## QUALITY MANAGEMENT OF A EUROPEAN WIND PROFILER NETWORK (CWINDE)

Tim Oakley and Myles Turp Met Office, Exeter, United Kingdom. Tel +44 (0) 1392 885644 , Fax +44 (0) 1392 885681, Email tim.oakley@metoffice.com

Currently a network of 20 wind profiler systems in Europe (CWINDE) is providing continuous, real-time wind observations for operational use. This network is being supported under a programme sponsored by the National Met Services (EUMETNET) and the UK Met Office has been tasked in maintaining the hub and providing a quality management service. The network comprises of wind profiler systems of differing technical specification & measurement capabilities, which are operated for a variety of reasons ranging from research to aviation forecasting. In addition to the wind profilers the hub services have been extended to include wind observations from a number of the weather radar networks in Europe.

The Met Office has developed a suite of quality management software to enable the performance of the systems to be monitored in real-time and to allow feedback to the system operators and data users. This presentation will provide details on the quality management techniques being used to monitor the systems, the successes of CWINDE network and the challenges for the future.

## Background

Operational networking of wind profilers in Europe started within the COST-76<sup>1</sup> Project and was successfully tested during two campaigns, CWINDE-97<sup>2</sup> and CWINDE-99. It was able to demonstrate that real-time networking of existing profiler installations was possible, even though these systems differed significantly in design & purpose and were operated by various research and operational institutions. After the COST-76 Action ended in March 2000 a proposal was made to continue the networking activities under the umbrella of EUMETNET<sup>3</sup>, with a programme called WINPROF.

The main focus of WINPROF was to maintain the existing CWINDE network and to develop it further towards operations. Currently, there are 24 wind profiler systems able to provide wind data to CWINDE and countries like the United Kingdom and Germany are continuing to install further wind profiler radar systems as part of their operational upper air network. In addition, CWINDE is able to receive and process wind profile data from other systems, like the conventional Doppler weather radars using the VAD/VPP technique (60 sites) and sodars (2 sites). The wind profile data provided by CWINDE are nowadays mainly used by NWP. Major

NWP centres in Europe, for example ECMWF, UK Met Office, Meteo France, Deutscher Wetterdienst and the HIRLAM group, are now using these data in their operational data assimilation.

Figure 1 provides a map of the current wind profiler systems contributing to CWINDE.

Annex A contains tables of the wind profiler & weather radar sites configured in CWINDE.

| <sup>1</sup> COST       | - | Cooperation On Science and Technology                           |
|-------------------------|---|-----------------------------------------------------------------|
| <sup>2</sup> CWINDE     | - | COST Wind Initiative for a Network Demonstration in Europe      |
|                         |   | Co-ordinated WIND profiler network in Europe (later definition) |
| <sup>3</sup> EUMETNET - |   | Network of European Meteorological Services.                    |

Other wind profiler networks are operated in the USA by NOAA-FSL (35 systems operating at 404 and 449~MHz, plus about 50 systems of so-called co-operative agencies) and in Japan by JMA (31 systems operating at 1357~MHz).



Figure 1: CWINDE Profiler Network (January 2005)

# WINPROF & the CWINDE Network

On taking over the responsibility for the CWINDE network hub, the WINPROF program was tasked with 7 key objectives:

- To harmonise and improve the existing exchange of all wind profiler (National Met Services and Research institutions) and Weather radar wind data in Europe.
- To run and further develop a network hub for data processing and quality evaluation.
- To integrate new wind profiler and weather radar systems.
- To establish appropriate quality control procedures
- To define general quality standards and user requirements for operational use.
- To work on new/updated processing algorithms to improve data quality/availability.
- To provide expert support to members for wind profiler installations and operations.

Under COST76 the responsibility of managing and updating the CWINDE hub was tasked to the UK Met Office and this remained the case for the WINPROF project. A key objective for the hub is to provide a real-time processing and data-display service (the later via the Internet) for wind profiler and weather radar system in Europe. Providing a quality management service and feedback to the system operators is also an important task as this not only developed a better understanding of the relative quality of the wind data but also made operators aware when there were quality and/or data availability issues with their systems.

