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ABSTRACT 

 

Weather Decision Technologies Inc. (WDT) is a private company that specializes in meteorological data 

integration,  algorithms, and technology transer with regard to the latest state-of-the-science 

developments in the fields of meteorology and hydrometeorology. WDT has developed and deployed a 

HydroMet Decision Support System (HDSS) in several locations both in the U.S. and internationally. 

HDSS integrates weather radars, satellite, rain gauges, NWP, and other data sources to provide high 

resolution and high quality Nowcasting,  Quantitative Precipitation Estimation (QPE), and Quantitative 

Precipitation Forecasts (QPF) in real-time. Several key technologies utilized within HDSS are licensed 

from leading R&D organiztions such as the U.S. National Severe Storms Laboratory and the McGill 

University of Canada. The HDSS contains several components such as data quality control, radar 

mosaics, gauge corrected QPE, flash flood prediction, automated alerting of hazardous conditions, and 

customized displays. Data and products from HDSS can be served to customized Web-based 

applications and mobile devices. This paper describes the process of data integration within HDSS, 

associated algorithms, and displays using our international installations as examples. 

 

1) INTRODUCTION 

 

Weather Decision Technologies (WDT) has licensed and integrated the latest state-of-the-

science technologies from agencies such as the US National Severe Storms Laboratory 

(NSSL), McGill University of Canada, MIT Lincoln Laboratories, and the University of 

Oklahoma into a turnkey system termed the HydroMet Decision Support System (HDSS). 

HDSS integrates a number of data sources, processes these data through Nowcasting and 
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hydrometeorlogical algorithms, and serves data and products to customized displays. 

Results of HDSS ingest and processing can also be served to customized Web-based 

applications and mobile devices for various clients and consumers.  

 

The components of the HDSS include: 

 radar data quality control including clutter removal and the use of terrain and hybrid 

scans 

 3D mosaicking of all available radars 

 production of Quantitative Precipitation Estimations (QPE) from the mosaic data 

 analysis of rain gauge data and the use of those data in correction of radar derived QPE 

 production of forecasts of radar reflectivity fields using the McGill Algorithm for 

Nowcasting Precipitation Using Semi-Lagrangian Extrapolation (MAPLE) 

 derivation of QPF fields using the results of MAPLE 

 a Flash Flood Prediction Algorithm (FFPA) which combines QPE and QPF values to 

forecast flash flood areas based on basin Flash Flood Guidance (FFG) values 

 cell and attribute tracking using the Storm Cell Identification and Tracking (SCIT) 

algorithm 

 lightning location and prediction using lightning density grids and output from MAPLE 

 automated alerting of weather hazards for customer assets using the GIS-based Asset 

Monitoring System (GAMS) 

 customized Web based display systems 

Data and product outputs are available via customized web pages and a three-dimensional 

graphical workstation. Figure 1 shows the general HDSS concept with integration of all 

available data sources, the processing of those data in algorithms, and the serving of the 

data and products via customized interfaces. 



  Page 3 

 

 

Figure 1.  HDSS data integration and Nowcast flow diagram. 

 

2) HDSS COMPONENTS 

 

2.1 Radar Data Quality Control Algorithm (RDQCA) 

 

The RDQCA was developed by the NSSL as part of the WDSS-II package. This algorithm 

ingests high resolution raw radar dual-polarization fields and performs quality control on 

each individual radar. This is very important in order to produce clean radar mosaics. Non-

weather radar returns/echoes contaminate radar data and can be misinterpreted as real 

echoes by algorithms, leading to significant problems in algorithm results. The RDQCA uses 

several steps to perform quality control on the individual radars including the use of a neural 

network.  

