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ABSTRACT
We present the procedure we adopted in analyzing some daily thermometric series with particular emphasis on the spectral analysis and on the modelling of the erratic component of a gephysical signal. The purposes of the signal processing were, first, describing and quantitatively estimating the basic linear trend and the main meteorological cycles present in the series, second, after their subtraction from the signal, assessing the relative importance of the residual stochastic component and, finally, identifying a stochastic model for the latter, in order to arrive at an artificial simulation of the original series.

The analysis was carried out on seven daily series of minimum and maximum temperatures covering the period 1951-2000 recorded at several meteorological stations in the Lazio region of Italy, archived into the Italian “Agrometeorological National Data Base” (BDAN) of the National Agricultural Information System (SIAN). By applying standard Fourier transform methods we analyzed the series in the frequency domain: each temperature series, after filling the data gaps, was then regarded as the superposition of several sinusoids, each with its own amplitude, wavelength and phase. The corresponding spectrum showed the distribution of variability, or energy, of the basic harmonic components over the whole range of frequencies. All series examined showed the existence of two principal oscillations, annual, and half-yearly. After, by using multiple regression, we simultaneously found the two linear-trend parameters of the series (intercept and slope) and the four harmonic parameters of the two cycles so identified. On subtracting from the original signal these deterministic components (the trend and the two seasonal cycles), we obtained for each station a residual series (the so-called “stochastic residual”), which was then approximated by an auto-regressive one-parameter model, suitable to represent it within an acceptable degree of approximation. So the residual variability of each series, representing the energy associated to the stochastic component, could be decomposed in two parts, the second of which could be attributed to the presence of an underlying white noise. In this way, it was possible to reach a fairly satisfactory understanding of the series behaviour and to build for it a complete model, allowing computer simulation of the temperature series, specific for each given climatic station.

The determination of all deterministic and stochastic components in the thermometric series analyzed allowed to improve the insight about the significance of the variability in amplitude of both minimum and maximum temperature signals. The stochastic model used, if reliable, can allow to extend the series in the past (historical climate analysis) and, possibly. in the near future (short-range forecasting). However, it represents a useful tool to describe and understand, after a further analysis, the recurrence of weather patterns and the possible occurrences of weather-linked  phenomena interesting the local vegetation and the related biological processes.
Key words: spectral analysis, stochastic methods, daily thermometric series.

1. INTRODUCTION
The spectral analysis of time series, adopted in the study of the most various physical phenomena, represents a valid method of investigation also in the field of meteorological and climatic phenomena. (Storch and Zwiers, 1999; Easterling D.R. et al., 2000; Donnelly A. et al., 2004). By means of this analysis we can extract a fair amount of information about the data series itself and the physical mechanisms on which it possibly depends: the composite nature in the frequency domain, the relevant harmonic frequencies dominating the behaviour of the series, the energy contribution coming from each given frequency band in the spectrum. In brief, the series variability is studied by breaking it down into different parts, each coming from a  different component. The partitioning is done by means of the discrete Fourier transform, which results in obtaining a quantitative assessment of  the relative incidence of each simple harmonic oscillation into which the full signal can be resolved. In this way one can easily recognize the presence within the series of characteristic simple periodic phenomena like, e.g. in the meteorological series, of annual and seasonal cycles, and to weight their importance with respect to the level of the so-called erratic component, always present, representing the contribution to the signal of the random fluctuations, a feature affecting any geophysical signal. This erratic component, on assuming that it has a stationary character, can be in its turn modelled separately by the standard tools of stochastic analysis (Box and Jenkins, 1976). However, a full spectral analysis can be carried out in a reliable way only on complete, regularly sampled data series, with no gaps. 
This methodology has been employed to study some thermometric series of Lazio, a region of Central Italy. For each series the deterministic components have been first recognized and quantitatively assessed: these include a linear trend and two seasonal cycles, whose frequencies and energies have been determined; then, after subtracting these components from the original signal, a  residual signal of stochastic nature was obtained, which was subsequently analyzed by means of a simple AR(1) model, thus separating the full erratic component in an auto-regressive part and a residual white noise, the intensity of which has been finally estimated. 
The results of the overall analysis permitted us to artificially simulate the temperature signal at each station, thus opening the way toward the possibility of reconstructing the series both in the past and, cautiously, in the near future.
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Fig. 1: Map of the seven weather stations analyzed in the Lazio area
.

