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ABSTRACT
 
The national agrometeorological monitoring in Italy is based on a network of about 120 automatic weather stations. The spatial resolution obtained is approximately of 30 km. However, a reliable support to agriculture requires local information more detailed. To obtain this aim it is possible increasing the weather stations density or optimizing the whole available information system. The CRA-CMA in collaboration with Agrisian is carrying out a method to assimilate the weather observation data and the output of a numerical limited area model (DALAM vers. 3). Combining those information and using geostatistical tools, we have reached a spatial resolution at ground level up to 10 km for the whole national territory. This method, of course, needs further adjustments, especially about more complex orographical areas where the estimation error is higher, but it can aid to improve the weather stations network allowing to identify the sites for new installation avoiding lack or redundancy of information. The procedure also allows, at the end, to validate the DALAM’s  weather numerical forecasts.
INTRODUCTION
The Italian agrometeorological service, exploited by CRA-CMA and Agrisian, is testing an experimental method to integrate weather observations data with information obtained through a numerical forecasting model (Limited Area Model) called DALAM (A. Buzzi et al, 2004; A. Buzzi et al, 2006). The national agrometeorological network is based on about 120 automatic weather stations belonging in part to the Ministry of Agriculture and in part to the Italian Air Force Meteorological Service. All the stations are homogeneous among them and are conform to WMO requirements. Considering the mean distance among stations in about 60 Km, the spatial resolution obtained from this monitoring system is approximately of 30 Km in order to hold the local variations of meteorological fields greater than the variance of the estimated error. 
A reliable support to agriculture requires higher spatial resolution, especially to monitor weather events to local scale. Obviously, this aim can be obtained increasing the weather stations density, but it is a way rather expensive and it is not a viable alternative in short/medium period. Combining the use of geostatistical tools (kriging), weather stations measures and DALAM output, it is possible to improve the agrometeorological monitoring by the estimation of the meteorological variables at ground level up to 10 km. The output of DALAM consists of meteorological data processed at the nodes of a regular geo-referenced grid (cell size of 10x10 km) obtained through partial differential equations describing the motions and thermodynamics of the atmosphere. Usually the accuracy of these estimates (ratio between local mean variations of the weather variables and the estimation variance) is better than the ratio between the grid cell size and the mean distance between meteorological stations. The main aim of this issue is to present an operative method to easily improve the spatial resolution of agrometeorological variables at ground level, avoiding an indiscriminate and expensive increasing in the number of weather stations. However, it is important that the model provides an estimation error smaller than the average value of the geographical variability of the weather variables. 
MATERIALS AND METHODS
The extreme complexity of interactions between atmosphere and land surface (depending by orography, soil composition and morphology, land-use, etc.) does not allow to use numerical deterministic models to reconstruct the spatial evolution of weather variables at the ground level. The spatial evolution of weather variables is not linear and sometimes it has a chaotic behaviour. Therefore, it is possible to recognize space and time continuity between any pair of known point using geostatistical tools in order to consider any weather variabls as a random regionalised variables (G. Matheron 1971). In this work, to analyse weather variables at ground level it has been used Universal Kriging, a geostatistical tool used to analyse spatial nonstationary variables. 
The probabilistic approach of the geostatistics, look upon each measured data as a realization of a random function (RF) Z(x), where "x" identifies the position (coordinates) of the point in the analysis area. Experimental observations show that meteorological data values never are completely independent from location, but they depend by the site and by the moment of the measurement. In other words, meteorological values of a point vary within the limits depending by observed values of neighbours points. In statistical terms, meteorological measures detected by pairs of neighbouring stations are ever correlated. To get its aims geostatistics uses the variogram function (variance of the residual of each couple of point in the geographic domain) to measure the continuity of a random variable:
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The variogram function is null at the origin (G(0) = 0) and increases with the distance "h" between points (h = x2 - x1) as more widely as more irregular and chaotic is the observed variable. The function G(h) tends to match the geographical variability for growing distance "h".
Generally, the expected value of a meteorological RF Z(x) is not constant at every point within the geographic domain. In geostatistics, the mathematical expectation value E|Z(x)| is defined as the trend of the RF Z(x). We have used the forecast fields (S(x)) processed by DALAM to define the trend function or drifts of the meteorological variables Z(x) by a linear relation such as:
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Referring to daily period, for any point "x" of the DALAM grid, the Universal Kriging with external drift model has been used to estimate temperature values starting from the set of measured data (weather stations network) and by space-time trends obtained from DALAM (referred to the same period and at the same geographical point). For each grid point the estimation is obtained as a linear combination of the measures of the neighboured stations (Fig. 1). The general estimation algorithm can be write as the following linear equation: 
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where: 
• Z*(x): estimated data values (temperature);
• Z (xi): meteorological data values of N measuring points (xi); 
• S (x):  meteorological data of the auxiliary variables at the x point; 
• S (xi): meteorological data of the auxiliary variables in N measuring points;
• b*:  coefficient of the external drift (b* is estimated considering the data of the N points);
• wi: weight coefficients associated to points data values;
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Fig. 1 – Neighbourhood estimation 


