
1

Abstract – With increasing appliances at Automatic

Weather Station (AWS) observing system, the necessity to

accommodate hundreds and thousands of sensor

successfull automation of great prominence in the field of

M2M communication FTP / HTTP protocol was well

known for remote monitoring analysis of data form large

number of sensing elements. Currently, BMKG

(Meteorological, Climatological and Geophysical Agency)

has operated AWS equipment about 430 site, each with 7

sensor parameter using FTP protocol. System using FTP

/ HTTP consume more power, had lesser efficiency of

transmission and could not utilize system bandwidth

efficiently. Traditional web communication technologies,

such as FTP and HTTP, provide a uni-directional link

and request/response message exchange model. The

solution can be troublesome in web-based applications

involving a large number of different interconnected

device, such as in the IoT. That is an indeed very trending

topic today and it is estimated that by 2020, almost 50

billion “things” will be connected to the internet.

The MQTT is one of the IoT protocol capable of handling

sensor traffic under low bandwidth and constrained

network conditions are extensively used to improve

automated system. MQTT uses the priciple of publish –

subsribe to communicating, is used because power saving

and lightwight messaging protocol.

This paper presents a holistic conceptual approach of an

Internet-of-Things (IoT) system development and

implementation to enhance AWS of BMKG efficiently.

The concept focuses on smart logger implemented using

MQTT protocol for AWS applications has been proposed

to solve above mentioned problem. The proposed logger

is ARM platform for the implementation of MQTT client,

for internet publishing and set of sensors for obtaining

real time data.

Keywords: AWS, IoT, MQTT, FTP, BMKG, weather

sensor.

I. INTRODUCTION

Internet of Things (IoT) is being widely discussed. It is a

topic of worldwide interest. In IoT, a large number of tiny

data block from devices, such as various sensors of

Automatic Weather Station (AWS), are transferred cross

networks.

A total of approximately 430 automatic weather stations

are run by the Meteorological Climatological and

Geophysical Agency of Indonesia BMKG (Badan

Meteorologi, Klimatologi dan Geofisika), including Local

Meteorological Offices. Located nationwide, these stations

routinely observe various meteorological elements such as

surface pressure, temperature, humidity, wind

direction/speed, precipitation, and solar radiation.

Currently, Internet access requires application protocols

over TCP/IP or UDP/IP. One of the application protocols is

Hyper Text Transfer Protocol (HTTP), which has been

standardized in IETF, and has been applied for general

communication over Internet. However, when HTTP is

applied to communication in IoT, in which a huge number

of tiny data blocks are transferred, protocol overhead and

resulting performance degradation are a serious problem.

Moreover, IP addressing depends on physical location,

which causes the problem of complexity of network

control. To solve these problems we need adopting the

MQTT protocol for the IoT.

In these architectures, MQ Telemetry Transport (MQTT) is

one of the protocols, suited for this scenario in which many

devices have to exchange data between themselves in near

real time through the Internet and we need to consume the

An Internet-of-Things (IoT) system development and

implementation for Automatic Weather Station (AWS) of

BMKG based on MQTT Protocol

Ariffudin1 , Ibnu Sofwan Lukito2

 Center for Instrumentation, Calibration and engineering of

Meteorological Climatological and Geophysical Agency of Indonesia (BMKG)

E-mail: ariffudin@bmkg.go.id; ariffu@gmail.com

2

least possible network bandwidth. MQTT reduces

protocol overheads and provides high efficiency

communication for IoT. It also invokes “Name based

routing,” and mitigates IP address based routing for

IoT traffic flows.

II. HTTP AND FTP PROTOCOL

Internet network is built to communicate via HTTP

(Hyper Text Transfer Protocol). Various data, from

images to texts, are sent over internet every day.

HTTP is as a primary protocol interface to move a

wide range of data quickly, easily, and stable from

server to user devices such as browser. HTTP is built

on TCP. HTTP ensures that data transmitted from one

device to another will not corrupt so that the integrity

of data transmitted is assured. HTTP is an open

communication protocol that can be read by any

devices that have been developed for HTTP protocol

as browser or smartphone through browser

application. An HTTP transaction consists of two

parts: request command (request) sent from client to

server, and response command (response) sent from

server to client. The process of response and request

is submitted using a data block with specific format

known as HTTP Message. The messages are sent by

HTTP which moves in one direction.