2 – DAILY DATA: TREATMENT AND METHODS
2.1 – Introducing the database

The data examined in this paper are daily minimum and maximum temperatures recorded at 7 climatic stations located in Lazio region. These 14 time series of daily data, expressed in °C, cover the second half of the XX century, from the beginning of 1951 to the end of 2000, but almost all series presented several gaps within them and/or at their ends. In the present work it was possible to carry out a complete stochastic analysis of these series, since, after retrieving the data gaps, we succeeded in filling in all of them, thus obtaining uninterrupted series of daily data. 

The 7 climatic stations studied are located in different geographical zones of the Lazio region, some on the coastline, others in the urban centre of Rome and others in its suburbia. For a complete list of these stations see Table 1. The data is stored in text files with a sampling time step equal to one day, the file format being the following:

yyyy (year)
 mm (month) 
   dd (day) 
ttt.d  (temperature in °C).

The first three columns contain invariably all the serial dates from 1/1/1951 to 31/12/2000, even in the presence of missing data, since in the latter case a conventional code  -999, instead of a normal temperature, was used to signal the presence of a gap.

2.2 – The necessity of filling the data gaps

The temperature is a climatic parameter that, unlike precipitation, shows a variability continuous in time and space, so that it is possible to use methods based either on multiple cross-correlations among neighbouring stations or on simple auto-regression in order to fill in the missing data. Generally, time series having gaps at the beginning and at the end have been previously trimmed. Afterwards, the remaining inner data gaps have been filled using an auto-regression method illustrated below. The filling of the gaps is required when an estimation of the power spectrum is desired, since such estimation is based on the assumption of a regularly sampled record having no gaps
2.3 – The method used to fill the data gaps

Let us define “gap” an uninterrupted run of one or more missing data in a time series. As mentioned above, the single missing data is indicated by a fictitious numeric code (here, -999), so that a gap consists of a more or less long sequence of these special no–data codes. Sometimes a time series is preceded or terminated by a gap, and sometimes both circumstances are true. Such gaps are denoted “terminal gaps” and, as a rule, these gaps have been simply ignored.

The method used by us to fill in the inner gaps consists of two successive steps:

· for each file the possible terminal gaps are removed;

· for each inner gap, starting from its first missing data (briefly, the “pivot”), one finds a data segment of length Nseg (tipically, Nseg= 51) comprising the pivot and possibly centered around it (the centering will be possible unless the pivot is too near to either the beginning or the end of the time series). Note that this segment of consecutive Nseg data will include both good data and missing data, either preceding or following the pivot, so that the number N of good data (some of which before, some after the gap) will be necessarily lower than Nseg. If now N  is lower than a certain threshold Nmin ( typically,  Nmin = 0.55Nseg ) none of the intercepted gaps is filled, since the segment of Nseg data is regarded to be too defective (the gaps thus left behind can however be possibly filled in a next step). In the opposite case, that is, if N ≥ Nmin , the regression line through the available N good data is drawn and, since it extends to cover all the data segment, its ordinates are used to predict all the missing values met along the data segment itself. Thus, not only the original gap, whence the filling process was started, is filled in, but all the other gaps so intercepted are. Obviously, the value actually used to fill in a missing data is not the mere ordinate of the regression line, but the value obtained by adding to the latter a random noise normally distributed with a variance equal to the variance of the residuals computed with respect to the regression line itself.

Note that the use of the linear (rather than nonlinear) regression sets an upper limit to the maximum length Nseg , in the sense that such length roughly should represent the maximum stretch of data in our time series over which the values can reasonably follow a rectilinear behavior (in our case, a daily temperature record can generally be supposed linear over a period of at most 2 months).  Note that, once the gaps up to a certain time have been filled, the added data will count as good data for the next gap-filling operation.

At last, we note that this method of gap filling is not symmetrical with respect to the inversion of time direction, that is, if we proceeded to fill in the gaps of the original series by the same criteria said above, but starting from the last data instead from the first one, the procedure might not give the same results. 

Proceeding in this way, we succeeded in filling all the inner gaps for above mentioned 7 stations, so as to obtain 14 daily time series, 7 of minimum and 7 of maximum temperatures, without any data gaps. 
3 -  DATA ANALYSIS OF THE 14 COMPLETE DAILY TEMPERATURE SERIES
3.1 – Analysis of a series in the time domain and in the frequency domain

In general a meteorological data series may be regarded as the superposition of several simpler components:

· a trend, representing the deterministic tendential behavior on the large time scale. It indicates the background tendency of the phenomenon, and generally it is supposed to be a linear function of time;