The hub processing and data displays are run on a dedicated workstation within the Met Office. Although the system is not classed as operational, it is housed within the main computer room of the Met Office and thus benefits from a number of services supported 24/7. Automated communication with the hub, from the observing site, is possible via the GTS (Global Telecommunication Service) or FTP. All products and archives are generated on the workstation automatically and currently the complete system requires approximately 0.3 of a person per year to support.

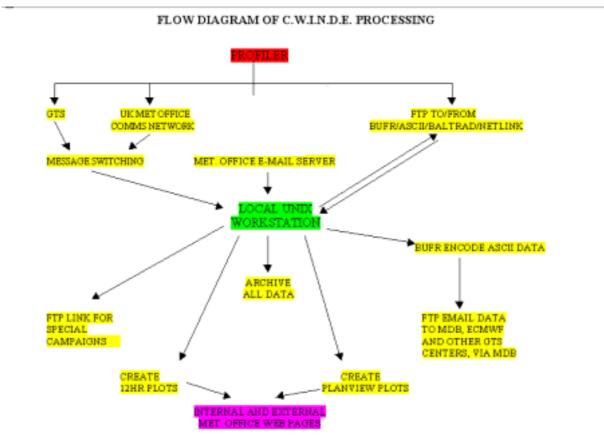



Figure 2 provides a schematic of the CWINDE processing hub.

Figure 2: CWINDE Processing schematic (Jan 2005)

Since the automated processing was initiated in 1997, it has continued to run until the present day, with only a few outages due to hardware problems and the relocation of the Met Office from Bracknell to Exeter. The system is currently processing in excess of 7,500 messages each day. Figure 3 provides details of the percentage of data received in real-time for the wind profiler systems connected to CWINDE (2004). These statistics are produced regularly for the WINPROF program and are useful in classifying operational/non-operational systems on the basis of delivery of data.

#### Percentage of Real-Time Wind Profiler and Sodar Data Received -1/1/2004 - 31/12/2004

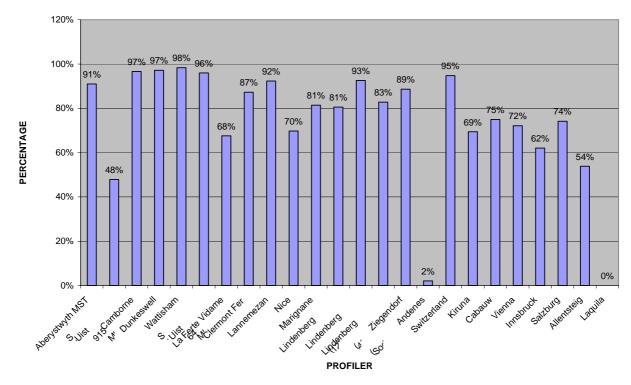



Figure 3: Data Availability from European wind profilers 2004.

## **Quality Management**

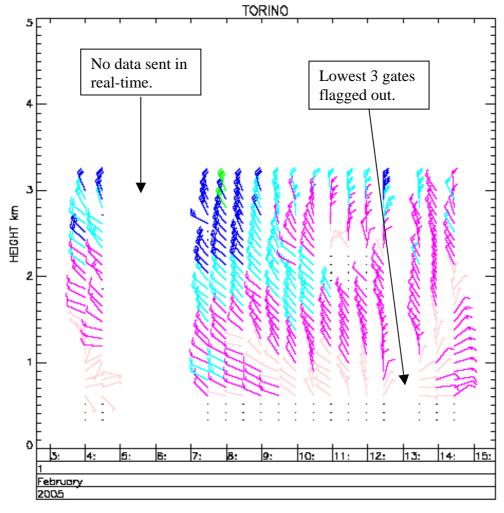
CWINDE provides a comprehensive package of quality management products for the systems connected to the hub. These products vary for short term 'real-time' information (updated each hour), to longer term 'off-line' information (produced monthly or on request). The website address of CWINDE is:

http://www.metoffice.gov.uk/research/interproj/cwinde/index.html

A summary of the products available is as follows:

## 1. Real time data plots (See Figure 4)

These plots are updated every 30 minutes and are made available on the CWINDE website. They provide an instant method of checking on the performance of the individual system both for data availability and quality. For forecasting they also provide access to the latest measurements of not only the wind data (wind barbs) but also the vertical velocity & signal to noise values. Many of the wind profiler and weather radar systems are completely automated and run unattended, thus these displays are a vital component on checking the current status. Figure 4 provides an example of the wind barb plot from Torino, Italy, the latest wind profiler to be added to CWINDE.


