Precipitation Gauge

Application of an Ultrasonic Flow Measurement Technique

Choi, Gee-Seon Park, Jae-Hyun Lee, Kyung-Woo

Kim, Hye-Lim

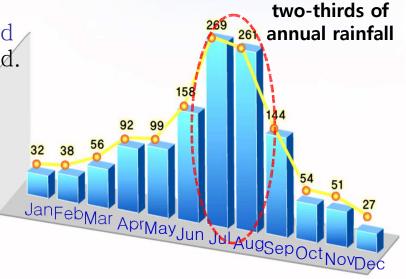
Contents

Conventional Precipitation Gauges

Configuration and Development Objectives

Performance Evaluation

Summary of Results and Future Plans


1. Introduction

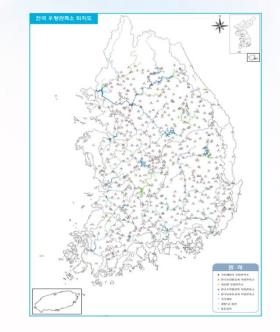
- Rainfall characteristics of Korea
- The number of installed precipitation gauges
- Recent topics

Introduction

1. Rainfall characteristics of Korea

- Depending on the season, annual rainfall severely deviates, with two-thirds of the annual rainfall concentrated during the summer rainy season.
- Because of the global warming, localized and severe tropical rainfall has appeared.
- Accurate real-time rainfall data is required for more reliable flood prediction and floodgate control

Introduction


2. Number of the installed precipitation gauges in Korea

* 2009 standard

Section	Amount	Percentage		
Local governments	1,861	51%		
KMA*	544	15%		
MOLIT*	430	12%		
K-water	199	5%		
Others	608	17%		
Total (domestic)	3,642	100%		

* KMA : Korea Meteorological Administration

* MOLIT : Ministry of Land, Transport and Maritime Affairs in Korea

Introduction

3. Recent topics

MOLIT long-term plan

- Precipitation gauges will be installed to increase the density which will lead to more effective water resource management and accurate flood predictions
- Observation and utilization equipment will be upgraded by developing IT technologies
- ***** reference : J. B. Kim, "Evaluation of Rain-gauge Networks in the Soyanggang Dam River Basin." M.D. Dissertation, Department of Civil engineering, Graduate School of Chungnam National University, Daejeon, Korea 2007.

Essay(excerpted)

- Compared with modern observations, it is true that accuracy and precision is not good enough in terms of observation intervals and precision of observed rainfall
- At present, a method that can overcome the low precision of Precipitation gauges' rainfall data is unclear.

^{*} reference : G. H. Lim, "The 17th Century Dry Period in the Time Series of the Monthly Rain and Snow Days of Seoul's Atmosphere." Korean Meteorological Society Vol. 22, No. 3 (2012) pp. 383

2. Conventional PrecipitationGauges

- Tipping-bucket type
- Weight measuring type

Conventional Precipitation Gauges

1. Tipping-bucket type

- > Water collecting \rightarrow Bucket Tipping \rightarrow
- Self-actuated switch operation \rightarrow Pulse output
- Resolutions are divided depending on the bucket size For example: 0.1/0.2/0.5/1.0mm/h
- \succ Easy visual observation, cheap price (Less than \$2,000)
- > External power supply is unnecessary (Except in winter)
- Precise measurement is impossible
 - Increase in rainfall intensity → Increase in the number of tipping buckets→ Cumulative error
 - Increase in rainfall intensity \rightarrow unfilled buckets could tip or water jumps out of the bucket
 - Measurement range is limited by rainfall intensity

()
С	
Η	5

S

Principle

Pros

Resolution	Measurable rainfall	Remarks			
0.1mm	0.1mm/h ~ 50mm/h	Requires the simultaneous use			
0.5mm	0.5mm/h ~ 250mm/h	of three devices Non-continuous observation			
1mm	1mm/h ~ 500mm/h	data			


Difficult to maintain (dust or insects cling to Moving parts → Friction occurs)
 Difficult to Calibrate (Plenty of distilled water and equipment is needed)

Share

 \geq

Approximately 70%, at least

* reference : D. M. Woo, "A Study on the characteristics by the rainfall intensity of the tipping-bucket rain gauge," M.D. dissertation, Graduate School of Industry and Engineering, Seoul National University of Technology, 2001