Steps contained in the RDQCA are: 

 

a. Terrain blockages are removed - only beam clearance >50 m (adaptable parameter) 

and beam blockage <50% allowed to contain radar reflectivity echoes. 
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b. Speckle filter - range gates are pre-classified so that echo size less than a threshold 

value will be removed. 

c. Noise removal is performed - reflectivity below noise thresholds are removed 

d. Sun strobes and test patterns are eliminated - each radial is checked for reflectivity 

fill >90% and correlation coefficient >0.80. 

e. Non-precipitation echoes are removed - echo top thresholds are applied to consider 

only radar echo where the height of echo top is greater than a threshold height as 

precipitation. 

f. Attenuation correction depending on the radar wavelength. 

 

Once these steps are performed the data are passed to a neural network. Several horizontal 

and vertical features of the radar data are used to discriminate between precipitating and 

non-precipitating radar echo. The neural network has been trained to recognize non-

precipitation echo using a number of radar data characteristics such as vertical gradient and 

square-to-square gate differences by training on numerous cases of “bad” radar data, which 

included biological targets, electronic interference patterns, anomalous propagation, ground 

clutter and chaff. Figure 2 shows examples of the RDQCA processing applied to a US WSR-88D S-

band radar. Figures 2a and 2b and 2c and 2d show before and after images of the raw data 

and the data after application of the RDQCA. Figure 3 shows this same algorithm applied to 

an EEC C-band radar in Jakarta as part of a WDT project. 
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Figure 2.  Examples of RDQC processing. Images (a) and (b) and images (c) and (d) show before 
and after results of the RDQC respectively on data from a WSR-88D radar. 
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Figure 3.  Examples of RDQC processing on data from an EEC C-band radar in Jakarta. Top/bottom 
images show data before/after RDQC application. 

 

2.2 Three-Dimensional Radar Mosaic Algorithm 

 

After the RDQCA algorithm is applied to each single radar volume of data, the radar data are 

translated to a high-resolution three-dimensional grid. Numerous products can be derived 

from this grid including composite reflectivity, Echo Tops Heights and Lowest Altitude 

reflectivity. The grid has a spacing of 500 m or 1 km and is updated as new radar volumes 

become available. This mosaic algorithm being proposed has been developed by the NSSL 

as part of WDSS-II. 

 

The steps of the mosaic processing are: 
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a. Virtual volumes are first created. Each range gate from the radar with a valid value 

instigates the creation of an intelligent agent. When an agent is created it extracts 

information from the radial including its coordinates in the radar-centric spherical 

coordinate system (range, azimuth and elevation angle), the radial start time and the 

radar the observation came from. The agent transforms this information to data on 

coordinates in the earth-centric latitude/longitude/height coordinate system assuming 

a standard atmosphere. The data from each radar are re-sampled from their native 

polar coordinates to a regular Cartesian grid. Whenever a new elevation scan is 

received from any radars contributing to the 3D grid, a set of agents are created. The 

elevation scan radials are filtered to fit the 1km resolution of the target 3D grid using 

a moving average. A nearest neighbor approach is applied in the azimuth and range 

direction. In the elevation direction a weighting function is used to determine the 

value of reflectivity between two elevation scans. All interpolation methods are 

computed in the spherical coordinate system to remove artifacts that arise due the 

nature of the radar beam geometry. 

 

b. Spatial interpolation is performed through objective analysis techniques to combine 

data from the multiple radars onto one grid. The radar data are weighted using an 

exponential weighting function. This allows radars closer to a grid point to have more 

influence on that point. The weighted sum of all observations that impact a cell is 

computed for the 3D grid. The combination of data from multiple radars using a 

weighted average computed in real-time establishes an automated redundancy 

should radar outages occur and also mitigates calibration differences between 

adjacent radars. 

 

Figure 4 shows an example of this mosaic processing using the WSR-88D radars that cover 

the continental U.S. Figures 5 and 6 show examples of US mosaics, both with and without 

application of the RDQCA algorithm. Note in both figures the large amount of ground clutter, 

anomalous propagation, and the presence of test patterns and sun spikes that have been 

eliminated through the use of the RDQC algorithm. Figure 7 shows an example of the 

mosaic processing applied to a radar integration project in Indonesia. 
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Figure 4.  Example of WDSS-II mosaic processing using all WSR-88D radars that cover the 
continental U.S. 

