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1 Introduction 
This document describes a data model for the representation of weather radar and scanning lidar data, 

metadata and products.  While effort has been made to be general, the weather-radar technology in 

question is assumed to be that commonly used in real-time operations throughout the world: scanning 

X, C, and S-band systems.  Radar and lidar together in this context are referred to here as Pulsed Polar 

Systems (PPS). 

The data model is based upon the WMO Information Model for Radial Radar and Lidar Data which 

describes the key objects, relationships and metadata necessary to facilitate the exchange of PPS data.  

This document introduces logical, structural and representational constraints which act as a bridge 

between the primarily conceptual information model and the primarily technical file formats which may 

be used to implement it. 

As is noted in section 1.1 of the information model, there are several types of data which may be 

relevant to the exchange of PPS data.  Of these only Level 2, related to information organised in native 

polar coordinates by rays, bins, and quantities, is addressed by this data model. 

1.1 Relationship to information model 
The information model introduces the fundamental objects required to represent PPS data and the 

metadata associated with them.  The relationships between objects are defined in an idealized manner 

as a simple hierarchy of types.  Each instance of a type contains any number of instances of the type at 

the next level of the hierarchy.  This arrangement is shown in Figure 1. 

 

Figure 1. Information Model, Object Model Hierarchy 

While this arrangement is conceptually simple, it leads to a degree of flexibility in the relationships 

between objects which is unnecessary for practical PPS data exchange purposes.  Supporting the full 

flexibility of the idealized relationships within a file format is difficult, and such a format is likely to be 

very complex.  Although such formats may be relatively easy for a data producer to write, they tend to 

be difficult for a data consumer to use.  In this way excessive flexibility in the object model hinders the 

goal of facilitating international PPS data exchange. 
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Figure 2. Information Model, Object model hierarchy as refined for efficient storage 

The need for a simplified representation is recognized by the information model which also provides the 

object model hierarchy shown in Figure 2.  This model facilitates efficient storage and lower complexity 

of use by considering the ways that PPS data are acquired and distributed in practice.  It is this refined 

view of the information model object hierarchy which is addressed by the data model. 

1.2 Relationship to file format 
This document does not attempt to specify a file format that should be used to represent the data.  

Rather, it provides a set of structural and representational requirements which aid in mapping between 

the conceptual objects of the information model and the corresponding physical representation that 

would be specified by a file format. 

In this regard, the data model may be thought of as providing guidance which aligns with the way a user 

expects to access and manipulate the data.  In principle, this document could be used as the basis for 

the development of an API through which PPS data may be accessed independent of underlying file 

formats. 

For example, the data model may specify that the values of a dataset object are represented as an array 

of 32-bit floats ordered in a specific way.  An implementing file format is free to store this data in any 

way provided that it is accessed in a manner consistent with the array of 32-bit floats specified by the 

data model. 

 

DatasetSweepVolume

VOL1

0.5°

DBZH
[#rays][#bins]

VRADH
[#rays][#bins]

...

32.0°

DBZH
[#rays][#bins]

VRADH
[#rays][#bins]



Page 5 of 20 
 

2 Data Model 

2.1 Overview 

2.1.1 Data type encodings 
The information model defines each metadata attribute as belonging to one of the following 

fundamental classes: “integer”, “real”, “Boolean”, “string”, or “enum”.  Additionally, a special data type 

of “time” is identified with subtypes for absolute and relative times.  The data model nominates a set of 

specific encodings for each of these types.  One or more of these encodings is associated with each data 

or metadata item in the data model.  Implementing file formats must expose the data and metadata 

items to the user (whether directly or via an API) using the specified encoding. 

