A COMPARISON OF BEAUFORT, VAISALA AND RADIOSONDE WIND MEASURING SYSTEMS IN THE COURSE OF MIGRATION

BY

CHARLES NGENDA. METEOROLOGICAL DEPARTMENT, P.O BOX 30200 ,LUSAKA-ZAMBIA. E-mail: <u>mwilola2004@yahoo.com</u>

Abstract.

Estimation of wind speed has passed through different measuring systems. One of the initial systems being the Beaufort Scale originally devised by Admiral Beaufort for use at sea but has been modified for use on land as well. The beaufort scale bases the speed of the wind on effects it has on common objects around us.

Vaisala wind measuring system is one of the current systems in use. The system is a remote-indicating wind instrument based on the utilization of a two wire connection between the measurement site and the display site operating to distance of up to 10km.It consists of sensors, control units, display units and recording units designed to perform different functions.

To have an effective socio-economic application of the wind resource it is important to accurately estimate wind speed. In view of this, a comparison of Beaufort, Vaisala and Radiosonde measuring systems with respect to Wind speed measurement has been done and results have revealed that Vaisala is the most reliable system.

INTRODUCTION

Wind is one of the renewable energy resources being pursued to reduce the dependence on fossil-based fuels. However the usefulness of this form of energy is severely restricted by its measurement and variability amongst other concerns. To measure this highly variable resource there is need to have reliable wind measuring systems. Wind has been measured using different systems ranging from Beaufort scale to Vaisala measuring system. This migration has resulted into some benefits being gained by some end-users of these systems. Some of the main applications are in the fields of water pumping and electricity generation. It is critically important that wind measurements by these systems be as accurate estimates as possible to be usefully applied in the designing of wind energy technologies for example. The study therefore attempts to show some systems and their usefulness by comparing the different systems during the course of migration.

METHODS OF COMPARISON

Many methods are presently available through which mean wind speed can be estimated for developmental applications. The three wind measuring systems that are considered in this study are; the **Beaufort scale**, the **Vaisala** and the **Radiosonde**.

Beaufort scale wind measuring system.

FORCE DESCRIPTION		SPECIFICATION FOR USE ON LAND	KNOTS MEAN LIMITS		
0	CALM	CALM; SMOKE RISES VERTICALLY	0	< 0	
1	LIGHT AIR	DIRECTION OF WIND SHOWN BY SMOKE DRIFT, BUT NOT BY WIND VANES	2	1-3	
2	LIGHT BREEZE	WIND FELT ON FACE, LEAVES RUSTLE, ORDINARY VANE MOVED BY WIND	5	4-6	
3	GENTLE BREEZE	LEAVES AND SMALL TWIGS IN CONSTANT MOTION, WIND EXTENDS LIGHT FLAG	9	7-10	
4	MODERATE BREEZE	RAISES DUST AND LOOSE PAPER, SMALL BRANCHES ARE MOVED	13	11-16	
5	FRESH BREEZE	SMALL TREES IN LEAF BEGIN TO SWAY; CRESTED WAVELETS FORM ON INLAND WATERS	19	17-21	
6	STRONG BREEZE	LARGE BRANCHES IN MOTION; WHISTLING HEARD IN TELEGRAPH WIRES; UMBRELLAS USED WITH DIFFICULTY	24	22-27	
7	NEAR GALE	WHOLE TREE IN MOTION; INCONVENIENCE FELT WHEN WALKING AGAINST WIND	30	28-33	
8	GALE	BREAKS TWIGS OFF TREES; GENERALLY IMPEDES PROGRESS	37	34-40	
9	STRONG GALE	SLIGHT STRUCTURAL DAMAGE OCCURS (CHIMNEY POTS AND SLATES REMOVED)	44	41-47	
10	STORM	SELDOM EXPERIENCED INLAND; TREES UPROOTED; CONSIDERABLE STRUCTURAL DAMAGE	52	48-55	
11	VIOLENT STORM	VERY RARELY EXPERIENCED; ACCOMPANIED BY WIDESPREAD DAMAGE	60	56-63	
12	HURICANE			>64	