 

 

Figure 5.  Example of mosaic without application of RDQCA (left panel) and mosaic after application 
of RDQCA (right panel). 
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Figure 6.  Example of mosaic without application of RDQCA (left panel) and mosaic after application 
of RDQCA (right panel). 

 

 
Figure 7.  Example of quality controlled mosaic produced over Indonesia. 

 

2.3 McGill Algorithm for Precipitation Nowcasting Using Semi-Lagrangian 

Extrapolation 

WDT has licensed from McGill University a patented software system that predicts the 

evolution and movement of mosaic reflectivity fields out to four hours in advance depending 

on the size of the domain. The algorithm, called the McGill Algorithm for Precipitatioin 

Nowcasting Using Semi-Lagrangian Extrapolation (MAPLE), is a sophisticated expert 

system/artificial intelligence application that was designed, developed and thoroughly tuned 

and tested by a group of scientists at McGill University over a 10-year period. WDT holds the 

exclusive worldwide rights for implementation of MAPLE.  

  

An example of a vector field derived from MAPLE is shown in Figure 8. In this figure the 

vectors have been derived using only past mosaic reflectivity fields. Derived vector fields 

such as that in Figure 8 are then applied to the current mosaic reflectivity fields to produce 
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forecasts of reflectivity location and configuration. Figure 9 shows an example of MAPLE 

reflectivity forecasts with the actual reflectivity field valid for the given forecast time.  Note 

that the location and shape of the forecasted reflectivity fields closely resemble the actual 

reflectivity fields valid for the same time. 

 

Figure 8.  Example of vectors derived by MAPLE using past radar mosaics over the US. 
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Figure 9. Example of MAPLE output over the northeastern US. The left panel shows a 2 hour MAPLE 
forecast while the right panel shows the actual data for this forecast. 

 

The capability to predict rainfall accumulations (QPF) based on MAPLE forecasts is an 

important component of the HDSS. These rainfall forecasts are generated by utilizing a four 

hour-long sequence of five-minute forecasted radar images from MAPLE, converting all 

radar echoes to rainfall using a variable reflectivity to rain rate (Z/R) relationship, and 

summing the five-minute images to derive accumulated rainfall in the coming one to four 

hour period. Figure 10 shows an example of a 4 hour rainfall accumulation forecast from 

MAPLE over the US and Figure 11 shows a 4 hour accumulation forecast over Indonesia. 
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Figure 10.  Example of rainfall forecast over LCRA in southern Texas. The image shows the total 
rainfall accumulation forecasted over a 4 hour period. 

 

 

 
Figure 21.  Example of 4 hour rainfall forecast over Indonesia. 

 

2.4 The Quantitative Precipitation Estimation Algorithm (QPEA) 

 

The Quantitative Precipitation Estimation Algorithm (QPEA) is a radar processing package 

that estimates total rainfall for the previous 72 hour period by integrating radar and rain 

gauge data. Results of QPEA are also provided to the Flash Flood Forecasting Algorithm as 
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discussed below. The following steps are performed to estimate as closely as possible the 

amount of rainfall at the surface: 

 

a. QPEA uses the 3D volume of radar data to determine areas of convective and 

stratiform precipitation by determining if each echo has vertical extent or not. 

b. Calculates QPE from the 3-D Mosaic output using several dual-polarization based 

pre-defined Z-R relationships. 

c. Performs an objective analysis on the available rain gauge data. 

d. Compares the radar derived estimates to the rain gauge analysis to determine biases 

in the radar data. 

a. Can use a combination of satellite (if available in a timely manner) and gauge data to 

fill in areas where radar data are not available. 

b. Corrects the radar derived rainfall estimates based on the gauge measurements. 

 

Figure 12 shows an example of QPE over a one hour period over northern Italy.   

 

Figure 12. Example of rain estimates for a one hour time frame from QPEA. Green lines show the 
basin delineation over the region. 

