratory – Monterey, CA

Ryan N. Maue

Fifth WMO Workshop on Observing System Impact in NWP Sedona, AZ, 22-25 May 2012

Objectives/ of Study

- Quantify the uncertainty (differences) in current operational <u>analyses</u> of the atmosphere – <u>height, temperature, winds</u>
- 2. Consider implications of analysis uncertainty for NWP and plans for the future global observing network

Analysis differences are a proxy for actual analysis error, which cannot be precisely quantified

Significance of Analysis Uncertainty/Error

- Quality of NWP forecasts from short to medium-range
- Extended-range NWP?

- Short-range climate forecasts?
- Quality of forecast verification
- Accuracy of climate monitoring

Question asked to a prominent climate scientist: "Given that there are differences between various atmospheric temperature re-analyses, does that uncertainty affect your ability to detect global climate trends?"

Answer: "There is only one correct analysis of the atmosphere and that is the one that we will use"

Causes of Analysis Differences and Error

- Gaps/deficiencies in global observing network
- Errors /bias in observation data
- Choices in observation selection
- Observation quality control decisions
- Different and imperfect data assimilation techniques
- Errors in background forecast

Methodology

- Use multi-year, multi-model archive of operational analyses and forecasts, developed at NRL for research and diagnostic studies
- Quantify and examine differences in atmospheric analyses, trends over time ...
- Examine systematic (monthly/seasonal) patterns

Surprisingly sparse literature on the topic of atmospheric analysis uncertainty and error

Scholarly articles for uncertainty in atmospheric analyses		
of analysis uncertainty upon regional atmospheric Wang - Cited by 60 Uncertainty analysis of climate change and policy Webster - Cited by 195 On the assessment and uncertainty of atmospheric Abrams - Cited by 42 [PDF] Uncertainty in Atmospheric CO2 Concentrations from a Paramet		" <u>Some aspects of the improvement in skill of</u> <u>numerical weather prediction</u> , 2002: A.J. Simmons and A. Hollingsworth, QJRMS.
globalchange.mit.edu/files/document/MITJPSPGC_Rpt39.pdf File Format: PDF/Adobe Acrobat - Quick View Parametric Uncertainty Analysis of a Global Ocean Carbon Cycle Model. Gary Louis Holian. Submitted to the Department of Earth, Atmospheric, and Planetary		
Uncertainty in atmospheric CO ₂ predictions from a parametric dspace.mit.edu/handle/1721.1/3565 by GL Holian - 2001 - Cited by 8 - Related articles Uncertainty in atmospheric CO ₂ predictions from a parametric uncertainty analysis of a global carbon cycle model. Show full item record. Citable URI:		
Quantitative uncertainty analyses of ancient atmospheric CO2 ajsonline.org/content/309/9/775.abstract by DJ Beerling - 2009 - Cited by 9 - Related articles Quantitative uncertainty analyses of ancient atmospheric CO2 estimates from fossil leaves. David J. Beerling*,†,; Andrew Fox* and; Clive W. Anderson**		
Uncertainty in atmospheric temperature analyses Langland Tellus A journals.sfu.ca/coaction/index.php/tellusa/article/view/15390 by RH Langland - 2008 - Cited by 9 - Related articles This report illustrates and quantifies the unanticipated large uncertainty and differences in tropospheric temperature analyses within current global operational	Langland, Ma Bishop, 2008	aue, 3: Tellus
(PDF) estimates, uncertainty analysis , and sensitivity analysis - ACP www.atmos-chem-phys.net/11/2625/2011/acp-11-2625-2011.pdf File Format: PDF/Adobe Acrobat - Quick View by IMD Rosa - 2011 - Related articles Atmospheric . Chemistry and Physics. Atmospheric emissions from vegetation fires in. Portugal (1990–2008): estimates, uncertainty analysis , and sensitivity		" <u>Analysis differences and error variance</u> <u>estimates from multi-centre analysis data</u> ," 2010: M. Wei, Z. Toth, Y. Zhu, Aust. Met. and Ocean Journal.
Uncertainty in atmospheric temperature analyses - LANGLAND onlinelibrary.wiley.com > > Journal Home > Vol 60 Issue 4 by RH LANGLAND - 2008 - Cited by 9 - Related articles		
Jul 8, 2008 – Uncertainty in atmospheric temperature analyses. ROLF H. LANGLAND1 * RYAN N_MAUE2 : CRAIG H_BISHOP1. Article first published		Dec 2011 – WGNE presentation by Tom Hamill