Table 1. Data type encodings 

Type Encoding Description 

integer int8 8-bit signed integer.  Minimum representable range of -128 to 127 
inclusive. 

integer int16 16-bit signed integer in host native endianness.  Representable range of -
215 to 215-1 inclusive.  

integer int32 32-bit signed integer in host native endianness.  Representable range of -
231 to 231-1 inclusive. 

integer int64 64-bit signed integer in host native endianness.  Representable range of -
263 to 263-1 inclusive.  

integer uint8 8-bit unsigned integer.  Representable range of 0 to 255 inclusive. 

integer uint16 16-bit unsigned integer in host native endianness.  Representable range of 
0 to 216-1 inclusive. 

integer uint32 32-bit unsigned integer in host native endianness.  Representable range of 
0 to 232-1 inclusive. 

integer uint64 64-bit unsigned integer in host native endianness.  Representable range of 
0 to 264-1 inclusive. 

real float32 32-bit floating point value in IEEE 754-2008 binary32 format. 

real float64 64-bit floating point value in IEEE 754-2008 binary64 format. 

Boolean bool Boolean value in native or conventional Boolean type if available. 

string utf8 Null-terminated UTF-8 character string. 

enum enum Null-terminated UTF-8 character string. 

time 
(absolute) 

iso8601 Absolute UTC time as a null-terminated UTF-8 character string conforming 
to ISO 8601 standard.  The representation used is ‘YYYY-MM-
DDThh:mm:ssZ’ for low precision and ‘YYYY-MM-DDThh:mm:ss.ddddddddZ’ 
for high precision. 

time (relative)  
float64 

A relative time from a reference absolute time (above) is expressed as a 
float64 offset in seconds with nanosecond precision (eight decimal places), 
where a positive value indicates a time after the reference. 

 

2.1.2 Freedom of implementation of storage scheme 
Implementing file formats are free to store data and metadata using any storage scheme provided such 

schemes are transparent to the user of the data.  This means that the data must be presented to the 

user (typically through an API) in the encoding type specified for the item by the data model.  
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Additionally, any storage scheme must retain the full semantics of the encoded type as specified in 

Table 1.  Specifically: 

 The storage scheme must provide precision equal to or greater than the data model encoding. 

 Special values available in the nominated encoding type must be representable in the storage 

scheme.  For example, the floating-point NaN and infinity values. 

 The storage scheme must not introduce a dependency on data which is external to the stored 

file itself.  For example, an enum type may be stored as an integer only if a mapping between 

the integer values and enumerate labels is also stored within the file. 

2.1.3 Representation of optional metadata 
Where metadata is nominated to be optional it must be possible for the user to distinguish between 

presence and non-presence of the value.  This means that implementing file formats should simply omit 

missing values rather than providing defaults. 

2.1.4 Inversion of arrays of metadata groups permitted 
Metadata associated with objects are collected into logical groups which are detailed in section 3.  It is 

necessary for some objects to contain multiple instances of a single metadata group.  For example, the 

sweep object must contain multiple instances of the “ray characteristics” metadata group; one per ray.  

Within the data model this arrangement is presented as if the object contains an array of the metadata 

group itself. 

To facilitate efficient storage and ease of use, it is permissible for implementations to invert this 

arrangement such that an object contains several arrays (one per metadata item) which together make 

up the logical group. 

A pseudo code demonstration of such an inversion is shown in Figure 3.  Although the data model is 

specified in the “array of groups” form, file formats may implement this in the “group of arrays” form.  

This inversion is permitted at both the storage and user levels.  That is, the inversion may be apparent to 

the user and does not need to be hidden. 

 

Figure 3. Inversion of metadata group arrays 

Array of Groups 

 type md-group 

 { 

   metadata a 

   metadata b 

   metadata c 

 } 

 type object 

 { 

   md-group group[N] 

 } 

Group of Arrays 

 type md-group 

 { 

   metadata a[N] 

   metadata b[N] 

   metadata c[N] 

 } 

 type object 

 { 

   md-group group 

 } 
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2.1.5 Hierarchical metadata permitted 
Implementations are permitted, although not required, to allow metadata which is identical in value for 

all objects at a level of the object hierarchy to be stored at a higher level.  Metadata which has been 

promoted in this way shall be considered to apply to all lower objects.  Metadata provided at a higher 

level it must be either omitted entirely from lower levels, or provided with identical values. 

