

The Potential use of Research Networks

Richard Hughes-Jones DANTE Delivery of Advanced Network Technology to Europe WMO Information System Co-ordination Group, Seoul, February 2010

European R&E Networking

- Each country operates it own independent R&E network.
- Depending on the country, this usually connects universities, colleges, research laboratories, schools, libraries, museums, municipal offices, hospitals.
- These national research and education networks (NRENs) may use different technologies and may offer different services.
- The NRENs are interconnected by a pan-European backbone called GÉANT.
- GÉANT provides extensive international connectivity to other world regions and is operated by DANTE.
- The key is close Collaboration & Co-operation.

The GÉANT – NREN Evolution:

- 7th generation of pan-European research network federated infrastructure:
 - EuropaNET \rightarrow TEN34 \rightarrow TEN155 \rightarrow GÉANT (GN1 \rightarrow GN2 \rightarrow GN3)
- Connects 36 European countries through 32 NREN partners.
 - Serves over 3,500 research and education establishments across Europe
 - Over 30 million users
- Provides extensive international connectivity to other world regions.
- Funded jointly by NRENs and the EC.
- Mechanism is the GN3 Collaborative Project GÉANT:
 - co-ordination by **DANTE** via the **PMT** (Project Management Team)
 - complemented by TERENA
 - involves > 400 NREN staff
- Collaboration & Co-operation.
- A success story spanning over 20 years.

GÉANT

- 38 European Countries
- Dark Fibre
- Hybrid network:
 - IP Packet routed
 - Switched point-to-point Circuits
 - Dedicated wavelengths Lambdas

GÉANT topology – April 2009

GÉANT Connectivity Services

- GÉANT & NRENs will offer connectivity.
 Hybrid networks built on dark fibre infrastructures lit with DWDM equipment.
 Basic IP access via a GÉANT2 router GÉANT ip
 - High Bandwidth
 - Multicast
 - IPV6
 - QoS
 - MPLS / Traffic engineering
- Point-to-point Circuit Network GÉANT plus
 - Dedicated Capacity typically 1 Gigabit paths linking data centres
 - Quickly configurable
 - More than 60 dedicated circuits by January 2009
- Wavelengths GÉANT lambda
 - Full 10Gbps wavelengths across Europe
 - Backup for country IP access links with connection to another router

Key phrase is **Multi-Domain**

GÉANT Network Services

- GÉANT & NRENs will offer network services.
- Network Monitoring
 - perfSONAR based on OGF Standards
 - e2eMON
 - (Troubleshooting tools)
 - eduPERT
- Network Provisioning "on demand": Circuits / VPNs / MPLS / QoS
 - autoBAHN tool from GN2
 - World wide interoperation OGF Standard being developed
 - Quick configuration tool as a minimum
- Security & mobility
 - PKI coordination
 - Roaming Access Service eduROAM
 - eduGAIN Service introduction
- Note that not all networks may be able to offer all these service facilities.

Key phrase is still **Multi-Domain**

WORLD CONNECTIVITY

GÉANT global connectivity

www.dante.net

EU Developmental Initiatives

uropean Commission Information Society and Media

Global Connectivity

Canada

Ecuador

Argentina

Mexico

USA

USA

USA

USA

Peru

Guatemala

El Salvador

Uruquav

Panama

Colombia

Chile

Brazil

USA

Venezuela

Americas

- CANARIE
- CEDIA
- CUDI
- ESNet
- INNOVA|RED
- Internet2
- NISN (NASA)
- NLR
- RAAP
 RAGIE
- RAGIE
 RAICES
- RAU2
- REACCIUN2
- RedCyT
- RENATA
- REUNA
- RNP
- USLHCNet

Europe

Austria

Slovenia

Albania

Belgium

Bosnia &

Croatia

Cyprus

Estonia

Portugal

Greece

Ireland

Bulgaria

Israel

Russia

Lithuania

Hungary

Denmark

Finland

Iceland

Norway

Sweden

Poland

Spain

France

Romania

Vatican City

United Kingdom

Italy

Germany

Herzegovina

Czech Republic

- ACOnet
 - ARNESASA/INIMA
 - BELNET
 - BIHARNET
 - CARNet
 - CESNET
 - CYNET
 - DFNEENet
 - FCCN
 - GARR
 - GRNET
 - HEAnet
 - Holy See Internet
 Office
 - ISTF
 - IUCCJANET(UK)
 - JSCC
 - LITNET
 - NIIF/
 - HUNGARNET
 - NORDUnet
 - PSNC
 - RedIRIS
 - RENATER
 - RESTENA Luxembourg
 - RoEduNet

Europe (cont.)