Fig. 1. TCP-IP Protocol suite

At this time, the BMKG monitoring system used is

still using a data transmission system with the ftp

protocol , fig 2

Fig. 2. Diagram of AWS with FTP protocol

III. MQTT PROTOCOL

MQTT (MQ Telemetry Transport) is one of the

protocols supported by the IBM Message Broker

products as a communicating data to and from the

Broker . The protocol was designed specifically for

remote telemetry applications, with three specific

design goals: [1] It should offer a once-and-once-only

assured delivery mode to enable a message to be

reliably transferred all the way from a remote sensor

to a back-end application.[2] The protocol should be

as lightweight as possible across the "wire" (or other

communication medium) most remote telemetry is

done over low bandwidth, high cost networks, and so

minimizing the overhead of each message is highly

desirable. [3] The protocol should be very easy to

implement on embedded devices such as sensors and

gateways.

MQTT (Message Queuing Telemetry Transport)

protocol is protocol specifically designed for

"machine to machine" communication. MQTT

protocol runs over TCP / IP and has a data packet size

with low overhead minimum (> 2 bytes) so that

consumption of the power supply is also small

enough. This protocol is a data-agnostic protocol that

can transmit data in various forms such as binary data,

text, XML, or JSON and this protocol uses a

publish/subscribe model rather than a client-server

model.

Middleware is defined as the software which provides

a messaging fabric to link applications and systems

together. The alternative to not using a middleware

system is that the application writer has to deal with

the mechanics of getting messages from A to B,

dealing with connection failures, network outages,

duplicate messages etc. The use of middleware helps

the application writer to communicate messages from

3

one system to another system in remote locations. The

IBM Web sphere MQ is one such messaging

middleware that allows collaborating applications to

intercommunicate via a central hub, known as a

Message Broker [7]. Therefore data producers can

produce desired set of data and just set up a MQTT

publish to the Broker. On the other hand a Subscriber

can subscribe to the published topic and extract data

for actuation or remote monitoring.

A. A Pub / Sub in cloud based IoT

Today, several prominent academic and commercial

IoT platforms share a cloud centric architecture

similar to the one depicted in Figure 3. Devices are

connected to gateways, which forward sensor data to

a cloud tier with a message broker. Additional

services, e.g. data storage, analysis, or aggregation,

and user facing applications connect to the broker to

get access to the data.

Fig. 3. General architecture of a cloud centic IoT

Platform

We see a trend to use a message broker using the

publish/subscribe pattern to distribute the data to

multiple interested applications [4]. A

publish/subscribe system is a message-oriented

middleware (MoM) [5] providing distributed,

asynchronous, loosely coupled communication

between message producers and message consumers.

A pub/sub middleware offers three main types of

decoupling [6] which makes it particularly suitable

for large-scale IoT deployments: 1) Message

producers (publishers) and consumers (subscribers)

are decoupled in time, i.e. they do not have to be

connected at the same time; 2) Messages are not

explicitly addressed to a specific consumer but to a

symbolic address (channel, topic); 3) Messaging is

asynchronous, non-blocking.

A core building block of pub/sub systems is the

matching between publishers and subscribers, that

may be based on different types of filtering, mostly

topic or content. The filtering is usually done by

multiple dedicated message brokers. In the topic

based scheme, the symbolic channel addresses are

topics, usually in the form of strings, i.e. producers

publish to and consumers subscribe to topics.

Messages are only delivered to matching subscribers.

Topics may be organized hierarchically, i.e. a topic

may be a subtopic of another topic. Subscriptions on a

parent topic will then usually also match all subtopics.

Topic based filtering is a static scheme offering only

limited expressiveness. In contrast, in the content

based scheme, subscribers are not statically matched

based on topics, but on the content of individual

messages, e.g. if a value reaches a certain threshold

predefined by the subscriber.

A similar approach dealing with large scale sensor

data is stream processing. In contrast to the message-

based pub/sub, stream processing applications act as

complex stateful continuous queries on input streams

of data generating streams of results. The focus of

stream processing frameworks lies in the

transformation of the input stream, whereas pub/sub

focuses on the distribution of data. While we see

stream processing as a promising approach to process

and analyze large data streams, we argue that stream

processing alone will not enable the common use of

sensor hardware across multiple applications, which

is one of the key properties of the IoT vision.

However, we envision value-added services that use

stream processing approaches on the data provided by

pub/sub systems.