For example, if all rays within a volume have the same pulse width then the implementation may allow 

the pulse width metadata to be stored at the volume level and omitted from all sweep and ray 

metadata. 

Where permitted by the implementation, promotion of common metadata to a higher level should be 

detectible by the user.  This allows users to optimize usage patterns and processing chains based on the 

consistency of metadata over multiple objects.  Implementations are also encouraged to ensure that 

users are not burdened with the task of searching the object hierarchy for desired metadata.  This would 

typically be achieved via redundant storage of the metadata at lower levels, or through an API which 

automates the search process. 

2.1.6 User defined metadata 
The information model (Section 3.1.4) specifies that user defined metadata may be freely associated 

with any object.  The data model restricts the use of user defined metadata in the following ways: 

 All user defined metadata must be identified by a name in the utf8 encoding as per Table 1. 

 The names assigned to user defined metadata must be unique within the context of the object 

to which they are applied.  This includes both standard metadata and other user defined 

metadata. 

 The values of user defined metadata must be represented using one of the encodings specified 

by Table 1.  The value may be either a scalar or one dimensional array. 

Implementing file formats shall not explicitly distinguish between standard metadata that is defined by 

the data model and user defined metadata.  This ensures that user metadata with wide community 

acceptance may be officially adopted into the information and data models without triggering changes 

at the file format level.  In effect, implementing file formats must be forward compatible to the 

standardization of new metadata. 

An implication of this requirement is that file formats must provide a mechanism for discovery of the 

metadata associated with an object.  Practically this means that a user must be able to iterate over the 

metadata of an object to retrieve the name, encoding type and value of each item. 

2.1.7 Self-describing files 
Implementations are strongly encouraged to store extended metadata within the file format to provide 

contextual information about the object metadata itself.  Such ‘meta-metadata’ will allow the file to be 

self-describing.  A self-describing file provides sufficient information about its contents that it may be 

understood and used correctly without the need for external documentation or context. 

For example, the Nyquist velocity metadata attribute is specified to be encoded as float64.  A minimally 

conforming file format need only store the name, encoding type and value of this attribute.  This is 

sufficient for a user to find and read the value, but insufficient to understand the value semantically.  A 
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self-describing file will also provide meta-metadata such as the units of the quantity (in this case m/s) so 

that the value can be understood without reference the information model. 

2.2 Volume object 
The volume is the top-level object represented by the information and data models.  This object 

contains a sequence of any number of logically associated sweep objects.  The order of the sweeps 

within the sequence is unspecified, however will typically be the acquisition order of the data.  It is 

permissible for a volume object to contain zero sweeps. 

Although the order of sweeps is not specified, it is required that the order be well defined for any given 

volume.  This allows a user of the volume object to access a sweep by its index and be sure that the 

index will not change upon closing and reopening the (unmodified) file.  Implementing file formats are 

required to allow random access to individual sweep objects.  Users must not be required to load or 

otherwise process preceding sweeps to access the nth sweep of a volume. 

Table 2. Volume object contents 

Description Type Reference 

Product information metadata 3.2.1 

Geographic reference information metadata 3.2.2 

Instrument characteristics (radar or lidar depending on IMID 1.0) metadata 3.2.3/3.2.4 

User defined metadata metadata 2.1.6 

Number of sweeps uint64  

Sweep objects sweep[] 2.3 

 

2.3 Sweep object 
The sweep object represents the middle level of the object hierarchy.  This object contains a collection 

of datasets for which certain fundamental properties must remain constant.  These properties include 

the ray/range bin geometries and target fixed angle (e.g. elevation angle of a PPI sweep).  If a single scan 

is to be represented during which any of these properties is modified, then it must be stored as multiple 

sweeps. 

The simplification of the object model shown in Figure 1 into the more storage efficient model shown in 

Figure 2 results in the removal of the ray and range bin levels of the type hierarchy.  Since these objects 

are no longer explicitly expressed by the model, the metadata for these levels is stored directly within 

the sweep. 