< Figure> Weight measuring type precipitation gauge

Conventional Precipitation Gauges

2. Weight measuring type

- ➤ Weight is measured through the load sensor (load cell, etc.)→ Conversion to rainfall
- Pros
- Low failure factor because mechanical moving parts are less than the Tipping-bucket type.
- Precise measurements
- > Measurement errors due to wind
- Temperature compensation is required for each Load sensor
- Drainage needed when Bottle is filled (Manual / Auto) Non-continuous measurements
- > Errors occur as a result of residues (dust, frost, etc.)
- > maintenance is needed every few months
- Very expensive (about \$10,000 USD)

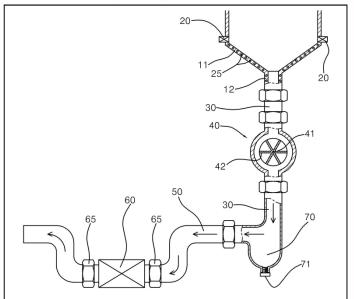
Cons

> Approximately less than 30%

* reference : "Guide to Meteorological Instruments and Methods of Observation," No. 8, Part. I, Ch. 6, World Meteorological Organization, pp. 33-34, 2008.

3. Configuration and Development Objectives

- Development objective
- Configuration objective


Configuration and Development Objectives

1. Development objective

- Improving accuracy (especially for heavy rainfall conditions) and capabilities for a wider range of rainfall
 WMO(World Meteorological Organization) Recommendations & KMA criteria :
 - resolution of 0.1mm/h and Within the error range of \pm 5%
- Full Digitalization of the measurement and communication system
 - * various communication methods (serial, wireless, etc.) ensure rain fall data transmissions are never lost
- Simplifying the structure for easy maintenance
- Amalgamation of the latest measurement technologies with advanced IT technologies

Configuration and Development Objectives

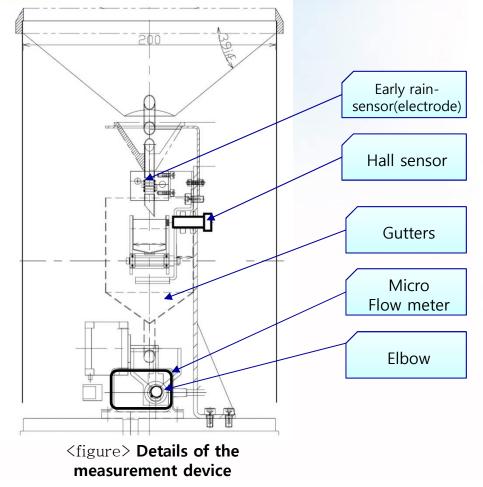
- 2. Configuration objectives (overview)
 - Appropriate amount of rainfall is collected in the turbine(42) and shed below to obtain the minimum flow rate
 - resolution of 0.1mm/h
 - Convert the accurately measured flow using an ultrasonic sensor(60) installed in the precipitation unit
 - Residues are accumulated in the checking section(70) and are discharged through the outlet port(71)

$$Q = \pi \times r^2 \times h$$

$$Q : Measured flow$$

$$h = \frac{Q}{\pi \times r^2}$$

$$h : Precipitation$$


Configuration and Development Objectives

2. Configuration objectives (details)

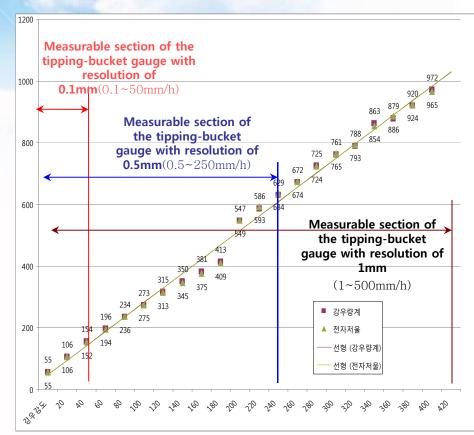
- Ensure the meter is filled with water by applying an Elbow in the outlet pipe
- Detect snow by installing an optical sensor → Heating coil operation → Maintain the internal temperature
- Early rain detection by installing a ring electrode sensor
 - Power saving function (optional)
- Motion detection via a hall sensor
 i diagnostic features (optional)
- Installation of solar cells or a built-in battery
 - independent power
- Various communication methods (zigbee, etc.)