 

Figure 13 shows an example a rain gauge objective analysis over the Lower Colorado River 

Authority area of responsibility in southern Texas. The upper left panel shows the rain gauge 

locations and the delineated basins. The lower right panel shows the objective analysis of 

the gauge data. This objective analysis is compared to the radar derived QPE and biases 

are computed between the two. The biases are then applied to the radar derived QPE. 
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Figure 13.  Implementation at LCRA in the US. Upper left panel shows delineated basins and rain 
gauge locations over region of responsibility. Lower right panel shows results of objective analysis of 
rain gauges. 

 

Figure 14 shows an example of the radar derived QPE field averaged over pre-defined 

basins over the Lower Colorado River Authority region in southern Texas. This field has 

been corrected for rain gauge biases and has been quantified on a total basin average QPE. 

Results from the basin average QPE and the results from basin averaged QPF derived from 

MAPLE are combined to continually monitor the total past and future rainfall accumulation in 

each delineated basin and to warn of possible flash floods. 
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Figure 14.  Radar basin average precipitation estimates that have been corrected for rain gauge 
biases. 

 

2.5 Flash Flood Prediction Algorithm (FFPA) 

 

HDSS contains a proprietary Flash Flood Prediction Algorithm (FFPA) that utilizes 

delineated basins covering a region as a basis for flash flood monitoring.  FFPA combines 

output from MAPLE and QPEA to provide as accurate as possible total forecast rainfall 

accumulation for each basin. The FFPA compares the forecast basin accumulation against 

Flash Flood Guidance (FFG) values for each basin. Warnings are automatically generated 

for basins whose total accumulations are approaching or exceeding FFG values of if they 

are forecasted to exceed FFG values. Figure 15 shows an example of FFPA output. The 

figure shows a table of color coded basins, a basin map, and a hydrograph of one of the 

basins. The table and basin map show the basins that are approaching (yellow) or 

exceeding (red) FFG values. The user can choose a basin from the map and display a 

hydrograph for that basin. 
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Figure 15.  Example of FFPA graphical output. The table shows information on individual basins. The 
map shows the basin delineations. Color coding represents basins that are approaching (yellow) or 
exceeding (red) FFG values. 

 

Figure 16 shows an example of the QPE/QPF table from the FFPA. The data from the table 

come from the FFPA database. Stored in this database are the past 72 hours of rainfall 

accumulation from QPEA in each delineated basin, the 3 hour accumulations that are 

forecast by MAPLE, and the user provided FFG values for each basin. The user has the 

ability through the interface shown in Figure 17 to change the FFG thresholds for each basin 

according to their perception and experience of what the thresholds should be for each basin 

over each given time period. 
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Figure 16. FFPA table showing QPEA output combined with MAPLE QPF output for several basins 
over northern Italy. 
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Figure 17. User interface to change Flash Flood Guidance values. These values are used in the 
FFPA algorithm for automated flash flood warnings. 

 

2.6 Lightning Prediction Algorithm (LPA) 

Figure 18 shows an example of the display from an LDSS installation in Greece for the 

Hellenic National Meteorological Service (HNMS). In this example lightning data is overlaid 

on a radar mosaic. The polygons in the image show areas where moderate lightning activity 

is forecast to occur in the next 60 minutes. These polygons are derived from the Lightning 

Prediction Algorithm (LPA). LPA is based on history of gridded lightning data and predicted 

in time using results from MAPLE. 

Lightning data are interpolated to a high-resolution grid and flagged on number of detections 

per grid point. Extrapolation of the lightning data forward in time is then performed using 

MAPLE. Future enhancements to the system can include the combined use of radar and 

lightning data in MAPLE to produce more sophisticated lightning predictions. Moderate or 

high lightning activity is predicted based on the number of detections per grid point. 

Additionally, when atmospheric temperature data are coupled with lightning and radar data, 

areas of potential lightning (where lightning has yet to be detected) can be forecast using 

LPA.  
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Figure 18. Example of LPA output from the WDT system in Greece. Yellow polygons depict 1 hour 
forecasts of threat areas expected to contain moderate lightning activity.  