The auxiliary variable S(x) is not known everywhere and must be interpolated, but in this probabilistic approach we neglect the interpolation error on S(x) and treat it as deterministic. The estimation error of S(x) at meteorological station points is negligible.

The weight coefficients calculation "wi" is performed imposing two strictly conditions to estimate the error (Z*(x) – Z(x)):
a)  mean estimated error is null (unbiasedness constraints):
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b) minimum variance of estimated error (efficiency condition):
[image: image6.png]E[(Z(x) — Z"(x))*] = minimum




The variance of the estimated error of Z*(x) is calculated as follows:

[image: image7.png]B = ), GCr— 30+ Ho + iy





where μ0 and μ1 are Lagrange’s coefficients introduced to solve the equations system to calculate the weight coefficients. The kriging unbiasedness constraints are translate in the following equations:
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The variogram function G(xi-xo) considers ‘xi-xo‘ as the distance between the observation points and the grid point. As we said, the variance of the estimated error (σE2) is a very important factor and it depends by the spatial continuity characteristics of the examined variable: more chaotic are its variations, greater is the uncertainty of the evaluation. In others words, the geographic mean error between estimated data and measured data (estimated error) tends to zero in function of the size grid unit (cells) and in relation to the number of measuring points (stations). Furthermore, the estimated variance increases if the number of observation points decreases and/or if the grid cell size is too small. 
Generally, the main statistics properties of meteorological variables are well reproduced by the numerical model, but some peculiarities and some local weather details can be lost. Usually estimated meteorological data are more uniform than measured data. This characteristic, known as "smoothing effect", is greater as greater is the estimated variance or, vice-versa, if lower is the number of observation points (information effect). The theory shows that the physical complexity derived by the model is always less than the reality (statistical smoothing). This difference is cancelled only if estimation is perfect (null error estimation variance) and in case of perfect knowledge of the observed phenomenon (G. Matheron 1970).
 
The variogram function allows to consider some land surface qualities such as altitude effects, morphological alignment of the orography, etc. (anisotropy). In the Po Valley, for example, the distance measured along the North-South axis is characterized by a wider local variability and by a wider climatic gradient than the same distance measured along the East-West direction. The variogram function also depends by the date (season or month) of the year: during the winter season the weather events show wider time variations and greater space continuity, while in the summer the spatial correlation between data is significantly lower.
RESULTS
On the basis of available meteorological stations spread over the national territory (Fig. 2), to reconstruct the corresponding meteorological fields at the ground level, we selected hourly temperature values (3:00 h UTC) of July 2007. DALAM was used to obtain the forecasted temperatures of the same hour and days. The first step was to analyse the two different sets of data comparing, day per day, the respective daily mean temperatures and the related variance: the result was a substantial and expected similarities between observations and predictions (Figg. 3, 4, 5). 
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Fig. 2 – Automatic meteorological network
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Fig. 3 – Comparison between daily mean temperature of measured and predicted data
[image: image11.emf]Variance of the temperature at 3 UTC in point-stations
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Fig. 4 – Comparison between daily variance of measured and predicted temperature data 
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Fig. 5 – Comparison between measured and predicted temperature values

The residuals of the temperature date respect to the auxiliary variable data at the station points were used to calculate the variogram model. To verify the representativeness of the variogram model for Universal Kriging, we have to estimate the temperature data at each station point Z(xo) from neighbouring data Z(xi) with i ≠ o, as if Z(xo) were unknown. Thus at every station point we get a kriging estimate Z*(xo) and the associated kriging variance σ2k. The true value Z(xo) being known, we can compute the kriging error E(xo) = Z*(xo)  - Z(xo) and the standardized error:
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To compare the variance of the experimental error and the kriging variance, we used the following R ratio:
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In this way we were able to verify that the mean square of the 3226 estimation errors E(x) of the temperatures at 3:00 h UTC of July 2007 was close to the average of kriging variance.

