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Goal: representation of fields, that depend not only from space and time, but also from an additional
continuous parameter, e.g. diameter d or particle mass m. Such fields at the end are (density) distribution
functions f(x, y, z, t; d) ≡ f(r, t; d). They describe e.g. the distribution of particles with different particle
sizes in the air. For simplicity, the time variable t is omitted in the following; in GRIB, times are noted
in the PDS, anyway.

Furthermore, this is a try to describe unimodal and multimodal distribution functions in a common
GRIB2-framework.

In a GRIB-file one or several fields are contained, which describe the distribution function (concentrations,
number densities, ...). The purpose of this GRIB-template is to enable the user to calculate additional
interesting variables (these are mostly integrals) from these fields, if he knows the underlying distribution
function. Examples are the mass density of cloud droplets

ρ(r) =

∫

∞

0

1

6
πd3ρw f(r, d) dd (1.1)

(with the density of water ρw = 1000 kg/m3) or the radar reflectivity of rain droplet distributions

Z(r) = const.

∫

∞

0

d6 f(r, d) dd (1.2)

In the following some examples of distribution functions are listed:

1. bin-model with concentrations cl(r) in the class (or mode) l. A concentration distribution function
is described by

f(r; d) =

N
∑

l=1

cl(r)δ(d −Dl). (1.3)

In this model, the numbers Dl for the diameter in these N classes are fixed and prescribed.
(p1 = Dl)

Area of application: bin-models in the cloud microphysics, volcanic ash, ...

2. N-modal concentration distribution function, composed by Gaussian functions
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∑
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. (1.4)

Again, N concentrations cl(r) must be stored. The N modes are defined by fixed values for diameter
Dl and width σl.
(therefore, p1 = Dl and p2 = σl)

3. N-modal concentration distribution function, composed by Gaussian function, whose diameter and
width can vary from grid point to grid point:
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∑
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(1.5)

Now, 3N fields cl(r), Dl(r) and σl(r) must be stored.
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4. N-modal log-normal distribution for the number density

f(r; d) =

N
∑

l=1

nl(r)√
2π log σl(r)

e
−

log2 d

D
l
(r)

2 log2 σ
l
(r) (1.6)

It is described by 3N fields nl(r), Dl(r) and σl(r).

5. N-modal log-normal distribution for the number density at fixed variance

f(r; d) =

N
∑

l=1
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2π log σl

e
−

log2 d

D
l
(r)

2 log2 σ
l (1.7)

It is described by 2N fields nl(r), Dl(r) and N fixed numbers σl. (therefore, p1 = σl)

6. N-modal log-normal distribution for the number density at fixed variance and the prescription of
number density and mass density. Again, equation (1.7) is used. However, it is not the field Dl(r)
that is stored, but it is expressed via

Dl =

(

ml

nl
π
6 ρp,le

9
2 log2 σl

)1/3

(1.8)

by the mass density ml(r).
It is described by 2N fields number density nl(r) and mass density ml(r), N values σl and N values
for the particle densities ρp,l.
(p1 = σl and p2 = ρp,l)

(C. Hoose (2004) master thesis, Univ. Karlsruhe)

Application area: aerosol fields

7. N-modal exponential distribution function with prescribed specific mass q(r):

f(r; d) =
N
∑

l=1

N0,l e
−λl(r) d (1.9)

with a fixed intercept-parameter N0,l for the mode l.

For the case of spherical particles and N = 1 (cloud droplets, rain droplets) the inverse length λ(r)
depends from the specific mass q(r) and from the air density ρ(r) by

λl(r) =
4

√

πρw,lN0,l

ρ(r) q(r)
. (1.10)

This formula also contains the density ρw,l (e.g. density of liquid water, in general this value is the
same for all modes l).
(p1 = N0,l, p2 = ρ[w,l ).

Application area: for N = 1 an exponential distribution is assumed for the most cloud physics
particles (cloud ice, graupel, ...)

8. skew Gaussian function (e.g. for temperature distributions)

f(r;T ) =







cre
−

(T−T0(r))2

σ2
r
(r) , T > T0(r),

cle
−

(T−T0(r))2

σ2
l
(r) , T ≤ T0(r)

(1.11)
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with 3 fields T0(r), σr(r), σl(r). The ’left-sided’ and ’right-sided’ variances σl,r have the same
physical dimension (temperature). To distinguish them, it is recommended to define two different
GRIB-elements. cl and cr are approriate norms (not given here).

9. . . .

Though the possible functional forms of distribution functions is extremely huge, in practice, only a few
of them are used. However, the shown examples indicate, that even for the same underlying distribution
function, there can exist differences about which parameter and fields are prescribed or derived by others
or which variable is the independent one (in these examples this has been the diameter d, the particle
mass m could be another one, ...). Consequently, this list can become quite large during the lifetime of
GRIB2. In the end, this GRIB-template is a possible ansatz, to deliver a minimum of order together with
complete information for the user of GRIB-data.
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