· some cyclic oscillations: this component, made out in turn of the superposition of many single periodic oscillations,  is intended to represent the overall deterministic fluctuations that are superimposed to the trend of the time series. Among these oscillations, we can distinguish those, called seasonal, which have periods (one year, half year, etc.) that are directly linked  to the astronomic cycles of the planet Earth, and the other ones, having  either shorter periods or multi-year, pluri-decadal, or even quasi-secular, periods, that are not of seasonal type (for example, phenomena showing the 11-year cycle typical of the sunspots, or connected to the synodical cycle, or the large time-scale oscillations related to global phenomena like ENSO, NAO and MO, as well as the almost-periodical perturbations associated with the evolution of the main meteorological systems).
· the erratic component (also called “stochastic residual”), that represents the overall environmental noise; the latter includes all the natural random fluctuations, part of which may be described by means of some stochastic process endowed with a more or less long internal memory (that is, possessing a non trivial auto-correlation), and part by means of a stochastic process with no internal memory at all (that is, a white noise).  

The analysis of the historical series is usually based on the assumption of stationarity of the erratic component, according to which the random factors, which have affected the behaviour of the time series in the past, continue to act unchanged in the present, and, probably, will even continue to exert their effects in the future. Thus, on following the standard approach of time series analysis, an approach that dates back to the beginning of the twentieth century, we assume that the erratic component of the time series can be regarded as the realization of a stationary stochastic process, which then one can attempt to describe by means of some parametric probability model.  

After detecting and removing the trend and the main cyclic components from the original data series, the attention of our analysis will be focused onto the erratic component, that is, on the zero-mean signal obtained from the original signal after subtraction of all its detected deterministic components. First, the correlogram of the erratic component is computed in order to get an estimate of the autocorrelation function of the underlying stochastic process. Second, a visual inspection of the shape of such correlogram may allow to hypothesize a parametric stochastic model, belonging to the so-called ARIMA class, that may hopefully be used to represent it in the best way (in the sense of a least-mean square optimization). The total variability associated with the erratic component will thus be partitioned in a variance due to the internal memory (or, to the degree of the auto-correlation) and a variance attributable only to a residual white noise, typically a normal white noise.

This model, putting together the deterministic and the erratic components, would thus permit through computer simulations the artificial reconstruction in the past of the values of the given meteorological series and, possibly, its cautious prediction in the next future. Moreover, the choice of a well determined model of autocorrelation function permits the direct calculation of the power spectrum of the series by a simple application of the Wiener-Khinchin theorem (Blackman-Tuckey method of spectrum estimation).

3.2 - The usefulness of performing a spectral analysis

Before entering the details, let us recall that spectral analysis is the study of data series in the frequency domain, the frequency being defined as the number of repetitions (or cycles) of a periodic event in a given time unit. Since any zero-mean signal can be regarded as the superposition of a finite or infinite number of harmonic oscillations (Fourier theorem), each of which characterized by a given frequency, spectral analysis allows the evaluation, for each frequency bin, of the amount of energy (or variability) associated to every cyclic component in which the series can be partitioned. So, by looking at the peaks of the spectrum we can detect (and thus, often, also physically identify) which are the more representative cyclic phenomena contributing to mould the given time series. In other words, we can understand which ones of its oscillatory components are responsible of most of the variability associated with the series, and how much energy is actually carried by them through the corresponding frequency band. In particular, spectral analysis permits to evaluate the relative incidence of the various underlying deterministic phenomena building up the series (like the seasonal oscillations or the others of any cyclical character) and to compare their importance to the intensity of the erratic component. In practice, the variability of a time series is studied by dividing it in several harmonic components according to the decomposition ensured by the Fourier Theorem: then, the high frequencies represent the fast variations of short period, while the lower frequencies represent the variations with medium and long periods. This decomposition is just the right tool that allows to quantify the different contributions to the total variability of a time series coming from the cyclical process that repeat themselves with various periods. Spectral analysis may be done in a reliable way only if a complete time series is available, that is, a series without data gaps.

3.3 - Strategy for the analysis of the temperature series

All the 14 time series (7 of daily minimum, 7 of daily maximum temperature) were subjected to spectral  analysis after correlogram evaluation. Every signal has been first processed in view of detecting the deterministic component (a trend plus some seasonal oscillations) and then extracting by subtraction a zero-mean residual, that represents the erratic component. Successively, on working on this component, that is always present with a conspicuous variance, a formal, standard representation has been tried via an autoregressive model of low order. In all cases a simple AR(1) model, with an optimal parameter value, depending on the station and on the type of temperature record, has proven to be sufficient. Moreover, even considering all the 14 time series, the spread of the values of such parameter proved to be rather narrow (see column 7 in Table 1), as if all the temperature records shared some universal feature characterizing their erratic components.  