## 2. Plan view plots (See Figure 5)

A composite data plot is generated every 3 hours showing data at selected height levels for all wind profiler and weather radar systems. The time frame for the plot is  $\pm 1.5$  hours from the nominal time and wind data is displaced according to time and wind speed/direction. Radiosonde and aircraft data (if available) are included in these plots and these are also displaced according to the time and wind values. These displays provide a direct comparison of wind measurements with

other sites and observing systems. They are also useful to observe the horizontal wind fields over Europe and the distribution/density of the measurements

## 3. Weekly random variability/error plots (See Figure 6)

These plots are a quality evaluation product used to access the overall performance of the wind profiler systems. They calculate the random variability of the wind measurements and use these values combined with known structure functions to produce a random error estimate. Not only is this useful in accessing the current performance of a system but because the hardware from these radars tend to degrade over time, rather than completely fail, these plots from week to week (or longer) can detect changes in the systems performance. The example given in figure 5 is for the 64MHz wind profiler on South Uist. This system is working operationally and generally meets the 2ms<sup>-1</sup> random error specification. In this case we observed some interference (clutter) from a wind-turbine 9-10km from the site which has slightly increased the random error estimate.



TIME — UTC Data not cesimilated in UK Model — Operational

Figure 4: Real-time wind barb plot for Torino, Italy.

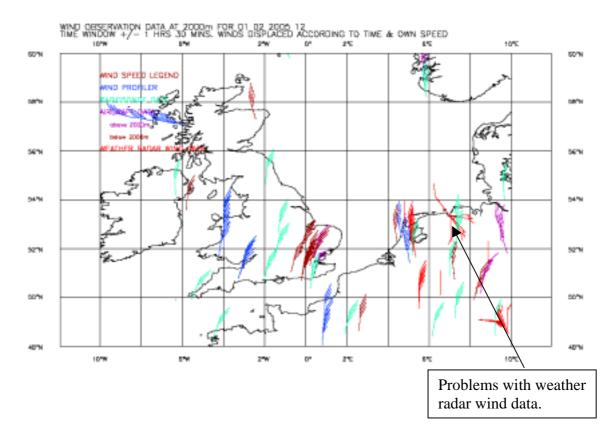



Figure 5: Example of plan view plot, UK area at 2km.

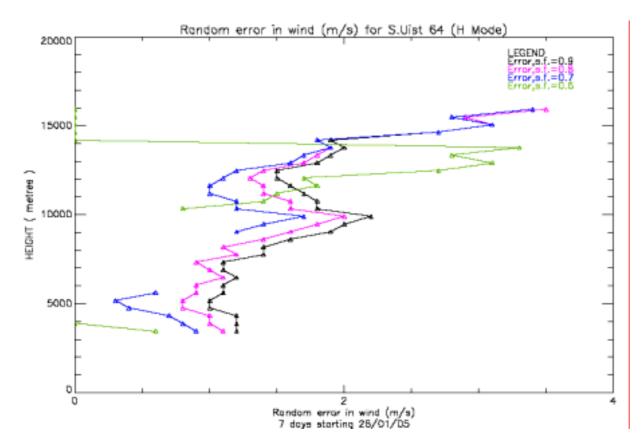



Figure 6: Random error plot for South Uist (26/01/05 – 02/02/05).

#### 4. Monthly quality evaluation information.

The hub is responsible for producing and distributing a number of monthly quality evaluation products. These are either related to the real-time availability of wind data or the quality. Currently the wind data for the wind profiler systems are compared with the NWP background field of the Met Office, Meteo France and ECMWF, for the weather radar only a comparison with the Met Office models is available. Figure 7 provides an example of the monitoring statistics provided by Meteo France.