Table 1:	BEAUFORT SC.	ALE: Specification	is and Equivalent	Speeds
----------	--------------	---------------------------	-------------------	--------

Wind force is estimated on a numerical scale ranging from 0 for calm to 12 for hurricane(Table 1). This method is based on the empirical relationship between estimated number and measured wind speed, $U=\sqrt{1.87}$ B, where

U represents the wind speed and B is the corresponding Beaufort number.

VAISALA WIND MEASURING SYSTEM METHOD

The basic units for Vaisala wind measuring system are: **Sensors**-Anemometer WAA 12, Windvane WAV 12, **Control**-Wind sensor control unit WAT 11, **Display**-Analog wind display unit WAD 11, Analog slave display unit WAD 12, Digital wind display unit WAD 13, Averaging wind display unit WAD 21, **Recording**-Analog wind recorder WAR13. The system is intended for weather stations, Airports and other meteorological, environmental, research and industrial applications.

The system is based on the utilization of a two wire connection between the measurement site and the display site operating to distances of up to 10km. The wind sensor control unit samples the speed and direction sensor's data, converts the values into serial digital format and transmits the data along a serial line. Both the sensors and control unit operate from DC power supply which is supplied by the averaging display unit through the same line.

No supply is needed at the sensor site, and the connection can be made via a standard telephorepair. The sensor control unit operates at -40 to 55 Deg/C temps and is installed to the wind mast near the sensors.

An optional AC powered sensor heating power supply is available for low temperature conditions.

The averaging display unit WAD 21 performs the functions of both the computer and the display device. The instantaneous data transmitted by the wind sensor control unit is received in real time by the display unit (WAD 21) which performs averaging, minimum and maximum calculations and other required data processing and displays the instantaneous and computed values by means of a compact display panel. The display unit is AC powered and feeds the sensors via the two conductor lines. Multiple averaging display unit can be connected to the same current loop line, enabling the information from the same site of sensors to be displayed in several locations.

Only two- conductor cable is still needed and the link operates to the same distances. Also multiple sensor control unit may be connected to the same loop, thus enabling wind information from several locations to be displayed. In that case a switch option is used on the display unit for data source selection. With no need of a sensor control unit the digital display unit WAD 13 is straight connected to the sensor siginal line. It is thus obligated to be installed near the sensor. WAD 13 performs no data processing and shows only instantaneous wind values. Several display units can be connected to display information from a small per of sensors. The display units have to be powered.

Fig 1: A Configuration scheme of Vaisala system

RADIOSONDE WIND MEASURING METHOD

A small radio transmitter, by means of which observations usually of temperature and wind amongst other parameters are obtained during an ascent. This is done by radar reflections from a sonde (target) carried by the balloon. The major difference between the Radiosonde and the Vaisala system is that the later is a remote instrument while the former is not but has a radio transmitter attached to it.

DATA and COMPARISONS

In order to assess the quality, reliability and consistency of Beaufort, Radiosonde and Vaisala methods employed in this study, wind speed values have been compared.

• **Beaufort scale method:** measurements for the month of August were estimated at about 10m height above the ground at Chelstone station in Lusaka as shown in table 2.