Additionally, a special case of ‘almost’ constant metadata is recognized by the data model.  When 

multiple pulse widths are used within a sweep some metadata may be related directly to the instrument 

calibration at that pulse width rather than the sweep itself.  An attribute of the ray metadata (IMID 8.7) 

allows the association of calibration specific metadata with individual rays. 

Because of the above, metadata which is stored by the sweep may be stored per sweep, per calibration, 

per ray or per range bin.  User defined metadata is permitted to be stored under any of these regimes. 
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Dataset objects contained by a sweep must be accessible via index and dataset identifier.  As with 

volumes, the order of the contained objects is not specified but must be well defined to support random 

access patterns. 

The dataset identifier (IMID 12.0) must be unique over all datasets of a sweep.  It is permissible for 

multiple datasets to represent the same quantity (IMID 12.1) if each dataset is given a separate 

identifier (IMID 12.0). 

Table 3. Sweep object contents 

Description Type Reference 

Sweep characteristics metadata 3.3.1 

User defined metadata metadata 2.1.6 

Number of instrument calibrations uint64  

Instrument calibration (radar or lidar) metadata[calibrations] 3.3.2/3.3.3 

Calibration specific user defined metadata metadata[calibrations] 2.1.6 

Number of rays uint64  

Ray characteristics metadata[rays] 3.4.1 

Moving platform geographic reference information metadata[rays] 3.4.2 

Radar monitoring information metadata[rays] 3.4.3 

Ray specific user defined metadata metadata[rays] 2.1.6 

Number of range bins uint64  

Range bin metadata metadata[bins] 3.5.1 

Range bin specific user defined metadata metadata[bins] 2.1.6 

Datasets dataset[] 2.4 
 

2.4 Dataset object 

2.4.1 Scalar dataset object 
The scalar dataset object contains all the measurements of a single PPS data type or variable for every 

ray and range bin within a sweep.  The data is represented as a 2D array of values where each row of the 

array corresponds to a ray, and each column of the array corresponds to a range bin. 

The values stored in the array do not directly represent the dataset quantity as specified by the quantity 

name and units (IMID 12.1, 12.2).  Rather, the stored value is converted to the dataset quantity through 

use of the following equation: 

𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 = 𝑠𝑡𝑜𝑟𝑒𝑑 × 𝑔𝑎𝑖𝑛 + 𝑜𝑓𝑓𝑠𝑒𝑡 

The gain and offset are constants which are selected by the user when the dataset is written and stored 

as part of the dataset object.  The fundamental type of the array is also selected by the user and must be 

one of the following encodings from Table 1: int8, int16, int32, int64, uint8, uint16, uint32, uint64, 

float32, float64. 

This flexibility in choice of gain, offset and encoding type for a dataset allows the user to select a 

quantization for the dataset which retains an acceptable accuracy for the quantity while minimizing the 

size of the resulting file.  Implementations are encouraged to support additional lossless compression of 

dataset arrays. 
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It is expected that reading and writing quantity data will always involve the entire dataset.  

Implementing file formats are therefore not required to support partial or random access to the data 

array. 

Table 4 Scalar dataset object contents 

Description Type Reference 

Basic dataset information metadata 3.6.1 

Quality dataset information metadata 3.6.2 

User defined metadata metadata 2.1.6 

Gain used in conversion of encoded values to quantity float64  

Offset used in conversion of encoded values to quantity float64  

Data T[rays][bins]  

 

2.4.2 Spectrum dataset object 
Conceptually the spectrum dataset object contains a vector of samples of a single PPS data type or 

variable for every ray and range bin within a sweep.  Due to the potentially large size of this dataset it is 

common practice to filter out spectra corresponding to locations which fail some interest criteria (such 

as a minimum signal to noise ratio). 

To facilitate efficient storage of filtered spectrum datasets this object is represented as two densely 

packed arrays; a data array and an index array.  The data array contains the vectors of samples making 

up each spectrum while the index array is used to map between ray/bin and the corresponding 

spectrum in the data array.  A spectra index value of -1 is used to indicate that there is no spectrum 

stored for the ray/bin.  This arrangement ensures that filtered (missing) spectra consume no space in 

the data array. 