We recall that a stochastic process is said to be autoregressive of order p , briefly, an AR(p) process, if the value observed at time tj is correlated to all the p previous values of the same process, that is, to the values observed at the instants tj – 1 , tj – 2 , ..., tj – p . Such a process is characterized by the property of possessing an internal “memory” of indefinite length, but gradually vanishing with lag-time and appreciably different from zero only for time delays not much longer than p sampling intervals.

The procedure followed to process each time series always started with a preliminary computation just intended to recognize the frequencies of the relevant seasonal cycles present in the signal: 

· first, a zero-mean signal was obtained by subtracting from the original series its mean value computed over the whole period;

· second, an explorative periodogram has been computed permitting a quick detection of the main deterministic frequencies involved in the series.

This preliminary treatment always resulted in pinning down the same pair of main deterministic frequencies, one corresponding to a 1-year period, the other one to a 6-month period.

As a consequence of this preliminary analysis, the following time series model has been adopted:

(1) 


[image: image3.wmf])

(

)

cos(

)

cos(

)

(

2

2

2

1

1

1

t

t

A

t

A

bt

a

t

T

t

j

w

j

w

+

-

+

-

+

+

=


where a and b are the linear-trend parameters, ω1 and ω2 = 2 ω1 are the pulsations corresponding exactly to a 1-year and 6-month periods, respectively, A1 and A2 are their corresponding centered amplitudes, φ1 and φ2 the respective angular phases, and  τ(t) is the erratic component of the time series, namely, its stochastic residual, to be further modelled via a suitable auto-regressive process.

The six free parameters of the deterministic component, that is, the two linear-trend parameters (the slope b and the intercept a ) and the four harmonic parameters (the two amplitudes A1 and A2 and the two phases φ1 and φ2) characterizing the two above mentioned seasonal oscillations, have been simultaneously determined via a multiple regression. The residuals with respect to this multiple regression are used to define the stochastic residual 
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, that is assumed to have a purely stochastic nature.

Starting now to work exclusively on this residual signal, its correlogram has been computed in order to obtain an estimate of the underlying autocorrelation function. Then, an autoregressive AR(1) model has been fitted to the correlogram according to the formula

(2) 
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where 
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is a suitable constant and Z(t) is a (Gaussian) white noise with a variance to be estimated. The constant 
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, having an absolute value less than 1, is the only characteristic parameter of the AR(1) process and  gives the shape of the corresponding theoretical autocorrelation function - see Eq.(3). The optimal value of 
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for the given time series is determined by the slope of the regression line of 
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 of the variance of the full erratic component τ(t),  is measured by the spread of the residuals around the regression line itself. In this way, the total variance of the stochastic component 
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is separated into a portion due to its auto-regressive behaviour and a portion connected to the residual white noise, which, by its very nature, cannot be given any further explanation. 
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Fig. 2. Ciampino: (a)  A 2-year segment of the daily minimum temperatures recorded at Ciampino station from 1951 to 2000: about 800 days are shown. (b) The same signal as in (a), but centered , that is, after subtraction of its time average computed over the whole 50-year period.
The confirmation that the latter part of the variance is essentially due to a white noise is obtained on the ground of a practically flat appearance  of the power spectral density of the residual signal Z(t), the latter signal being computed at each time via Eq.(2), starting from 
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 and after an optimal determination of the α parameter. As shown in Table 1, this modelling effort produces good results for both daily temperature series at each of the stations under examination.

Fig. 3.  Ciampino: daily minimum temperatures 1951-2000. The explorative periodogram with ordinates in log-scale, in a very short segment of frequencies near the zero frequency. The two frequencies of the main seasonal components are evident as sharp peaks emerging above the otherwise almost flat power level. 

3.4 - Analysis of the temperature series 

Each uninterrupted daily time series of temperature has been presented versus time, as in Figure 2a, where, for example, the series of daily minimum temperatures at Ciampino has been plotted on limiting the presentation to a short time interval of about 800 days, starting with January 1, 1951.

The first preliminary step of the analysis, as stated above, consists of merely subtracting from the complete signal its time mean, so as to obtain a centered  signal, that is, a zero-mean signal (Figure 2b). In order to detect the presence of any cyclic components in the series, a periodogram of the whole 50-year centered  signal has been calculated (see Figure 3). On the x axis we have the “normalized frequency” of the single harmonic component, 
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 its pulsation, and τ is the sampling time-step (1 day) of the series. Note that the range of x-values over which the spectrum can be determined (namely, from zero frequency to the Nyquist frequency) is 
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. Obviously, once this normalized frequency is known, the period of the single cyclic component is easily computed.  For example, if the time unit is 1 day (so that 
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 has a period equal to 2(1 / 0.04) = 50 days. 