Latvia

FYR of

Turkev

Andorra

Malta

Serbia &

Serbia &

Ukraine

Montenearo

Montenegro

United Arab

Palestinian

Territories

Emirates

Algeria

Egypt

Qatar

Syria

Tunisia

South Africa

Jordan

Morocco

The Netherlands

Switzerland

Macedonia

- SigmaNet
- SURFnet
 SWITCH
- UKIM/MARNET
- ULAKBIM
- University of
- Andorra

 University of
- Malta

 UoB/AMRES
- UoM/MREN
- URAN
-

Middle East & Africa

- ANKABUT
- ARN
- Birzeit University/ Al Quds Open
- University
- EUN
- JuNet
- MARWAN
 Qatar Foundation
- RFR
- SHERN
- TENET

- Asia & Oceania
- AARNet
 CERNET
 CSTNET
 ERNet
 INHERENT/ITB
 JGN2
 KOREN
 KREONET2
 LERNET
- MAFFIN
- MYREN
- NCSFNET
- PERN
- PREGINET
 SINET
- SingAREN
- ThaiSARN
- UniNet
- VINAREN
- Japan Malaysia China Pakistan
 - Philippines Japan
 - Singapore Thailand

Australia

Indonesia

China

China

India

Japan

Korea

Korea

Laos

Thailand Vietnam

RedCLARA Topology

- EU ALICE Project
- CLARA a Regional Federation of NRENs
- Operate RedCLARA Network
- Varied Capabilities: Brazil, Argentina have dark fibre
- Links to Europe & US

TEIN3 Topology January 2010

- Trans-Eurasia Information Network
- Federation of NRENs
 - 45 million users
 - 8,000 Institutes
- 2.5 Gbit Links to Europe
- NOC in HC managed by DANTE
- Catalyst for developing regional NRENs

ORIENT & ORIENT2

Asia-Pacific Backbone Topology

JP

HI

APAN/TransPAC2(Affiliated) GEANT2/TEIN2(Affiliated) JGN2 SINET WIDE/IEEAF AARNet GLORIAD(Affiliated) Others CN

MY

US

Courtesy of George McLoughlan

Networks in N. America

Internet2 Infrastructure

Esnet - DoE

NLR Backbone

PERFORMANCE, AND SERVICE DELIVERY

Providing Service and Performance

- The network is designed to be robust & deliver 24/7 service to the users.
- Committed to reach specific targets to ensure network performance.
- We set Service Level Targets to ensure that we provide what the user needs:
 - To Fulfil Service Functional Requirements
 - Ensure the network is fit for purpose
 - To Fulfil Service Levels Requirements
 - Ensure the network is fit for use
- Well structured Network Operations Centres (NOCs) 24/7
 - Well defined multi-domain operational procedures
 - Close collaboration between the NREN's NOCs
- Collaboration with the users to ensure that the performance of the applications and the network meet that required.
- The opportunity to run proof of concept tests in a collaborative manner.

Service Level Targets: Network load

- Our provisioning model aims to provide headroom.
- Percentage of Countries with IP service load < 10% & < 50% per month</p>

Service Level Targets: Availability of the IP service

Percentage of Countries with IP service availability > 99.95 per month

INTERNATIONAL USER COMMUNITIES

Sichuan Earthquake Recovery Efforts

- Sichuan Earthquake on 12th May 2008
- Satellite images of disaster region transferred over the ORIENT link from JRC (Italy) to RSGS (China) with routed IP.
- Tuned TCP throughput.
- Added a second GE link from CSTNET in China.
- Images transferred helped manage the disaster.

fay 14, 2008

Radio Astronomy VLBI 1GE Circuits & IP connections in 2008

- I Gigabit Ethernet point to point circuits to the telescopes in Europe.
- Supplied by NRENs & GÉANT
- Use Routed IP to other telescopes in other world regions
- Timeliness of data important
- Data rates:
 64Mbit/s
 512 Mbit/s
 1 Gbit/s

GÉANT lambdas form the LHC Optical Private Network

- 10 Gigabit Lambdas form a dual star on 2 routers at CERN.
- Designed backup to be on different optical routes from fibre suppliers.
- Used NRENs & GÉANT
- DANTE advised on architecture & resiliency.
- Use Routed IP for other international traffic:
 - China
 - India
 - Japan
 - All Physics users

WORKING WITH PROJECTS

LHCOPN T0-T1 Lambda routing-resilience

Copenhagen

Many paths on same fibre pair or in the same ducts.

Re-route paths to reduce the risk.