This section outlines the specific IoT requirements

that influence the selection of a suitable pub/sub

middleware. We start with the functional

requirements, that are derived from generic IoT

applications :

1. Messaging Pattern: All use cases require the

monitoring of sensor readings. We already motivated

the use of the pub/sub pattern, where symbolic

addresses are used to match producer and consumer,

which has to be supported. It should additionally be

possible to address and contact a particular device,

e.g. automatic weather station monitoring system.

That means a point to point messaging pattern should

also be supported.

2. Filtering: Interested parties usually want to receive

only a subset of all information, e.g. weather sensors

in the same province. The filtering capabilities of the

middleware determine the expressiveness of the

subscriptions a client application can issue. A topic-

based approach is suitable for basic subscriptions to

4

certain physical or virtual sensors. A hierarchical

topic structure enables monitoring sensor sets.

However, it often makes more sense to be informed

on certain events, e.g. when a sensor reading reaches

a threshold. This requires a content based pub/sub

pattern or additional complex event processing. While

a topic-based filtering is mandatory for cloud-based

pub/sub systems, a content-based scheme is highly

desirable.

3. QoS Semantics: While a loss of sensor data

messages may be tolerable in some settings, others

might require guaranteed delivery of messages. The

middleware should therefore enable annotating

subscriptions and messages with QoS requirements.

Additionally, especially for sensors with low

sampling rate, the system should provide subscribers

with latest values while waiting for the next sensor

reading.

4. Topology: In the context of cloud centric IoT,

every pub/sub middleware must support a centralized

topology, where a broker forwards the messages

based on the requested filters. Please note that while

we consider a single logical broker, this broker will be

distributed across several physical or virtual

machines.

5. Message format: Due to the heterogeneity of sensor

hardware as illustrated in the selected use cases, it is

challenging to foresee the exact format sensor data

will be provided in. Pub/sub solutions must therefore

be payload agnostic, i.e. make no assumptions about

the payload. Further, they should support binary

payloads, so that binary data serialization

frameworks, such as protocol buffers can be used.

B. Broker

The publish-subscribe pattern requires a broker, also

known as server. All the clients establish a

connection with the broker. The client that sends a

message through the broker is known as the

publisher. The broker filters the incoming messages

and distributes them to the clients that are interested

in the type of received messages. The clients that

register to the broker as interested in specific types of

messages are known as subscribers. Hence, both

publishers and subscribers establish a connection with

the broker[8ok]. It is easy to understand how things

work with a simple diagram. The following diagram

shows one publisher and two subscribers connected to

a broker:

Fig. 4. Diagram pub / sub mqtt

Publishers and subscribers are decoupled in space

because they don't know each other. Publishers and

subscribers don't have to run at the same time. The

publisher can publish a message and the subscriber

can receive it later. In addition, the publish operation

isn't synchronized with the receive operation. A

publisher requests the broker to publish a message

and the different clients that have subscribed to the

appropriate topic can receive the message at different

times. The publisher can send messages as an

asynchronous operation to avoid being blocked until

the clients receive the messages. However, it is also

possible to send a message to the broker as a

synchronous operation with the broker and to

continue the execution only after the operation was

successful. In most cases, we will want to take

advantage of asynchronous operations.

A publisher that requires sending a message to

hundreds of clients can do it with a single publish

operation to a broker. The broker is responsible for

sending the published message to all the clients that

have subscribed to the appropriate topic. Because

publishers and subscribers are decoupled, the

publisher doesn't know whether there is any

subscriber that is going to listen to the messages it is

going to send. Hence, sometimes it is necessary to

make the subscriber become a publisher too and to

publish a message indicating that it has received and

processed a message. The specific requirements

depend on the kind of solution we are building.

MQTT offers many features that make our lives easier

in many of the scenarios we have been analyzing.

5

IV. MQTT IMPLEMENTATION FOR AWS

SYSTEM

The AWS system proposed in the paper is based on

IoT technologies and consists of three important

parts: MQTT Client Publisher, Server or Broker and

MQTT Client Subscriber. The overall system is

depicted as shown in Figure 1. The MQTT Client

Publisher is a weather station with MQTT protocol

implemented in Publish mode using Embedded

microcontroller based software platform. The

Publisher is capable to extracting sensor data from

single or multiple sources and publishing it through

topics on to a server hosted as part of public domain

or private secure servers. Private servers offer a better

security guarantee than public hosted servers. Server

is a storage and computationally equipped hardware

with support software. For the publisher to be able to

communicate with the server efficiently a Broker

MQTT

must be implemented on the server with the

communication port specified to the Publisher. The

MQTT Client Subscriber is device with MQTT Client

implemented in Subscribe mode. The Subscriber is

capable of accessing the data on the server through a

subscription to particular topic.