## 5. Archive data and Reprocessing.

A complete archive of the BUFR messages received by CWINDE is maintained by the hub. This allows data to be provided 'off-line' for case studies or impact assessments, it also allows a check of any data processed by the hub should there be any questions at a later date. It is also possible to reprocess the data to produce any of the real-time plots.

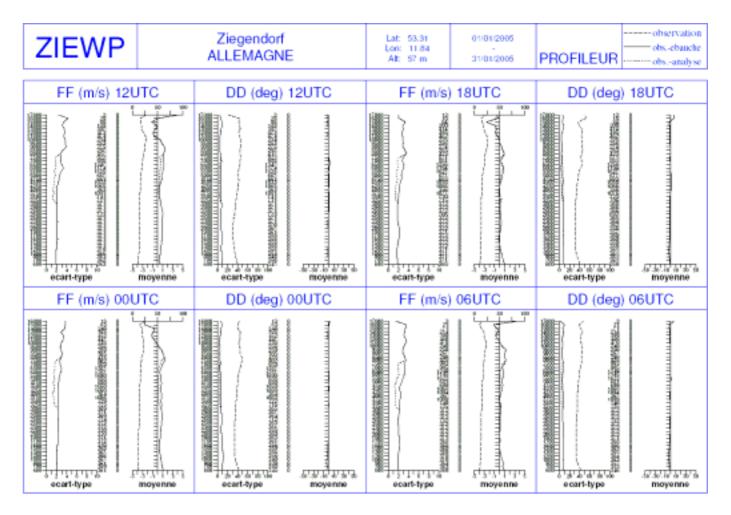



Figure 7: Monthly NMP statistics plot generated by Meteo France.

## **Conclusion and Future Plans**

- CWINDE has been successful in providing a European wind profiler network hub for more than 5 years. It has been extended to include new wind profiler systems and wind data from the European weather radar network. It now has more than 80 sites providing routine data, with completely automated processing and requiring about a third of a man year to maintain.
- A number of the wind profiler and weather radar (UK only) sites are now being used operationally for NWP data assimilation. In February 13 of the 23 wind profiler sites and 20 of the 52 weather radar sites were being assimilated by the UK modellers.
- The 2 year WINPROF programme ended on 30<sup>th</sup> June 2004. A WINPROF-II programme has recently been approved and is expected to commence in the spring 2005. In the mean time the Met Office is continuing to maintain the hub under an extension contract with WINPROF. A key objective for WINPROF-II is the 'hand over' of the network to EUCOS (another EUMETNET program) which will take on the operational and quality management.

| PROFILER (Providing Data)      | WMO NO. | LAT    | LONG   | HEIGHT |
|--------------------------------|---------|--------|--------|--------|
| KIRUNA, SWEDEN                 | 02043   | 67.88N | 21.10E | 295m   |
| SOUTH UIST, UK                 | 03023   | 57.21N | 07.22W | 4m     |
| ABERYSTWYTH,UK                 | 03501   | 52.42N | 04.00W | 50m    |
| WATTISHAM,UK                   | 03591   | 52.09N | 00.96E | 87m    |
| CAMBORNE,UK                    | 03807   | 50.13N | 05.10W | 88m    |
| DUNKESWELL,UK                  | 03840   | 50.90N | 03.20W | 253m   |
| CABAUW, NETHERLANDS            | 06348   | 51.95N | 04.88E | 0m     |
| PAYERNE,SWITZERLAND            | 06610   | 46.81N | 06.95E | 491m   |
| ZURICH, SWITZERLAND            | 06670   | 47.48N | 08.53E | 425m   |
| LA FERTE VIDAME, FRANCE        | 07112   | 48.61N | 00.87E | 245m   |
| TOULOUSE, FRANCE               | 07115   | 43.37N | 01.26E | 158m   |
| CLEMONT FERRAND, FRANCE        | 07453   | 45.71N | 03.09E | 660m   |
| LANNEMEZAN, FRANCE             | 07626   | 43.13N | 00.36E | 600m   |
| MARIGNANE, FRANCE              | 07650   | 43.43N | 05.23E | 7m     |
| NICE, FRANCE                   | 07690   | 43.66N | 07.19E | 4m     |
| LINDENBERG, GERMANY            | 10394   | 52.17N | 14.12E | 70m    |
| ZIEGENDORF, GERMANY            | 10266   | 53.30N | 11.80E | 57m    |
| NORDHOLZ, GERMANY              | 10135   | 53.47N | 08.40E | 18m    |
| VIENNA, AUSTRIA                | 11036   | 48.10N | 16.60E | 227m   |
| INNSBRUCK, AUSTRIA             | 11120   | 47.16N | 11.23E | 614m   |
| SALZBURG, AUSTRIA              | 11150   | 47.47N | 13.00E | 430m   |
| BUDAPEST, HUNGARY              | 12843   | 47.43N | 19.18E | 139m   |
| SZEGED, HUNGARY                | 12982   | 46.30N | 20.10E | 83m    |
| TORINO, ITALY                  | 16300   | 45.40N | 07.40E | 277m   |
| LINDENBERG, GERMANY<br>(SODAR) | 10391   | 52.17N | 14.12E | 70m    |