On the other hand, on the y axis we have, for each normalised frequency, the power density expressed in decibel (dB). The shape of the periodogram shows how the variability of the signal is distributed over frequencies, namely, as a function of x. From the segment of periodogram shown in Figure 3 it is clear that the frequencies carrying most of the signal energy are the two ones corresponding to periods of 1 year (
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After having detected the two above mentioned main frequencies, the two parameters of the linear trend (intercept and slope) and the 4 harmonic parameters (the two amplitudes and the two phases) of these two main oscillations have been simultaneously estimated by one multiple regression. In this way it has been possible to evaluate all the six parameters fixing the time behaviour of the whole deterministic component (the trend plus two seasonal oscillations) according to the model equation (1). As evident from Figure 4, the deterministic component, when plotted versus the original signal, already appears to capture most of its time variability. By subtracting now the deterministic component from the full original signal, a new signal, called “stochastic residual” or “erratic component”, is obtained (see Figure 5).
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Fig. 4. The deterministic component of the signal (dashed red line) plotted for comparison over the full original signal. The time span is again limited to the first 800 days of the two signals.
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Fig. 5. Ciampino: daily minimum temperatures in the period 1951-2000. The stochastic residual of the signal, obtained after subtracting the deterministic component (namely, the trend and the two main seasonal cycles). Only the first about 800 days are shown.

We have no deterministic explanation for this residual signal. However, we want to be sure that this erratic component contains no more significant deterministic cycles. To this purpose, its periodogram has been computed and shown in Figure 6. From a comparison with the previous periodogram shown in Figure 3, it is evident, first, that the two main peaks corresponding to the strong seasonal components are now absent and, second, that the dB range of the ordinates has shrieked significantly (they vary now from -10 to +20 dB), implying a rather uniform distribution of the residual variability over frequencies. The shape of this periodogram suggests on one hand that the erratic component is a genuine stochastic process, with no appreciable underlying deterministic component, and second, that such stochastic process may possess in some degree an internal memory due to the fact that the energy distribution over frequency cannot be said to be uniform. 

In the effort of appreciating the extent of this possible internal memory, the correlogram of the stochastic residual has been computed by means of the well known formula: 

(3)
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Fig. 6. Ciampino: daily minimum temperatures in the period 1951-2000: the periodogram of the stochastic residual (only the range of very low frequencies is shown). The two peaks visible in Figure 3, corresponding to the two main seasonal cycles, are no longer present.
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 represents the signal at time j and μ  its overall mean value, whereas k indicates the time delay expressed in days, or in multiples of the basic sampling time step. In Figure 7 the behaviour of this correlogram vs. time-lag has been shown (dashed line) up to a maximum time delay of 30 days (kmax = 40). The inspection of the auto-correlogram of a stationary series should permit to quantify the level of serial dependence among the data and thus to quantitatively evaluate the link existing between one value of the series and the few previous ones as a function of their separation in time. The generic 
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, being substantially  a correlation coefficient, assumes values between  -1 and +1, and the nearer its absolute value is to one, the more correlated  the original data series is with its lagged copy, namely with the series obtained by shifting it k time steps apart (negative values of 
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 obviously indicating an anti-correlation).
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Fig. 7. Ciampino: daily minimum temperatures in the period 1951-2000. Correlogram of the stochastic residual (dashed curve) and the hypothetical auto-correlation function (stem-plot) of a related AR(1) process with its parameter optimally determined through a linear regression (see Figure 8) 

Now, if the signal consisting of the stochastic residual under study were the realization of an autoregressive AR(1) process with basic parameter 
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, its theoretical autocorrelation function would have the following shape:
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no matter which the sampling time step was. In the case 
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 this behaviour corresponds to an exponential monotonic decrease with increasing time delay k. For a comparison with the actual correlogram, such ideal behaviour has been shown in Figure 7 (solid curve) after having determined the parameter 
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via an optimization. More precisely, an optimal estimate of 
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is given by the slope of the regression line through the scatterplot of points in the plane (Sj, Sj+1), Sj denoting the value of the stochastic residual at time j . Such scatterplot is presented in Figure 8.  Figure 7 shows that the sample correlogram (the dashed curve) follows approximately the shape of the hypothesized theoretical correlation function (4), at least far enough from the tails. This congruence remains true for all the stations examined, up to time delays less than about one week, while for longer time lags it is seen that the correlogram values, though slowly decreasing toward zero, remain positive and definitely higher than the corresponding theoretical tails. In other words, the agreement with the theoretical autocorrelation function of an AR(1) process is satisfactory only in a short range of small time lags. Nevertheless, we can attempt to formulate a very concise model of each observed correlogram by using the optimal AR(1) process consistent with it, as stated by the model equation (2), the parameter α and the variance of the white noise Z(t) having to be contextually determined during the optimization process.