The sample values contained by the spectrum data array are subject to the same gain and offset based 

packing as the scalar dataset object described in section 2.4.1.  

Table 5 Spectrum dataset object contents 

Description Type Reference 

Basic dataset information metadata 3.6.1 

Quality dataset information metadata 3.6.2 

Spectrum dataset information metadata 3.6.3 

User defined metadata metadata 2.1.6 

Gain used in conversion of encoded values to quantity float64  

Offset used in conversion of encoded values to quantity float64  

Number of samples per spectra uint64  

Number of spectra uint64  

Spectrum index Int64[rays][bins]  

Spectrum data T[spectra][samples]  
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3 Standard Metadata Encodings 
This section describes the data type encoding for each metadata which may be associated with the 

objects detailed in section 2. 

3.1 Overview 

3.1.1 Relationship to information model 
Where a metadata item was originally identified within the information model the information model 

metadata ID is also provided (IMID). 

Data model specifies only the encoding for the standardized metadata.  This document should be used 

in conjunction with the information model which details the semantics of these value such as units and 

minimum required precision. 

The information model convention of indicating required metadata using a shaded background is 

retained. 

3.2 Volume Object Metadata 

3.2.1 Product information 

IMID Description Encoding 

1.0 Instrument type, distinguishing between “radar” and “lidar” utf8 

1.1 Site identifier, e.g. WIGOS identifier* utf8 

1.2 Volume start time iso8601 

1.3 Volume end time iso8601 

1.4 Scan strategy name utf8 

1.5 Instrument identifier (e.g. WSR-88D) utf8 

1.6 Whether instrument has malfunctioned bool 

1.7 Instrument error message utf8 

1.8 Whether acquired data are simulated bool 

*The WIGOS identifier  structure consists of four parts.  The part of the structure called “Local identifier” 

is the only part consisting of characters.  Following the ODIM convention (Michelson et al., 2014), it is 

suggested as a best practice that the local identifier be harmonized to a five-character string, where the 

first two characters are the member country’s ISO 3166-1 alpha 2 ccTLD  code (lower case), and the 

latter three characters are freely-selectable (also lower case). 

3.2.2 Geographical reference information 

IMID Description Encoding 

2.0 Site longitude float64 

2.1 Site latitude float64 

2.2 Site altitude above geodetic datum.  For a scanning instrument this is the 
center of rotation of the antenna.   

float64 

2.3 Geodetic datum name utf8 

2.4 Site altitude above ground level  float64 

2.5 Magnetic declination at site, positive clockwise float64 

2.6 Whether platform is moving bool 
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3.2.3 Radar characteristics 
The metadata in this section only apply to instrument type ‘radar’. 

IMID Description Encoding 

3.0 Nominal antenna gain H float64 

3.1 Nominal antenna gain V float64 

3.2 Antenna beam width H float64 

3.3 Antenna beam width V float64 

3.4 Bandwidth of radar receiver float64 

3.5 Frequency float64 

3.6 Transmitter type, ie. 
Magnetron, 
Klystron, or 
Solid state 

utf8 

3.7 Manufacturer name utf8 

3.8 Model name utf8 

3.9 Signal processor name utf8 

3.10 Signal processor version utf8 
 

3.2.4 Lidar characteristics 

IMID Description Encoding 

4.0 Beam divergence (transmit side) float64 

4.1 Field of view (receive side) float64 

4.2 Aperture diameter float64 

4.3 Aperture efficiency float64 

4.4 Peak power float64 

4.5 Pulse energy float64 

 

3.3 Sweep Object Metadata 

3.3.1 Sweep characteristics 

IMID Description Encoding 

5.0 Sweep mode enum (Table 6) 

5.1 Target fixed angle (elevation angle for PPI mode, azimuth angle for RHI 
mode) 

float64 

5.2 Target scan rate float64 

5.3 Polarization mode enum (Table 7) 

5.4 PRT mode enum (Table 8) 

5.5 Distance to centre of first range bin float64 

 