A. Weather Station based on IoT using MQTT

Protocol

An automatic weather station (AWS) is an automated

version of the traditional weather station, either to

save human labour or to enable measurements from

remote areas. An AWS will typically consist of a

weather-proof enclosure containing the data logger,

rechargeable battery, telemetry and the

meteorological sensors with an attached solar panel

and mounted upon a mast. The specific configuration

may vary due to the purpose of the system.

No. Sensor Parameter Unit

1. Wind speed WS ave_10mnt m/s

 WS_max_10 mnt m/s

2. Wind

direction

WD_ave_10 mnt degree

3. Temperature Temp_av_10mnt ºC

 Temp_max_10mnt ºC

 Temp_min_10mnt ºC

4. Humidity Humidity_ave_10mnt %RH

5. Pressure Pressure_ave_10mnt mbar

6. Rain Rain_acc 24 hours mm

7. Solar Rad SR_ave_10mnt W/m2

 SR_max_10mnt W/m2

tabel. 1. Format of data sent to the server

Fig. 5. Diagram weather station

1. Data logger

The data logger is the heart of the weather station and

placed in enclosure along with other equipment such

as battery, regulator, pressure sensor, and embedded

GSM communication.

2. Wind sensor, wind monitor RM Young

3. Temperature and humidity sensor HMP155 Vaisala

4. Pressure sensor PTB210 Vaisala

5. Rain sensor with tipping bucket

6. Solar radiation sensor form kipp and zonen

7. Embedded modem communication form logicio

Logicio embedded MX2 turbo has been designed for

abroad variety of advanced telemetry applications and

is made according to the highest technical standard

for professional and industries use. Technical

highlights :

- Based on M2M platform

- Support MQTT protocol

- Huge standard API with function

- 3G GSM engine

- I/O analog and digital

- IDE development tool with device emulator

B. Mosquitto broker

Mosquitto provides standards compliant server and

client implementations of the MQTT messaging

protocol. MQTT uses a publish/subscribe model, has

low network overhead and can be implemented on

low power devices such microcontrollers that might

be used in remote Internet of Things sensors[9]. As

such, Mosquitto is intended for use in all situations

where there is a need for lightweight messaging,

particularly on constrained devices with limited

resources.

https://en.wikipedia.org/wiki/Weather_station
https://en.wikipedia.org/wiki/Data_logger
https://en.wikipedia.org/wiki/Rechargeable_battery
https://en.wikipedia.org/wiki/Telemetry
https://en.wikipedia.org/wiki/Photovoltaic_module

6

The Mosquitto project is a member of the Eclipse

Foundation

There are three parts to the project.

• The main mosquitto server

• The mosquitto_pub and mosquitto_sub client

utilities that are one method of communicating

• An MQTT client library.

Mosquitto supports other research activities as a

useful block for building larger systems and has been

used to evaluate MQTT for use in Smart City

Services, and in the development of an environmental

monitoring system.

1. Filtering with the topic

The message topic is a simple string that could have

more hierarchy levels separated with a slash. This

means if we want to publish the temperature of the

weather station di spesific province, we can use a

topic like this: device/dki/sta2041/tt. The hierarchy

becomes really relevant when we subscribe our

devices to more topics.

device/province/aws_type/id_station/sensor

province = provinces in the Indonesian territory (34)

aws_type = aws / arg / aaws

id_station = observation station code

sensor =

- time = time stamp for observation (UTC)

- rr=rain (accumulation)

- ws=wind speed (average)

- ws_max= wind speed maximum

- wd=wind direction (average)

- tt = temperatur (average)

- tt_max=temperature maximum

- tt_min=temperature minimum

- sr=solar radiation (average)

- sr_max= Solar Radiation Maximum

If we suppose that we have another sensor we will

have a publisher that sends messages to the topic like

this: device/dki/sta2041/tt. In this case, if another

device needs to subscribe to all temperature messages

regardless of the location, we can subscribe it to

multiple topics using a wildcard. MQTT provides two

different wildcards:

• The + operator is a single-level wildcard that allows

arbitrary values for one hierarchy. With the preceding

example, the device/dki/aws/+/tt topic will subscribe

to all temperature updates, all station in Jakarta

province.