Collaborating with Users: Tests and Proof of Concepts

Collaborating with Users: VLBI Long Term Stability 4 Gigabit flow

- True multi-domain 4 Gigabit circuit Onsala, Sweden and Jodrell Bank, UK.
- Radio Astronomy require real-time data.
- 24 hr of trials sending 100M packets trials take ~27 min.
- Measure:
 - Throughput = 4.094 Gbit/s
 - Packet loss Zero
 - Inter-packet arrival times
- Configured path to meet requirements.
- Very stable
 - Peak at 16 µs, tail extends to ~70 µs
 - Tail ~ 10⁻³ smaller

Reliable Infrastructure: Testing SDH Protection

- Part of acceptance testing for the European-India-Singapore links.
- The low level network layer will switch to an alternate data path when an error is detected e.g. a fibre cut.
- Measure the effect with a 24 hr. user TCP flow:

 TCP link remains up. Throughput recovers in ~20s.

	-	Hantal in Stigture			
	-				
	-		1		_
	-		1		_
	-				
÷			11		
÷					
1	_		11		_
2					
	-				_
	-				_
					- 2
			Trather		

Proof of Concept Test: High Bandwidth Multicast

- Collaborative project with the end user.
- Emulated the project data flows over the backbone using multicast.
- At each site measured:
 - Throughput
 - Packet loss
 - Inter-packet arrival times

Throughput Am-LoGePr_08Feb10

Throughput stable to 500 Mbit/s
No packet loss once the multicast tree is formed.

Take care with switches !

Next steps

- To test with the user kit and applications.
- Perform multi-domain tests.

WIS & ACADEMIC NETWORKING

Meeting the Technical Requirements of WIS

- Within Europe GÉANT & NRENs Provide Basic IP connectivity services that can meet the requirements:
 - High Bandwidth most backbones are 10 or multiple 10 Gbit/s
 - Multicast Sparse mode PIM
 - IPV6 the routers implement native dual stack IPv4 & IPv6
 - QoS Available but little used as there are few bottlenecks.
 - Virtual Private Networks
 - MPLS / Traffic engineering (may not be possible on all NRENs)
- The world-wide links provide connectivity to other NRENs. Who also provide the above IP services.
- Requirements may also be met by using:
 - Dedicated point to point circuits at 1 Gigabit
 - Dedicated full 10 Gigabit lambda

Connectivity to (European) Countries of Interest to WMO

- Blue denotes Members of GÉANT Collaboration.
 <u>Underline</u> know to be already connected to an R&E Network.
- A ECMWF Member States:
 - Belgium, Denmark, Germany, Greece, Spain, France, Ireland, Italy, Luxembourg, the Netherlands, Norway, Austria, Portugal, Switzerland, Finland, Sweden, Turkey and United Kingdom
- ECMWF Cooperating States: Czech Republic, Montenegro, Estonia, <u>Croatia</u>, <u>Iceland</u>, Latvia, Lithuania, <u>Hungary</u>, Morocco, Romania, Serbia, <u>Slovenia</u> and Slovakia
- Others:

<u>Australia</u>, Brazil, Canada, <u>India</u>, <u>Japan</u>, <u>USA</u>, UAE, Saudi-Arabia, Lebanon, <u>China</u>, Russia, <u>Korea</u>, <u>Bulgaria</u>, Jordan, FYR Macedonia, <u>Poland</u>, <u>South-Africa</u>

International organisations: <u>ECMWF, EUMETSAT</u>

The Geographical view

Academic Terrestrial Links

GEONETCast

WIS

- The Academic Networks are complementary to existing infrastructure.
 - Satellites
 - Mobile phone
 - Commercial connections
- Areas where Academic Terrestrial networks might be able to help include:
 - Higher bandwidth between Data Centers (GISC).
 - Provide access to more data providers & users.
 - Independent backup links

Summary:

- The Academic Internet is a reliable, innovative, responsive multi-domain hybrid network.
- Built using advanced transmission & switching technologies.
- R&E Networks support all network activities including GRID, Cloud, HPC computing, and data-centric knowledge acquisition world wide and not just science.
- Many of the Meteo. sites are already connected to the NREN in that country.
- R&E Networks would be supportive and complementary to other techniques

 satellite, mobile phone, commercial networks.
- DANTE could act as a facilitator for contacting NRENs
- Collaborate to help with multi-domain performance issues the interactions between: the application, protocol, end host, & the network.
- Work with NRENs to offer links for proof of concept experiments.

ANY QUESTIONS ?

EUMEDCONNECT2 Topology June 2009

AARNet in Australia

National Network

International Connections

GLORIAD