 

2.7 GIS Asset Monitoring System (GAMS) 

 

The GIS-Based Asset Monitoring System (GAMS) utilizes a database of user assets to 

provide automated alerts of estimated time of arrival and departure (ETA/ETD) of hazardous 

weather to decision makers through the HDSS or NDSS displays and via email, cell phone, 

or PDAs. These asset locations in the database can either be point locations, line segments, 

or polygons. GAMS compares predicted threat areas with the location of each of the assets.  

If there is overlap between the predicted threat areas and an asset, an alarm is sent. The 

content of the alarm includes which asset is alerted and the ETA/ETD of the threat. The user 

can control what parameters to be alerted upon. Figure 19 shows an example of the GAMS 

output from a custom site built for an electric utility customer. In the figure a transformer 

station is being warned for lightning through a pop-up window.  
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Figure 19. Example of GAMS alerting capability within a custom page. Insert shows pop-up window 
used for lighting alert with ETA/ETD information for one of the customer’s assets. 

 

2.8 Storm Cell Identification and Tracking (SCIT) Algorithm 

 

The Storm Cell Identification and Tracking (SCIT) Algorithm was initially developed at NSSL 

and provided to the NEXRAD program. SCIT is a centroid tracking algorithm that tracks 

smaller scale features. SCIT searches volumetric radial data for reflectivity continuity among 

reflectivity gates for given dBZ values.  Gates that fall within certain thresholds are grouped 

in the radial direction. Groupings are then performed in the azimuthal direction to produce 2-

dimensional segments of common reflectivity values. Once all reflectivity segments are 

grouped in 2D in the horizontal plane, a vertical continuity search is performed.  Given 

certain reflectivity and distance bounds, the 2D features are correlated in the vertical to give 

3D storm centroid locations. Tracking is performed by applying a weighted least squares fit 

once a storm is identified for two consecutive volume scans. Figure 20 shows an example of 

SCIT output and table cell ranking. 
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Figure 20. Example of SCIT output for cell forecasts and attributes. The white lines represent tracks. 
The insert shows output for each storm. The storms are ranked in order of severity. 

 

2.9 Hailswath Predictor 

 

The Hailswath Predictor™ is a WDT proprietary algorithm that utilizes output from the Storm 

Cell Tracker and the Hail Detection Algorithm (HDA) to predict the areal extent of hail in the 

next 30 minutes.  An example of the output of the Hailswath Prediction Algorithm is shown in 

Figure 21.  

 

The Hail Detection Algorithm provides an advanced approach to determining which storm 

cells are producing hail at the present time. The Hailswath Predictor builds upon this 

capability to provide highly accurate short-term predictions of hail. HDA was developed, 

tested, and verified extensively over several years. Studies show the tendency for hail 

producing storms to have certain reflectivity levels at observed heights above the freezing 

level.  The Probability of Severe Hail (POSH), defined here as hail > ¾ inch in diameter, is 

found by calculating a parameter known as hail kinetic energy and using that parameter in a 
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weighting function that takes into account the heights of the 0 and –20 degree Celsius 

temperature levels. These levels are automatically updated using the most recent sounding 

and/or model data.  

 

Figure 21. Output of Hailswath Predictor Algorithm. The blue polygons represent the areal prediction 
of hail of any size. Magenta is hailsize > 1 cm,  white is hailsize > 2 cm. 

 

3) Summary 

This document has described the components and attributes of the HydroMet Decision 

Support System including implementation of HDSS internationally. HDSS encompasses 

meteorological data integration, Nowcasting and hydrometeorological algorithms, and 

display systems. HDSS contains several components such as data quality control, radar 

mosaics, gauge corrected QPE, flash flood prediction, automated alerting of hazardous 

conditions, and customized displays. Data and products from HDSS can be served to 

customized web page applications and mobile devices.  
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