☞ completely wireless

 $\ensuremath{\mathfrak{R}}$ Dimensions : Diameter of 200 (same with the existing standards)

- Indoor performance evaluation
- Field verification (Yongdam Dam)
- Field verification (KMA)

1. Indoor performance evaluation


- Purpose : Analysis of error rates by rainfall intensity
- Place : K-water Precipitation Gauge Correctional Center
- Period : 30. July. 2012 ~ 08. Aug. 2012
- Equipment : Standard indoor calibration system
 - **※** Consists of precision balances, 2 metering pumps, PLC, HMI

Kwa	ter	선광역시 유성구 유	성 성 적 사 성 대표 1689년 월 125 12-870-7000 Fax: 042		시 혐 일 자 2013. 09. 17 시 햄 번 호
1. 의뢰자 기관명 : 주식: 2. 측정기			: 경기도 성당시 :		Rain-2013-001 비료노파크 A-107
	7계(초음픽 유령) 정표준님 🔶				수수구 수집구경 : 298 44 ± 7)% R.H
4. 시험에 사용한 사용장비 순 표준 분	9 P Millips	형식 pre, Gradient 테크, SUS	기기번호 F4HN19926 1000		6 에이치피앱㈜
전 자 저 온습도대기업/ 온습도대기업/ 온습도대기업/	8 Mettler Tr (은全) Thom ((수운) Thom	oledo, S88001-1 men, HM30 men, HM30 men, HM30	112716313 1028487 1028487 1028487 1028487	3 2014.04.0 2013.11.2 2013.11.2	7 에이지피연류) 1 에이지피연류)
5. 시험방법 전도식 강우량	-	ter-CW-E012[0]	따라 국가측정표준		
6. 시험결과		1 Columbia	Treaster a second		
번호	감우강도(m/h)	1	기준부피(한산)	Ray-Q(g)	상대편차(%)
2	20.0	35.0	35.1	33.90	-3.40 %
	40.0	70.4	70.6	68.60	-2.82 %
4	60.0	105.3	105.6	103.50	-1.98 %
	80.0	141.0	141.4	137.10	-3.03 %
5 ※ 실험시 물의	100.0 온도는 24.1±0.3 °C	174.8 이며, 물의 밀도(175.3 는 0.997273을 적용	173.00 इ.	-1.30 %
확 인	작성자 직 위:	교 정 실 무 자	승인 / 직		1 R Ti
× 주의: 이 성해서는	성 명 : 4정기의 정말 청하도	김 일 한 '	(과부학,운도 율도 등 이성학서의 시험결과는	명 : 홍성	4 2007

<Figure> Performance Evaluation Center and the test report

Test results

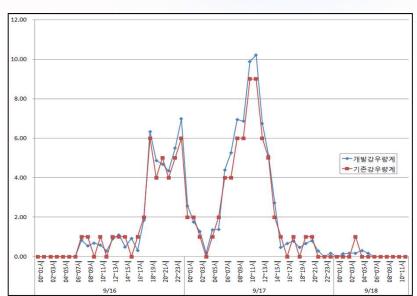
			and the New York		
Rainfall intensity [mm/h]	Developed precipitation gauge[ml]	Electronic scales(True value)[g]	Errors	Error rate	Reference
20	55	55	0	0.00%	
40	106	106	0	0.00%	
60	154	152	-2	-1.32%	
80	196	194	-2	-1.03%	
100	234	236	-2	-0.85%	
120	273	275	-2	-0.73%	
140	315	313	2	0.64%	
160	350	345	5	1.45%	
180	381	375	6	1.60%	
200	413	409	4	0.98%	
220	547	549	-2	-0.36%	1 Pump added
240	586	593	-7	-1.18%	
260	629	634	-5	-0.79%	
280	672	674	-2	-0.30%	
300	725	724	1	0.14%	
320	761	765	-4	-0.52%	
340	788	793	-5	-0.63%	
360	863	854	9	1.05%	
380	879	886	-7	-0.79%	
400	920	924	-4	-0.43%	
420	972	965	7	0.73%	

More accurate and reliable measurements are possible for rainfall ranging from 0.1~420mm/h or more

2. Field verification (Yongdam Dam)

- Purpose : Evaluation of field applicability
- Place : Bu-gwi Rainfall Measurement Station (Yongdam Dam)
- Period : Sept.2012~June.2013
- Equipment : Developed precipitation gauge, existing precipitation gauge, Beaker, etc.