ECWMF / Met Office Analyses of 500hPa height

Simmons and Hollingsworth (2002)

From 12UTC analyses, 12Dec 2000 to 12 March 2001

Analyses shown to be more similar in regions with in-situ observations (esp. radiosondes)

Analyses from NCEP, ECWMF, UKMO, CMC, FNMOC 00UTC: 1Feb 2008 to 30Apr 2008

In general, smaller analysis spread in locations with in-situ observations (esp. raodiosondes, aircraft)

Analyses from NCEP, CMC, FNMOC 00UTC, 12UTC: 1Jan 2007 to 1Jun 2007

Langland et al. (2008)

Indication that assimilation of high-quality in-situ observations (radiosondes, aircraft data) reduces analysis uncertainty more than assimilation of satellite observations (radiances and feature-track or scatterometer winds) 500mb Temperature Analyses Root Mean Square Difference 1 Jan – 1 Jun 2007

Langland et al. (2008)

Smaller analysis uncertainty (<1K) where radiosonde data are provided Larger uncertainty (1-2K) between analyses where satellite data predominates

UNCERTAINTY BETWEEN ANALYSES CAN BE LARGER THAN SHORT-RANGE "FORECAST ERROR" !!

2011: same pattern still in place!

[Many new radiance data have been added during 2007-2011]

Langland and Maue 2011

Analyses from NCEP, ECWMF, UKMO, CMC, CMA 00UTC: 10CT 2010 to 30Sep 2011

Time-average of daily spread (sample standard deviation) of analyses about their daily mean

"Analyses, assumed to be unbiased, do exhibit substantial bias Implications for ensemble perturbations (may be too small)"

300mb Wind Speed (2010) GFS / ECMWF

Root-Mean Square of Analysis Differences: 300mb Wind Speed

Siberian Radiosonde Stations

A key component of the global observing network

Raob launch in Siberia

Radiosonde stations on the budget chopping block Example: Eareckson Air Station (Shemya) 70414

Unicertainty in atmospheric upper-tropospheric wind analyses is substantially lower in locations where radiosonde data is provided. The blue-shaded areas are locations where raobs provide soundings twice-daily (00z and 12z). Station 70414 provides data only at 12z, so the associated reduction in analysis error at that location is mitigated, but still significant.

500mb ht root mean square analysis differences South Polar Region: ECWMF | GFS

Data Overview—CIMSS/UW Polar/LeoGeo Winds

Geostationary winds—orange

Polar winds—aqua (MODIS operational in Oct 2004, AVHRR operational in Nov 2007) LeoGeo winds—purple (operational in Nov 2010) Assimilated at NRL, but not all other centers

About 19 million observations assimilated in global domain each day in NAVDAS-AR [4d-Var]

Question

Why is analysis uncertainty over oceanic regions still much larger than over North America and Europe, despite the addition of massive amounts of radiance data? [Now as much as 90% of all assimilated data.]

Basic patterns of analysis differences and analysis uncertainty in 2012 remain similar to those reported in 2002.

Do the analysis differences shown in these studies have implications for design of the global observing network?

Summary

Availability of radiosonde and aircraft data appear to substantially reduce uncertainty in upper-air analyses of temperature and wind

Analysis uncertainty is larger where the analysis relies primarily on radiance observations

What new observing instruments and variables are most-needed to reduce analysis uncertainty?

Where is the greatest need to reduce the current magnitude of analysis uncertainty? Polar regions? Oceanic storm tracks?

28 Apr 2012 [00, 06, 12, 18 UTC]

Data count in 2° x 2° lat/lon bins

The largest density of observations is due to in-situ data [radiosondes, aircraft, land-surface and ocean-surface observations]