	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
01	07	05	00	00	11	03	07	21	18	04
02	09	12	00	00	10	01	01	13	11	03
03	10	17	09	02	10	10	03	10	00	00
04	06	06	00	02	00	03	05	00	03	00
05	08	08	00	00	00	06	08	01	08	06
06	04	05	10	00	01	10	03	05	10	06
07	01	06	06	03	10	11	00	08	10	06
08	07	06	13	09	16	10	08	11	03	09
09	08	10	11	06	09	01	07	10	13	00
10	05	07	00	00	13	00	00	03	15	00
11	11	08	12	03	09	08	00	05	03	00
12	06	07	07	03	00	09	04	04	03	06
13	04	00	00	07	00	09	09	02	00	03
14	00	08	00	08	00	13	11	00	00	01
15	08	06	15	13	03	11	14	00	00	02
16	12	05	09	11	03	07	17	04	09	00
17	07	04	04	06	07	08	01	00	11	05
18	00	08	03	00	10	02	11	00	12	04
19	03	05	06	00	10	06	08	08	07	04
20	06	07	07	00	13	09	05	07	11	07
21	04	04	00	03	12	05	05	00	14	10
22	15	01	00	14	00	07	00	01	03	07
23	07	00	00	04	13	02	01	09	04	05
24	10	02	06	06	16	00	10	09	03	01
25	08	09	04	08	15	00	13	10	04	05
26	13	00	06	01	06	10	00	17	01	06
27	11	04	00	06	06	07	00	18	00	05
28	05	11	01	00	00	06	08	13	01	11
29	06	04	07	09	09	03	09	05	03	11
30	08	06	05	01	10	03	03	07	11	06
31	04	14	03	11	18	00	00	05	05	01
August	6.9	6.3	4.6	4.4	7.7	5.8	5.5	6.6	6.3	4.3
mean										
windspeed										

 Table 2: The daily August wind-speed estimates.

•	The Vaisala method: wind speed values for the month of August were
	estimated at 10m height above the ground at Lusaka International
	Airport station as shown in table 3 below.

	199	1995	1996	1997	1998	1999	2000	2001	2002	2003	
	4										
01	04	02	03	01	07	05	03	09	09	00	
02	05	05	01	00	05	05	03	03	05	03	
03	06	09	06	05	05	07	03	05	02	02	
04	05	02	02	03	03	03	05	02	05	02	
05	05	02	03	02	03	03	08	04	04	04	
06	05	03	05	01	04	07	03	07	05	04	
07	05	05	04	03	05	09	01	06	06	02	
08	06	06	08	07	07	05	04	06	05	05	
09	09	06	07	05	06	03	03	05	07	02	
10	06	00	01	01	05	03	00	05	07	02	
11	04	06	03	05	05	05	03	00	04	02	
12	00	07	05	05	04	04	05	00	03	03	
13	03	02	02	04	01	05	08	02	02	03	
14	03	06	04	05	03	08	06	00	00	02	
15	05	05	09	07	04	07	09	02	03	04	
16	07	05	05	05	05	07	07	03	03	01	
17	05	06	06	04	04	06	03	00	07	03	
18	03	07	04	03	07	06	06	02	05	02	
19	06	06	05	02	05	06	07	03	05	00	
20	02	02	05	02	07	08	05	03	07	01	
21	05	02	03	05	05	02	05	00	05	06	
22	09	03	01	07	01	03	03	03	04	05	
23	05	00	02	04	07	01	04	05	04	02	
24	05	05	04	06	07	01	08	04	03	02	
25	06	06	04	04	07	03	06	05	04	03	
26	07	03	02	03	04	06	03	05	03	04	
27	07	05	03	02	05	03	01	07	03	02	
28	03	06	06	01	03	04	06	07	01	06	
29	05	05	05	05	03	02	07	05	03	05	
30	08	05	07	03	06	03	05	04	06	03	
31	03	08	05	06	09	04	01	05	05	04	
August	5.1	4.6	4.3	3.8	4.9	4.6	4.5	3.8	4.3	2.9	
Wind-											
speed											
speed											+
1	1	1	1	1	1	1	1	1	1	1	1

 Table 3: The daily August wind speed estimates

• **Radiosonde method**:-wind speed values for the month of August were estimated at about 10m height above the ground at Lusaka City Airport station. This data was extracted from Temp messages(TTAA) and translated into monthly wind speed means as shown in table 4 below under Lusaka city Airport for example.