*** Logging system consists of PLC and HMI**



<Figure> Precipitation measurement system installed in Bu-gwi Station

- Comparative analysis
 - A 6 l beaker was used as the installation capacity for the two precipitation gauges in order to compare the values of the water in the beaker and measured values of the gauges
- Results of the analysis
 - Accurate measurement of precipitation was possible throughout the entire period on a real-time basis

<Figure> Beaker experiment

 ${\rm <Figure>}$ Observed precipitation date during the typhoon 'Samba'

3. Field verification (KMA-Korea Meteorological Administration)

- Purpose : Evaluation of field applicability at an internationally recognized Station
- Place : Go-chang standard observatory, KMA
- Period : July.2013~present
- Equipment : Developed precipitation gauge, logging system

<Figure> Installed precipitation gauge in Go-chang, KMA

5. Summary of Results and Future Plans

- Analysis results of the developed gauge
- State of intellectual property rights
 - Domestic patent
 - International patent
- Commercialization promotion

Summary of Results and Future Plans

- 1. Analysis results of the developed gauge
 - Accurate measurements are possible for a wider range of rainfall intensity (0.1~420mm/h)
 - Developed gauge : Capable of measuring continuously with an improved margin of error(5% \rightarrow 2%)
 - Digitalization of all equipment from measurement units to transfer units
 - Various communication methods(serial communication, Wi-Fi, Zigbee, satellite, etc..) are easy to adopt
 - Errors caused by the friction of moving parts were eliminated, and failure factors were reduced
 - Emptying of the bucket is not required

Summary of Results and Future Plans

2. Intellectual property rights (patents) – Domestic

- Nov '11 : Applied for a domestic patent (no.10-2011-0124131)
- Oct '12 : K-water ↔ Technology transfer to private company (e&eco)
- Nov '12 : Applied for international patent(PCT)(no. PCT/KR2012/009510)
- Jan '13 : Domestic patent registration(no.10-1224270)

전파번호: 82-42-481-513 International Patent(PCT) **Precipitation Gauge**

특히 분장

PCT/KR2012/00951

PCT

금계층위위호 및 금계층위인 통기사

(PCT 규칙 20.2(e))

중요풍지사항

2012 년 11 월 14 일 (14 11 2012)

2011 1 11 11 25 12 (25.11.2011)

자로 국제사무국에 송부되었습니다.

-22-

Summary of Results and Future Plans

3. Commercialization promotion

- Nov '12 : Seminar in KMA (11.20)
- Oct '13 : Cost estimation for sales Solution values Unit price: \$3,350 USD
- ~June '14 : Applied to Youndam, Youngju, Buan, and Dongwha dam in Korea
- October '13 : Approved by Korean government agency
- November '13 : Confirmation of Success as a national project (Business Administration, Korea government).
- July '14 : TECO-2014, CIMO's International Conference

Service Adoption of International Standard Instruments in Precipitation Gauge

상관측표준회	과법 시행규칙	[별지 제2호서식	43			
239호.	7]4	상측기검정	성증명서			A2013-0310024 ± Lage 6.5 mill buildes: Corporation Fundations
D단 채 명 (주)이옌예코		②사업자등록번호 (생년원임) 2		-86-35528	수의 귀 아 온 취 이 사	
3)성 명(대 3	3)성명(대표자) 황상윤 (3)전 화 번 호	031-	703-7188	수의계약용 확인서
5주 소	7년 7	I도 성남시 분당	구 야합남로	233, 107支		
D기 상 측 :	기 명 장수	양계				위탁기관(기업): 한국수자원공사 (306-
2경정요소	(8) 제조회사	() 규리(모텔)	क्रियान्ट्रसंक्षेश्व	①제조번호	क्षिम् अ	00471) 수탁기관(기업): (주)이앤에코 (206-86
강수량	(주)이앤에코	Ray-Q	2013. 9.	R-2013-003	.25음파 유생의	과 제 명:초음파식 유랑센성 기 용한 강수량 측정장치
	0]	하	0	νų		유 효 기 간: 2013.11.22 ~ 2016.11
* 분임 : 기신	방측기 겸 정성 책	4				「대·중소기업 상생형혁 촉진에 관한 법」 제8조 및 「성과공유 확인제 운영요령」제8조에 의거 귀 기관 (기업)이 수행하 과제가 성과공유 과제인을 확인 한)
기상축기는 마라 건경한	「기상관측표를 결과 검정에 위	한화법 , 제1 3코 남격한 것임을 중	에1한 및 같 중영합니다.	온 법 시행령	제6조제3항	본 확인서는 「성과공유 확인해 운영으명」 해외도해 따라 공공기관되 해 수학기업부터 수례적당 해별 특별으로만 사용 가능 합니다. 또한 분 확단 같은 통 35개별 이내 수의제약을 몇개 법을 것을 받을이 취소될 수 있습니
기상정장	2	013년 10월	2491	16 2 16 N		2013년 11월 22일
한국기상산업	진흥원장			444百百百		┃ 대·중소기업협력재단 0 사장 :
중명서의 유	효기간은 중명	콽행일부터 3년	! 입니다.			
Aut	horiz	ed Ce	rtifi	atio	n	Optional contract confirm

Optional contract confirmation

Thank You