## ANNEX A - WIND PROFILER & WEATHER RADAR LOCATIONS

| PROFILER (Not Providing Data) | WMO NO. | LAT    | LONG   | HEIGHT |
|-------------------------------|---------|--------|--------|--------|
| KARLSRUHE,GERMANY             | 10722   | 49.05N | 08.26E | 109m   |
| ROME, ITALY                   | 16239   | 41.83N | 12.64E | 121m   |
| ALLENTSTEIG, AUSTRIA          | 11019   | 48.68N | 15.37E | 596m   |
| L'AQUILA, ITALY               | 16228   | 42.40N | 14.40E | 980m   |
| ANDENES,NORWAY                | 01012   | 69.28N | 16.03E | 0m     |

| WEATHER RADAR           | WMO NO. | LAT    | LONG    | HEIGHT |
|-------------------------|---------|--------|---------|--------|
| KIRUNA, SWEDEN          | 02032   | 67.70N | 20.62E  | 646m   |
| LULEA, SWEDEN           | 02092   | 65.55N | 22.12E  | 35m    |
| OSTERSUND, SWEDEN       | 02200   | 63.18N | 14.44 E | 465m   |
| ORNSKOLDSVIK,SWEDEN     | 02262   | 63.63N | 18.39E  | 522m   |
| LEKSAND, SWEDEN         | 02430   | 60.72N | 14.88E  | 458m   |
| ARLANDA, SWEDEN         | 02451   | 59.65N | 17.95E  | 75m    |
| NORRKOPING, SWEDEN      | 02570   | 58.61N | 16.12E  | 57m    |
| HEMSE, SWEDEN           | 02588   | 57.24N | 18.38E  | 56m    |
| VARA, SWEDEN            | 02600   | 58.25N | 12.81E  | 170m   |
| ANGELHOLM, SWEDEN       | 02607   | 56.36N | 12.85E  | 10m    |
| KARLSKRONA, SWEDEN      | 02666   | 56.29N | 15.60E  | 122m   |
| LUOSTO, FINLAND         | 02836   | 67.13N | 26.89E  | 534m   |
| UTAJARVI, FINLAND       | 02870   | 64.76N | 26.31E  | 118m   |
| KUOPIO, FINLAND         | 02918   | 62.86N | 27.38E  | 268m   |
| KORPO, FINLAND          | 02933   | 60.13N | 21.64E  | 61m    |
| IKAALINEN, FINLAND      | 02941   | 61.77N | 23.07E  | 154m   |
| ANJALANKOSKI, FINLAND   | 02954   | 60.90N | 27.11E  | 139m   |
| VANTAA, FINLAND         | 02975   | 60.27N | 24.87E  | 83m    |
| SHANNON, IRELAND        | 03962   | 52.70N | 08.93W  | 26m    |
| DUBLIN, IRELAND         | 03969   | 53.43N | 06.24W  | 100m   |
| DEN HELDER, NETHERLANDS | 06234   | 52.96N | 04.79E  | 51m    |
| DE BILT, NETHERLANDS    | 06260   | 52.10N | 05.18E  | 44m    |
| ZAVENTEM, BELGIUM       | 06451   | 50.90N | 04.47E  | 73m    |
| WIDEUMONT, BELGIUM      | 06477   | 49.92N | 05.51E  | 592m   |
| LA CORUNA , SPAIN       | 08007   | 43.17N | 08.52W  | 621m   |
| ASTURIAS, SPAIN         | 08019   | 43.46N | 06.30W  | 933m   |
| PALENCIA, SPAIN         | 08072   | 42.00N | 04.60W  | 870m   |
| VIZCAYA, SPAIN          | 08081   | 43.4N  | 02.84W  | 625m   |
| BARCELONA, SPAIN        | 08179   | 41.41N | 01.88E  | 664m   |
| ZARAGOZA, SPAIN         | 08162   | 41.73N | 00.56W  | 829m   |
| MADRID, SPAIN           | 08228   | 40.18N | 03.71W  | 717m   |
| CECERES, SPAIN          | 08262   | 39.00N | 06.00W  | 676m   |
| VALENCIA, SPAIN         | 08289   | 39.00N | 00.00W  | 234m   |
| MURCIA, SPAIN           | 08364   | 38.00N | 01.00W  | 1274m  |
| SEVILLA, SPAIN          | 08386   | 37.00N | 06.00W  | 530m   |
| ALMERIA, SPAIN          | 08489   | 37.00N | 03.00W  | 1173m  |
| MALAGA, SPAIN           | 08475   | 37.00N | 04.00W  | 495m   |