The Figure 6 shows the diagram of standard error that fit quite well the Gaussian distribution with a mean error null and 66.8 % of temperature error is between ±2.5 °C. The variance of the 3226 estimated error shows a trend fairly similar to the kriging variance (Fig. 7) and it is sufficiently uniform along the whole analyzed period (Fig. 8). In according with the theory, the Universal Kriging variance is less than the variance of the estimated error because the trend of RF Z(x) introduces a bias in the variogram of residuals, known as the underlying variogram. In fact the mathematical expectation of RF Z(x) is not known exactly, we have taken an unbiased estimate depending by the coefficient “b” of the auxiliary variable (external drift). For July 2007 we found R = 1.264.
Using the Universal Kriging model as described above, we estimated temperatures at the nodes of the 10 km grid. In the Fig. 9 is shown, like an example, the thermal field of July 10th 2007 at 3:00 h UTC. As you can see, the trend of geographical temperature is properly estimated even in areas without meteorological stations. The estimated variance of the temperature field is almost small in the proximity of stations (error is less than ±3.0 °C) and shows higher values in mountainous areas that are generally deprived of stations (Fig. 10).
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Fig. 6 – Temperature errors distribution
[image: image16.emf]Cross-validation of variogram model
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Fig. 7 – Cross-validation of variogram model: experimental and kriging variance
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Fig. 8 – Cross-validation of variogram model: daily ratio of variances
[image: image18.wmf]l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

1

2

1

3

1

4

1

7

1

8

2

2

2

5

2

6

2

9

3

0

3

1

3

4

3

6

3

8

4

4

4

6

5

0

5

2

6

0

6

2

6

7

7

0

7

4

8

0

8

2

8

5

8

6

8

9

9

2

9

6

9

7

1

0

1

1

0

2

1

0

3

1

0

6

1

0

8

1

1

3

1

1

4

1

1

5

1

1

7

1

1

8

1

1

9

1

2

0

1

2

1

1

2

6

1

2

8

1

2

9

1

3

0

1

3

4

1

3

5

1

4

4

1

4

7

1

4

9

1

5

4

1

5

7

1

6

4

1

6

9

1

7

1

1

7

2

1

7

5

1

7

6

1

7

7

1

7

9

1

8

7

1

8

9

1

9

2

1

9

7

1

9

8

1

9

9

2

0

0

2

0

1

2

0

2

2

0

4

2

0

5

2

0

7

2

0

8

2

0

9

2

1

0

2

1

1

2

1

3

2

1

4

2

1

5

2

1

6

2

1

7

2

1

8

2

1

9

2

2

0

2

2

1

2

2

2

2

2

3

2

2

4

2

2

5

2

2

6

2

2

7

2

2

8

2

2

9

2

3

0

2

3

1

2

3

2

2

3

3

2

3

4

5

0

1

5

0

2

5

0

3

5

0

4

5

0

5

5

0

6

5

0

7

T

l

1

0

_

e

s

t

i

m

é

<

 

-

5

5

 

-

 

6

6

 

-

 

7

7

 

-

 

8

8

 

-

 

9

9

 

-

 

1

0

1

0

 

-

 

1

1

1

1

 

-

 

1

2

1

2

 

-

 

1

3

1

3

 

-

 

1

4

1

4

 

-

 

1

5

1

5

 

-

 

1

6

1

6

 

-

 

1

7

1

7

 

-

 

1

8

1

8

 

-

 

1

9

1

9

 

-

 

2

0

2

0

 

-

 

2

1

2

1

 

-

 

2

2

2

2

 

-

 

2

3

2

3

 

-

 

2

4

2

4

 

-

 

2

5

>

2

5

 

 

(

°

C

)

S

t

a

t

i

o

n

s

 

m

é

t

é

o

l

E

N

A

V

n

R

A

N

l

U

G

M


Fig. 9 – Estimated 3:00 h UTC temperatures on July 10th 2007
CONCLUSIONS

The methodology used to estimate temperature data at the ground level, on the basis of the results obtained, is a valuable tool to refine the details of space agro-meteorological monitoring. It also allows to address and resolve at least 3 main problems about the control at the synoptic scale: 

• to rebuild the meteorological spatial fields when the monitoring network it doesn’t. 

• to find sites of interest where it is useful to place new stations to reduce the errors of estimation and/or improve the performances of the models; 

• to estimate the errors associated to the weather forecast. 

Further testing of the model are provided for the analysis of other meteorological variables of interest for agriculture (rainfall, relative humidity, solar radiation, etc.). About the precipitation should be carried out a more specific analysis to take account of its specific characteristics of space-time discontinuity.
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Fig. 10 – Kriging variance of temperature in July 2007
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