3.3.2 Radar calibration 
The metadata in this section only apply to instrument type ‘radar’. 

ID Description Encoding 

6.0 Time of calibration time 
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(absolute) 

6.1 Pulse width float64 

6.2 Derived antenna gain H float64 

6.3 Derived antenna gain V float64 

6.4 Nominal transmit power H float64 

6.5 Nominal transmit power V float64 

6.6 2-way waveguide loss measurement plane to feed horn H float64 

6.7 2-way waveguide loss measurement plane to feed horn V  float64 

6.8 2-way radome loss H float64 

6.9 2-way radome loss V float64 

6.10 Receiver filter bandwidth mismatch loss H float64 

6.1 Receiver filter bandwidth mismatch loss V float64 

6.12 Radar constant H float64 

6.13 Radar constant V float64 

6.14 Probert Jones correction float64 

6.15 Dielectric factor |K2| float64 

6.16 Measured noise level H co-polar float64 

6.17 Measured noise level V co-polar float64 

6.18 Measured noise level H cross-polar float64 

6.19 Measured noise level V cross-polar float64 

6.20 Measured receiver gain H co-polar float64 

6.21 Measured receiver gain V co-polar float64 

6.22 Measured receiver gain H cross-polar float64 

6.23 Measured receiver gain V cross-polar float64 

6.24 Reflectivity at 1km for SNR=0dB H co-polar float64 

6.25 Reflectivity at 1km for SNR=0dB V co-polar float64 

6.26 Reflectivity at 1km for SNR=0db H cross-polar float64 

6.27 Reflectivity at 1km for SNR=0db V cross-polar float64 

6.28 Calibrated sun power H co-polar float64 

6.29 Calibrated sun power V co-polar float64 

6.30 Calibrated sun power H cross-polar float64 

6.31 Calibrated sun power V cross-polar float64 

6.32 Noise source power H float64 

6.33 Noise source power V float64 

6.34 Power measurement loss in coax and connectors H float64 

6.35 Power measurement loss in coax and connectors V float64 

6.36 Coupler loss into waveguide H float64 

6.37 Coupler loss into waveguide V float64 

6.38 ZDR correction float64 

6.39 LDR correction H float64 

6.40 LDR correction V float64 

6.41 System PhiDP as seen in drizzle close to the radar float64 

6.42 Calibration test power H float64 

6.43 Calibration test power V float64 

6.44 Computed receiver slope H co-polar float64 

6.45 Computed receiver slope V co-polar float64 
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6.46 Computed receiver slope H cross-polar float64 

6.47 Computed receiver slope V cross-polar float64 
 

3.3.3 Lidar calibration 
No calibration metadata for lidar instruments are currently identified. 

 

3.4 Ray Object Metadata 

3.4.1 Ray characteristics 

IMID Description Encoding 

8.0 Elevation angle float64 

8.1 Azimuth angle float64 

8.2 Time of acquisition (relative to volume start time) relative time 

8.3 Width of ray (dwell) float64 

8.4 Measured scan rate, positive clockwise and/or ascending float64 

8.5 Whether the antenna is in transition to fixed angle during this 
ray 

bool 

8.6 Whether geographic reference information for moving 
platforms has been applied to correct the elevation and 
azimuth angles 

bool 

8.7 Calibration index 
Note: This metadata is used to index into the instrument 
calibration and calibration specific user defined metadata 
arrays of the containing sweep (see section 2.3). 

uint64 

8.8 Pulse repetition time(s), ordered by transmission sequence (if 
known) 

float64[] 

8.9 Nyquist velocity float64 

8.10 Unambiguous range float64 

8.11 Number of samples used to compute moments int64 
 

3.4.2 Moving platform geographic reference information 
The shaded metadata of this section are only required for moving platforms. 