In order to appreciate the extent of the auto-regressive character of the time series, and so to check the goodness of fit of the adopted model (2), we have shown in Figure 8, for the examined station, the regression line superimposed to the scatterplot of data points (Sj, Sj+1). Hence one can see the strong dependence existing between the temperature value measured today and the one measured tomorrow. Far from forming a random distribution, the data points exhibit a neat tendency to align along a certain straight line having a positive slope, in this case near to 0.7, implying a correlation coefficient as high as 70%. 
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Fig. 8. Ciampino: plotting the stochastic residual of the daily minimum temperatures 1951-2000. The abscissa is the value computed at day j and the ordinate the one at day j+1. It is evident the tendency of the points to align along a well defined straight line, whose slope (α ( 0,7) is the optimal estimation of the α parameter of the modelling AR(1) process. 

The residual variability associated to the deviations of the data points with respect to their regression line is quantitatively estimated by the standard deviation of the residuals, which coincides with the square mean amplitude of the residual white noise Z(t) appearing in the model equation (2). The significantly high correlation coefficient associated to this linear regression confirms the existence of a close relationship between the temperature of one day and the one of the next day and justifies the use of the AR(1) model to concisely represent the internal memory inherent to the stochastic residual extracted from the original signal. 

A stochastic model is good if it is able to catch the main part of the variability associated to the given time series, that is, if the time series of the residual signal Z(t) is similar to the realization of a white noise. In our analysis the goodness of the proposed model is confirmed by the fact that the nature of the residual noise Z(t), plotted in Figure 9, unlike the full stochastic component of the signal (shown in Figure 5, is quite similar to a white noise, as testified by its power spectrum being practically flat.
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Fig. 9. Ciampino: daily minimum temperatures 1951-2000. The residual noise, obtained by subtracting from the stochastic residual of the original signal the part of it that can be predicted by means of its previous value, as from model equation (2). Only the first about 800 data are shown.

More precisely, since the variance of this noise is about half the variance of the full stochastic residual, we can conclude that, by means of the AR(1) model, a consistent part of its variability has been successfully explained on the base of its auto-regressive structure. A further check of the goodness of the adopted model (2) can be obtained by looking at the scatter plot in Figure 10.
From this figure it appears how random the distribution of the residual noise is and how difficult it would be to try to predict its value on the base of the simultaneous value of the full erratic component. The vertical extent of the scatter plot in Figure 10, when compared to its horizontal extent, also evidences how the standard deviation associated to the residual noise (about 5°C) is almost two times smaller than that of the full stochastic residual (close to 10 °C). It can be therefore concluded that the auto-regressive character of the process is able alone to explain about the half of the variability carried by the full erratic component extracted from the original temperature signal, while the other half has no apparent explanation. In fact, no white noise can be explained by means of some mechanism other than a purely random extraction from an urn renewed at each time and completely independent of all of its past issues. This efficient and succinct modelling of the erratic component of the original temperature series has proved to fit well all the seven stations examined for both minimum and maximum temperatures.

Finally, it can be observed that, if one is able to generate a noise with the right standard deviation (the latter being a very modest part of the whole variability of the original temperature series), it is possible to build, for any real temperature series, an artificial signal as the sum of a trend, two seasonal oscillations and an AR(1) stochastic process, including the given noise, by which the real temperature signal can be adequately simulated, in the sense that the artificial and the real signals can hardly be distinguished from each other. This is evident from the comparison between the two panels (a) and (d) in Figure 11 the first of which shows the real signal as measured at Ciampino station, whereas the second is the artificial signal built as described above.
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Fig. 10. Ciampino: daily minimum temperatures from 1951 to 2000. The residual noise vs. the stochastic residual. The data points are distributed rather symmetrically around the origin and do not show any definite tendency to align along some definite direction. This points out the total unpredictability of the residual noise within the stochastic component of the full signal, thus suggesting that we are now left with a purely random, or white noise.   
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Fig. 11. Ciampino:  (a) The original signal  (minimum temperature);   (b)  The deterministic component of the signal.  (c)  The stochastic component of the signal.  (d)  An artificial signal obtained by computer simulation on using an AR(1) process with the right α parameter and noise variance, typical of the given climatic station. 
4. RESULTS AND DISCUSSION
The results obtained via spectral analysis for the daily minimum and maximum temperature series are quite similar for all the stations, thus confirming that the stochastic model of type AR(1) is able to adequately represent the erratic component of temperature records in any case. The detailed quantitative outcomes for all the 7 climatic stations are summarized in Table 1.