	Chelstone station(Beaufort)	Lusaka International Airport (Vaisala)	Lusaka city Airport (Radiosonde)
1994	6.9	5.1	4.9
1995	6.3	4.6	5.1
1996	4.6	4.3	4.1
1997	4.4	3.8	4.6
1998	7.7	4.9	6.7
1999	5.8	4.6	4.9
2000	5.5	4.5	5.0
2001	6.6	3.8	5.2
2002	6.3	4.3	4.8
2003	4.3	2.9	3.3
2003	4.3	2.9	3.3

Table 4: The August mean wind-speed with respect to Beaufort, Vaisalaand Radiosonde systems.

• Specific wind power (numerical application).

The monthly average energy input per unit area for a wind pump is determined by the monthly average wind speed and follows from the equation.

Pav,wind = $\frac{1}{2}$ pa Vav³ in which

Pav,wind = monthly average specific wind power (W/m^2)

 $\rho a =$ Specific air density (Kg/m³)

Uav = monthly average wind speed (m/s)

Variable	Beaufort	Vaisala	Radiosonde
$\rho a (kg/m^3)$	1.2	1.2	1.2
Uav(m/s)	5.81	4.28	4.86
P (W/m ²)	117.6	47.0	68.9

Table 5: wind power with respect to Beaufort, Vaisala and Radiosonde systems.

	Mean(Beaufort)	Mean(Vaisala)	Average	Diff	STD
1994	6.900	5.100	6.000	1.800	1.273
1995	6.300	4.600	5.450	1.700	1.202
1996	4.600	4.300	4.450	0.300	0.212
1997	4.400	3.800	4.100	0.600	0.424
1998	7.700	4.900	6.300	2.800	1.980
1999	5.800	4.600	5.200	1.200	0.849
2000	5.500	4.500	5.000	1.000	0.707
2001	6.600	3.800	5.200	2.800	1.980
2002	6.300	4.300	5.300	2.000	1.414
2003	4.300	2.900	3.600	1.400	0.990

Table 6: wind speed means, standard deviations, averages and differences with respect to Beaufort and Vaisala wind measuring systems.

When comparing the August (monthly) wind speed values from the Beaufort, Radiosonde and Vaisala systems-the maximum difference found actually amounts to 2.8m/s in 1998 and 2001 with Beaufort system reading higher. The minimum difference being 0.3m/s with Vaisala system having a lower reading. Also comparison results given in table 6 show that the Beaufort and Vaisala systems are consistent and in agreement in 1996 and 1997. The agreement is only and in general at about 4m/s. The highest standard deviation of 1.98 occurred in 1998 and 2001 while the lowest standard deviation of 0.2 occurred in 1996. The Beaufort system values are offset by several meters per second.

The monthly wind speed values from the Beaufort, Radiosonde and Vaisala systems when applied in the formulae for specific wind power-show that the Beaufort system reads higher than the other two systems in most cases (refer to table 5)

DISCUSSION AND CONCLUSION

The variations by Beaufort system are large and abrupt while those variations from the Vaisala system are smooth and consistent/gradual. Respective variations or discrepancies might be due to differences in location, technology and parallax error but some unexplained variations such as those anomalies depicted by Radiosonde system in fig 2 remain not yet understood and need further investigations. The need for accurate measurement of wind speed is highlighted in the results for specific wind power for use in water pumping and electricity generation (for example). Which value should we use needs further investigation.

From the analysis and assessments done the results show that Vaisala wind measuring system is the most suitable system/method.

ACKNOWLEDGEMENTS

The author is indebted to the Zambia Meteorological Department staff for the provision of data and constructive guidance.

REFERENCES

Seth Gutman and Stanley G.Benjamin-The role of ground based GPS meteorological observations in NWP.

Van Meel-Assessment of wind resources-The Netherlands, 1984

Golding, E.W-The generation of electricity by wind power, SPON LTD, London, 1955&1976.

SADC PROJECT AAA 5.17