IMID Description Encoding 

9.0 Latitude of the instrument float64 

9.1 Longitude of the instrument float64 

9.2 Altitude of the instrument above the geodetic datum.  For scanning PPS, 
this is the center of rotation of the antenna. 

float64 

9.3 Heading of the platform relative to true north, looking down from above float64 

9.4 Roll about longitudinal axis of platform.  Positive is left side up, looking 
forward. 

float64 

9.5 Pitch about the lateral axis of the platform.  Positive is up at the front. float64 

9.6 Difference between heading and track over the ground (drift).  Positive drift 
implies track is clockwise from heading, looking from above.  Not applicable 

float64 
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to land-based moving platforms. 

9.7 Angle between the PPS beam and the vertical axis of the platform 
(rotation).  Zero is along the vertical axis, positive is clockwise looking 
forward from behind the platform. 

float64 

9.8 Angle between the radar beam (when it is in a plane containing the 
longitudinal axis of the platform) and a line perpendicular to the 
longitudinal axis (tilt).  Zero is perpendicular to the longitudinal axis, positive 
is towards the front of the platform. 

float64 

9.9 East/west velocity of the platform.  Positive is eastwards. float64 

9.10 North/south velocity of the platform.  Positive is northwards. float64 

9.11 Vertical velocity of the platform.  Positive is upwards. float64 

9.12 East/west wind at the platform location.  Positive is eastwards. float64 

9.13 North/south wind at the platform location.  Positive is northwards. float64 

9.14 Vertical wind at the platform location.  Positive is upwards. float64 

9.15 Rate of change of heading float64 

9.16 Rate of change of roll of the platform float64 

9.17 Rate of change of pitch of the platform float64 

9.18 Correction in azimuth float64 

9.19 Correction in elevation float64 

9.20 Correction in range float64 

9.21 Correction in longitude float64 

9.22 Correction in latitude float64 

9.23 Correction in pressure altitude float64 

9.24 Correction in radar altitude float64 

9.25 Correction in east-west ground speed float64 

9.26 Correction in north-south ground speed float64 

9.27 Correction in vertical velocity float64 

9.28 Correction in heading float64 

9.29 Correction in roll float64 

9.30 Correction in pitch float64 

9.31 Correction in drift float64 

9.32 Correction in rotation float64 

9.33 Correction in tilt float64 
 

3.4.3 Radar monitoring 
If it is not possible to obtain the following metadata at the ray or sweep level, they may be represented 

at the volume level.  Some of these attributes may be more relevant to the higher-order object levels. 

Some are diagnostic in nature, i.e. analyzed after data have been acquired. 

IMID Description Encoding 

10.0 Measured transmit power H float64 

10.1 Measured transmit power V float64 

10.2 Noise measured at the receiver when connected to the antenna with no 
noise source connected 

float64 

10.3 Noise measured at the receiver when connected to the noise source which 
is disabled 

float64 
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10.4 Noise measured at the receiver when it is connected to the noise source 
which is enabled 

float64 

10.5 Phase difference between transmitted horizontally and vertically-polarized 
signals as determined from the first valid range bins 

float64 

10.6 Antenna-pointing accuracy in elevation float64 

10.7 Antenna-pointing accuracy in azimuth float64 

10.8 Calibration offset for the horizontal channel float64 

10.9 Calibration offset for the vertical channel float64 

10.10 ZDR offset float64 
 

3.5 Range Bin Object Metadata 

3.5.1 Range bin characteristics 

IMID Description Encoding 

11.0 Length of range bin float64 

 

3.6 Dataset Object Metadata  

3.6.1 Basic dataset information 

IMID Description Encoding 

12.0 Dataset identifier (user specified) utf8 

12.1 Quantity name (see section 4) utf8 

12.2 Quantity units utf8 

12.3 Quantity value used to indicate missing data float64 

12.4 Quantity value used to indicate no signal float64 

12.5 Whether dataset is represented by discrete values bool 

12.6 Discrete values used in dataset float64[] 

12.7 Labels for discrete values used in dataset utf8[] 

12.8 Whether dataset is a quality dataset bool 

12.9 Identifiers of quality datasets which qualify this dataset utf8[] 

 