| WEATHER RADAR           | WMO NO. | LAT    | LONG   | HEIGHT |
|-------------------------|---------|--------|--------|--------|
| GRAN CANARIA, SPAIN     | 60028   | 26.00N | 15.00W | 1781m  |
| LA CORUNA , SPAIN       | 08007   | 43.17N | 08.52W | 621m   |
| HAMBURG, GERMANY        | 10147   | 53.62N | 09.99E | 46m    |
| ROSTOCK, GERMANY        | 10169   | 54.17N | 12.05E | 36m    |
| EMDEN, GERMANY          | 10204   | 53.34N | 02.40E | 58m    |
| HANNOVER, GERMANY       | 10338   | 52.45N | 09.69E | 81m    |
| UMMENDORF, GERMANY      | 10356   | 52.15N | 11.17E | 185m   |
| BERLIN, GERMANY         | 10384   | 52.47N | 13.38E | 80m    |
| ESSEN, GERMANY          | 10410   | 51.41N | 06.97E | 180m   |
| FLETCHDORF, GERMANY     | 10434   | 51.33N | 08.85E | 550m   |
| DRESDEN, GERMANY        | 10488   | 51.12N | 13.77E | 262m   |
| NEUHAUS, GERMANY        | 10557   | 50.50N | 11.14E | 873m   |
| NEUHEILENBACH, GERMANY  | 10605   | 50.11N | 06.50E | 585m   |
| FRANKFURT, GERMANY      | 10637   | 50.05N | 08.57E | 146m   |
| EISBERG, GERMANY        | 10780   | 49.54N | 12.40E | 799m   |
| TUERKHEIM, GERMANY      | 10832   | 48.58N | 09.78E | 765m   |
| MUNICH, GERMANY         | 10871   | 48.34N | 11.61E | 511m   |
| FELDBERG, GERMANY       | 10908   | 47.87N | 08.00E | 1517m  |
| VIENNA, AUSTRIA         | 11038   | 48.12N | 16.57E | 183m   |
| SALZBURG, AUSTRIA       | 11052   | 48.06N | 13.06E | 581m   |
| PATSCHERKOFEL, AUSTRIA  | 11126   | 47.21N | 11.46E | 2254m  |
| ZIRBITZKOGEL, AUSTRIA   | 11164   | 47.07N | 14.56E | 2372m  |
| BRIC DELLA CROCE, ITALY | 16061   | 45.03N | 07.73E | 736m   |