• The # operator is a multilevel wildcard that allows

subscribing to all the underlying levels. With the

preceding example, the device/dki/# topic will

subscribe to any topic that begins with the /dki

(jakarta province) string.

2. Security

MQTT allows to send a username and password for

authenticating the client and also authorization[10].

MQTT has a security problem in terms of privacy, to

ensure client’s identity which access MQTT protocol

required an authentication and authorization

mechanisms, that can be achieved by applying Access

Control List (ACLs) to the broker that will govern the

rights of client to access certain topic on system, such

as publish/subscribe.

3. Quality of Service level

During the trial period using QOS 0, level 0 would

send the message and also called as send it and never

acknowledge. It is just a one-time send without

confirmation about the message reaching the

destination. It is more suited to situations where the

importance is low [11]

C. MQTT Client (Subscriber)

A subscriber is usually a node or device which is

interested in receiving data. Data from other nodes or

devices is received by the subscribed device or node.

The only condition here is that the subscriber needs to

be subscribed to that particular topic on which the

publisher is sending data. The subscriber gets the

message after it is published by the publisher.

7

An IOT platform is an hardware and software system

for managing IOT devices and collecting, storing,

visualising and analysing data from those devices.

There are many IOT platforms on the market, and the

functionality of these platforms varies enormously.

MQTT client for android smartphone such as MQTT

dash is one of the suscriber. The screenshot

V. CONCLUSION

This study has implemented the use of MQTT

protocol to build weather station system application

with a embedded modem communication interface,

which is android and web-based. The test result

indicates that MQTT protocol has the ability of

transfer data faster than HTTP protocol, which can

transfer amount of data 6 times of HTTP capability.

MQTT usage can be an option for the hardware data

acquisition real-time application based on the Internet

of Things.

REFERENCES

[1] Bandyopadhyay, S.; Bhattacharyya, A., "Lightweight Internet protocols for

web enablement of sensors using constrained gateway devices," Computing,

Networking and Communications (ICNC), 2013 International Conference on ,

vol., no., pp.334,340, 28-31 Jan. 2013.
[2] Colitti, Walter, Kris Steenhaut, and Niccolò De Caro. "Integrating wireless

sensor networks with the web." Extending the Internet to Low power and

Lossy Networks (IP+ SN 2011) (2011).
[3] Ming Wang; Guiqing Zhang; Chenghui Zhang; Jianbin Zhang; Chengdong Li,

"An IoT-based appliance control system for smart homes," Intelligent Control

and Information Processing (ICICIP), 2013 Fourth International Conference

on , vol., no., pp.744,747, 9-11 June 2013
[4] Menzel, T., Karowski, N., Happ, D., Handziski, V., Wolisz, A.:

Social sensor cloud: An architecture meeting cloud-centric iot
platform requirements (2014). 9th KuVS NGSDP Expert Talk
on Next Generation Service Delivery Platforms

[5] Curry, E.: Message-oriented middleware. In: Q.H. Mahmoud
(ed.) Middleware for Communications, chap. 1, pp. 1–28. John
Wiley & Sons (2005)

[6] Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.:
The many faces of publish/subscribe. ACM Computing
Surveys (CSUR) 35(2), 114–131 (2003)

[7] Ullas BS, Anush S, Roopa J, Govinda Raju M, “Machine to

Machine communication for smart system using MQTT” IJAREEIE,

March 2014.
[8] Gaston C Hillar, “MQTT Essential – a lightweight IoT Protocol”

April 2017 packt publishing, Birmingham

[9] Roger Alan Light, “Mosquitto : server and client implementation of
the MQTT protocol”, may 2017, paper DOI, Uniersity of

Nottinghem.

[10] Sumit Pal, “ study and implementation of environment monitoring
system based in MQTT”, EESRJ, IIETA, march 2017,

[11] Priyanka Thota, “Implementation and analysis of communication

protocol in internet of things”, may 2017, UNLV, University
Libraries, Nevada, Las Vegas

[12] M. Author, “Paper submitted to publication in a periodical,” Sci.

Bull. Politehnica Univ. Timisoara Trans. Autom. Control Comput.
Sci., submitted for publication.