3.6.2 Quality dataset information 

IMID Description Encoding 

13.0 Identifiers of datasets which are qualified by this dataset utf8[] 

13.1 Identifier of the algorithm that generated the dataset (see below) utf8 

13.2 Arguments or configuration provided to the algorithm that generated the 
dataset 

utf8[] 

13.3 Literature reference to the algorithm that generated the dataset utf8 

 

3.6.3 Spectrum dataset 

IMID Description Encoding 

15.0 Value represented by each point in the spectrum float64[] 

15.1 Length of FFT used to compute the spectrum int64 

15.2 Length of averaging block used to compute the spectrum int64 
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4 Standard Dataset and Enumerate Names 
The information model identified a list of standard datasets associated with polar pulsed systems.  The 

data model nominates standard strings to be used as the quantity name (IMID 12.2) for each dataset. 

Additionally, standard strings are specified for the values of each enum encoded metadata attribute.  

Users are free to select any utf8 string that does not clash with one of the standard strings listed here 

when adding specialized enum values. 

4.1 Scalar dataset quantities 
IMID Description Quantity name 

16.0 Equivalent reflectivity factor DBZ 

16.1 Linear equivalent reflectivity factor Z 

16.2 Radial velocity of scatterers away from instrument VEL 

16.3 Doppler spectrum width WIDTH 

16.4 Log differential reflectivity H/V ZDR 

16.5 Log-linear depolarization ratio HV LDR 

16.6 Log-linear depolarization ratio H LDRH 

16.7 Log-linear depolarization ratio V LDRV 

16.8 Differential phase HV PHIDP 

16.9 Specific differential phase HV KDP 

16.10 Cross-polar differential phase PHIHX 

16.11 Cross-correlation ratio HV RHOHV 

16.12 Co-to-cross polar correlation ratio H RHOHX 

16.13 Co-to-cross polar correlation ratio V RHOXV 

16.14 Log power DBM 

16.15 Log power co-polar H DBMHC 

16.16 Log power cross-polar H DBMHX 

16.17 Log power co-polar V DBMVC 

16.18 Log power cross-polar V DBMVX 

16.10 Signal-to-noise ratio SNR 

16.20 Signal-to-noise ratio co-polar H SNRHC 

16.21 Signal-to-noise ratio cross-polar H SNRHX 

16.22 Signal-to-noise ratio co-polar V SNRVC 

16.23 Signal to noise ratio cross polar V SNRVX 

16.24 Normalized coherent power NCP 

16.25 Rain rate RR 

16.26 Radar echo classification REC 
 

4.2 Spectrum dataset quantities 
IMID Description Quantity name 

17.0 Spectrum of co-polar H SPEC_HC 

17.1 Spectrum of co-polar V SPEC_VC 

17.2 Spectrum of cross-polar H SPEC_HX 

17.3 Spectrum of cross-polar V SPEC_VX 

17.4 Cross spectrum of co-polar H XSPEC_HC 
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17.5 Cross spectrum of co-polar V XSPEC_VC 

17.6 Cross spectrum of cross-polar H XSPEC_HX 

17.7 Cross spectrum of cross-polar V XSPEC_VX 
 

4.3 Metadata enumerate names 
Table 6. Sweep mode (IMID 5.0) enumerate values 

Description Standard String 

Plan Position Indicator (PPI) ppi 

Range-Height Indicator (RHI) rhi 

Vertical vertical_pointing 

Sun scan sunscan 

Note: other specialized sweep modes are permitted  

 

Table 7. Polarization mode (IMID 5.3) enumerate values 

Description Standard String 

Horizontal horizontal 

Vertical vertical 

Horizontal-vertical alternating hv_alt 

Horizontal-vertical simultaneous hv_sim 

Circular circular 

Note: other specialized polarization modes are permitted  
 

Table 8. PRT mode (IMID 5.4) enumerate values 

Description Standard String 

Fixed fixed 

Staggered staggered 

Dual dual 

Note: other specialized PRT modes are permitted  
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