Each series was decomposed into a deterministic component, made of a linear trend (see the first 2 columns in the table) and of two seasonal harmonic oscillations (columns 3 to 6), the larger having a 1-year period, the smaller a 6-month period, and a stochastic residual, which has been successfully modelled by means of an AR(1) process, whose computed parameters are listed in the last two columns of Table 1.

Table1. Results of spectral analysis: Parameters characterizing the deterministic part (first 6 columns) and the stochastic part (last 2 columns)  of the two temperature records observed at each station. Slope and intercept of the linear trend (columns 1, 2),  amplitudes of the two seasonal components, A1 e A2 (columns 3 and 5) and their phases φ1 e φ2  expressed in degrees (columns 4 and 6); basic parameter α of the modelling AR(1) process (column 7) and standard deviation of the residual noise Zt (last column). 
	Station name
	Trend Slope
	Intercept
al 1975
	A1
	φ1
	A2
	φ2
	AR(1)

α
	Noise Zt
std. dev.


	
	°C/century
	°C
	°C
	degrees
	°C
	degrees
	---
	°C

	Column
	1
	2
	3
	4
	5
	6
	7
	8

	Daily Maximum Temperatures

	Ciampino
	-1.70
	20.7
	9.4
	204
	1.1
	90
	0.71
	2.0

	Roma Collegio Romano
	0.39
	20.4
	9.5
	202
	1.0
	86
	0.76
	1.7

	Fiumicino
	2.03
	20.4
	8.1
	208
	0.9
	92
	0.67
	1.8

	Ardea
	0.89
	19.9
	8.3
	207
	0.8
	91
	0.72
	2.1

	Roma Eur 
	0.43
	21.5
	9.5
	203
	1.0
	92
	0.76
	2.1

	Roma Macao
	0.12
	20.7
	9.3
	204
	1.0
	95
	0.73
	2.4

	Roma Monte Mario
	-0.12
	20.4
	9.7
	204
	1.2
	94
	0.75
	2.4

	Daily Minimum Temperatures

	Ciampino
	0.68
	10.0
	7.6
	208
	0.7
	80
	0.67
	2.3

	Roma Collegio Romano
	2.40
	12.1
	7.8
	206
	0.8
	82
	0.68
	2.0

	Fiumicino
	0.49
	10.6
	7.4
	210
	0.7
	84
	0.62
	2.5

	Ardea
	-3.36
	9.8
	7.2
	211
	0.6
	83
	0.70
	2.6

	Roma Eur 
	0.84
	10.8
	7.6
	208
	0.7
	64
	0.70
	2.6

	Roma Macao
	0.63
	11.7
	7.6
	206
	0.7
	82
	0.70
	2.3

	Roma Monte Mario
	0.97
	11.2
	7.5
	209
	0.7
	83
	0.71
	2.4


The average daily maximum temperatures over the period 1951-2000 range from 19.9 to 21.5°C among stations, while the average daily minimum temperatures  range from 10 to 11.7°C (see column 2 of the table), with a difference between minimum and maximum temperatures of about 10°C for all stations. As for the trends of minimum temperatures (column 1), with the exception of Ardea station, where a rather important negative trend appears (-3.36°C per century) that deserves further attention, all the stations present positive trends. In particular, Roma-Collegio Romano presents a positive trend of about 2.5°C per century. It is likely that these high values are due to the heat-island effect enhancing locally the general tendency to a slow increase of temperature with time. This supposition seems confirmed by the results obtained for the daily maximum temperatures: in the 7 stations examined the trends are positive, though modest (generally lower than 1°C per century), with minimum values at Roma Macao (0.12°C per century) and Roma-Collegio Romano (0.39°C per century). Notable exceptions are Fiumicino with an extant +2.03°C per century and Ciampino that, against the general tendency, shows a distinct negative trend of  
-1.7°C per century.
Daily minimum and maximum temperatures obviously undergo a cyclic 1-year oscillation that depends on the astronomical parameters of the planet Earth and on its motion of revolution around the Sun. But other minor variations, like the 6-month seasonal cycle, tend to modify this basic yearly cycle characterized by a trough in winter and a peak in summer (typical in the Mediterranean climate). The 6-month cyclic component, though of small amplitude, possesses a phase lag with respect to the yearly cycle such that it adds or subtracts itself to the latter in a way that depends on the period of the year, with the result that the symmetry of the overall yearly behaviour is broken and noticeable modifications in the peak and trough values are introduced (see Figure 12). 

