Abstract
The standard rain gauge is being used in the Philipines tor
long time than any other type of rain gauge, or beforoe the

 stations. It is actually 20 centimeters or the 8 inches rain gauge
wita measuring tube insidide to magnity ten times the actual deppth
or amount of raintul tor ease of reading or amount of rainfall for ease of reading.
 actual or original amount or raintall. Dipping the measuring stick
the measuring tube provides an error ouve to the volume of the
 and also of the dimensions of the measuring stick, tube and the
catch of the collecting funnel. This error has a significant indication consididring a long time period of observations and especiall during
rainy season. Thish sam to be shown that it and be corrected or or
formulated. The error due to this measurement process has to bo

 bucket has over and under estimation during light and heary prains
respectivel provided that it is also corrected at that given rate of
raineyl

## 1. Introduction

Over a time period the total amount of precipitation
(rainfall) is expressed in millimeters (or inches) as the depth
 No. 622 ). It it is a meteororolocical avariable with large spatial ano
temporal variabilty. An instrument used tor point measurement of
 mostly is the 20 centimeters of 8 inchers gauge. Others use gauges
with an opening or collecting area of 200 to 1000 gauare
centimeters. There are several methods of measument ike sing
 graduated cylinder to measure the amount of rainfall that comes
trom the collecting funnel or actect. Some use mechanical typelike
trine from the collecting funnel or catch. Some use mechanicial type ike
the tipion bucker rang gaues. There are several innovations
nowadays like the disidrometerer and oppicial devicies. the fipping iede e discrometer and optical devices
nowadays
 tolerance between the manual rain gauge and the calibrated tipping
bucket has made this subiect important. The method or tormulation


## 1.1 objective

To enhance the accuracy of measurements of the amourn
of rainfal in an eight (8) inches, or twenty (20) centimete (standara) rain gauge using the measuring stick is the main purpose outhis prese efien . his corrected manual rain gauge wild
then be used as the refernce to verity the results of the calibrated
2. Derivation of formula (Mathematical Analysis and Solution)

The following will illustrate the mathematical solutions in
correcting the measuruements in the said manual rain gauge:

Figure 1. Rain gauge with
measuring tube
Where:
$T=$ thickness of the measuring stick, $m$.
$W=$ width of the measuring stick, mm. $h_{1}, h_{2}, h_{3} . .=$ wart heitht mereasurning stick, $m$ m.


Figure 2. Volume or height increase indicated in the
So that by susstitutions to equation (5):
$\frac{\pi}{4}\left(D_{m}\right)^{2} I_{d}=\frac{\pi}{4}\left(D_{d}\right)^{2} H_{0}+T W H_{d}+T W h_{1}+T W h_{2}+T W h_{3}+\ldots+0$

## 



$\overbrace{4}^{-\pi}\left(D_{m}\right)^{2} I_{d}=\frac{\pi}{4}\left(D_{d}\right)^{2}\left(D_{m} / D_{d}\right)^{2} H_{d}+T W H_{d}+\frac{T^{2} W^{2} H_{d}}{(\pi / 4)\left(D_{m}\right)^{2}}$ $\frac{T^{5} W^{5} H_{d}}{\left.(\pi / 4)\left(D_{m}\right)^{2}\right]^{2}}+\frac{T^{4} W^{4} H_{d}}{\left.(\pi / 4)\left(D_{m}\right)^{2}\right]^{2}}+$

Let:


Therefore: $\left.H_{d}=()_{1}\right)_{d}$
Where: $Y$ is the multiplying factor to the indicated deppth $I$
If we consider the proporition in equation (4) for $D_{c}$ and $D_{m}$, the
overall corrections will be:


$$
\text { Corrected Reading }=\frac{10\left(\mathrm{Y}_{\mathrm{d}}\right)}{\left(\mathrm{D}_{\mathrm{C}} / \mathrm{D}_{\mathrm{m}}\right)^{2}}
$$

(6)

The corrected reading is multipied by 10 to compensate for
 (6) can also be used tor quality contro

Let $\mathbf{B}=10 Y /\left(D_{D} / D_{m}\right)^{2}$ and if we consider series of measurements,
the total rainfal is is represented by:
Total Rainfall $=\sum_{=10}^{n} B\left(I_{d}\right)_{k}$
Total Rainfall $=\mathrm{B}_{\mathrm{d} 1}+\mathrm{B}_{\mathrm{d} 2}+\mathrm{Bl}_{\mathrm{d} 3}+\mathrm{Bl}_{\mathrm{d} 4}+\ldots . .+\mathrm{Bl}_{\mathrm{dn}} \quad$ (7)
Where the term [B $\left.\mathrm{L}_{\mathrm{d}}\right]_{\text {could be be one measurement reading on }}$ the differencee between the latest and preveviousurementiremeant to get The difierence between the alest and previous measurement to get
one reading bewen two measuremens a k koun height of tull
measuring tube during overtiow should not bee corrected by the measuring tube during overfiow should not be corrected
multiplying factor B since the measuring stick is not used).

From equation (7), if we consider totals in a day, a week or
Per time period, there could be significant result ( (deanending
 constant and inhererent to the instrument iselt depending on its
dimensions.

## 3. Sample Resu

The tests were conducted at the Agromet Station of Science
Garden as shown in Figure 3 . Since the manual rain ald chown in Figure 3 . Since the manual rain gauye is
already corrected to its inerent error as a result from equation (6) Mereasured RR*0.033) and to be measures by an obseserer, it it is
used as the reference (unlike the EN $13798: 2002$ (revised 2010 ).
 three tipping bucket rain gauges ( $(T B R)$.
re in folowing

 Tiping Bucket Rain Gauge - (20 cm. diameter) located at
22.
designeters distanated for tom Dpaws.