[image: image41] 

Fig. 12: Typical distortion produced in the overlapping of two harmonic motions with the minor wave having double the frequency of the major one and phase lags like to those reported in Table 1, columns 4 and 6. 
About the origin of the 6-month component, one may speculate that it may depend on the influence of meteorological factors, such as the cycles of precipitation, latent heat and cloud cover, that may reasonably exhibit cyclic behaviours with a period of 6 months (but this link should be investigated with greater accuracy). The alternation of peaks and troughs in such cycles with the given phase lags could prevent the temperature from falling too low, especially in February, when a peak in the 6-month component occurs, and at the same time could produce slight drops in normal temperature levels in May and November, when a trough in the 6-month component occurs. The overall effect then manifests itself mainly in a mitigation of the yearly winter minimum and in a slight enhancement of the yearly summer maximum.

For what concerns the variability among the various stations of the two main seasonal cycles detected (see columns 3 to 6 of Table 1) , it can be noted that for both of them there is, as plausible, a certain uniformity over the whole geographic region. In particular, the yearly cyclic component of the daily maximum temperatures, having a yearly excursion comprised typically between 16 and 20°C (or a centered  amplitude between 8.1 and 9.7°C), shows, as it is reasonable to expect, its peak in the second decade of July for all the stations (the yearly phases φ1 being near 205 degrees) and its trough 6 month earlier, at a phase near 25 degrees 
(25 = 205+180 – 360), that is, within the third decade of January. In turn, the series of daily minimum temperatures present yearly excursions comprised typically between 14 and 15.5°C (or centered  amplitudes between 7.2 e 7.8°C), the phases being almost identical to those of the daily maximum temperatures, what means: peaks in the second decade of July, though with a bias to culminate few days later, or toward the end of July, and troughs occurring in the last decade of January, again with a few-day delay with respect to the corresponding dates of daily maximum temperatures. For what concerns the 6-month seasonal cycle, we note that in all stations its centered  amplitude is about 10 times weaker than that of the yearly cycle, and they are all near 0.7°C for the daily minimum and 1°C for the daily maximum (column 5 of the table); the corresponding angular phases (column 6) imply, for both temperature series, two peaks occurring in half February and half August and the corresponding two troughs in half May and half November (the values of angular phase being mostly in the interval 80 – 95 degrees). Daily minimum temperatures show however a systematic tendency to culminate few days earlier than the maximum do.
Columns 7 e 8 of Table 1 report, respectively, the optimal values of the α parameters (or the correlation coefficients) and of the standard deviation of the residual noise Z(t). We again note a discrete uniformity of values among the various stations. In particular, once the deterministic part of the signal has been eliminated, the remaining erratic component can be modelled via an auto-regressive process of the AR(1) type, with an internal correlation coefficient α that is close to 0.7 for all stations (see column 7 of the Table 1). This level of internal correlation of 70%, given the high number of data points used, can be regarded as highly significant. The mean level of the residual white noise Z(t) (see column 8), which is obtained after subtraction from the erratic component of its auto-regressive part, is approximately 2°C for the maximum temperatures (1.7-2.4°C), and somewhat higher for the minimum (2-2.6°C). This quantifies the small part of the variability of the original temperature signal that is not predictable at all. The reason why the noise level is systematically higher for the minimum temperatures is not immediately clear and deserves further investigation. This noise background in the temperature signal may occasionally amplify the natural variability due to the deterministic part of the signal and, though of minor entity, can produce not negligible consequences on vegetation growth and, particularly, on crops. In fact, a greater amount of "energy" available for the processes of growth and for the development of crops results from a temperature increase. High temperatures in winter and spring tend to establish an early start of the growing season for crops, making them vulnerable to sudden drops in temperature, that can produce sensitive effects at the time of flowering. Second, a consequent lengthening of the growing season in situations of prolonged water scarcity, combined with exceptionally high temperatures, can lead to stress for crops, with serious consequences on productivity. Increasing temperatures also promote the proliferation of insect pests due to the lengthening of the growing season and to the increase in their survival probability across the winter.
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