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ABSTRACT 

Fog is a meteorological phenomenon that has impact on the safety and capacity of 
transportation and logistics activities on land, water and in the air. Modern visibility sensing 
technology is used to detect fog for example at airports. Nevertheless, this approach is 
expensive and not feasible for country-wide coverage of all roads and waterways. Alternatively, 
cameras showing visual landmarks at known distances allow a human operator to estimate the 
visibility conditions of a remote location. This approach requires, however, continuous 
monitoring by remote observers and therefore has limitations to the number of sites that can be 
supervised by one operator. Nowadays, dense networks of surveillance cameras along roads 
and waterways offer big amounts of image data that can be used for automated fog detection. 
Complicating factors are the many different types of cameras used, the wide variety in 
sceneries, the variations due to pan-tilt and zooming and the privacy regulations that must be 
respected. 
 
We have developed an automated system to detect dense fog conditions during daytime using 
cameras already in place for monitoring highway traffic. To recognize fog conditions 
successfully from many different sceneries, a deep neural networks approach has been 
employed. Deep neural networks have proven to be good in adapting to the changing scenery 
in which cameras can zoom in and out and turn suddenly, thus changing the objects in focus. In 
this study, the images of more than 160 traffic cameras of the road authorities spread across the 
Netherlands are used. Two 5-layers neural networks have been trained using a selection of 
these images from cameras within different distances from visibility sensors. The paper 
presents details of the deep neural network and results of the automatic fog detection using 
traffic camera images. 
 
The results for automatic fog detection using traffic camera images are promising. Current 
efforts are in improving the performance of the neural network model by collecting a larger 
training and test set and by the inclusion of other meteorological variables. The usage of more 
classes of visibility is also under evaluation. Furthermore, fog detection using cameras in 
artificial light (lighting along highways) will be investigated and we are committed to bring the 
developed fog detection system closer to operational duties for automated fog monitoring and 
alerting along Dutch highways. 
 

1. INTRODUCTION 

Visibility is a meteorological variable that is important for the safety and capacity of road and air traffic. 
Visibility is defined as the greatest distance at which a black object of suitable dimensions, situated near 
the ground, can be seen and recognized when observed against a background (WMO, 2014). Physically, 
visibility (Meteorological Optical Range) is defined as the distance required to reduce the intensity of a 
light source to 5% of its original value. Traditionally, visibility was estimated manually by observers using 
visibility markers at known distances. Currently, so-called forward scatter sensors are employed in the 
meteorological network of KNMI to measure visibility, but these sensors are rather costly and the sample 
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volume is small. Therefore, the measurements are representative for only a small area, whereas visibility 
can vary largely on a small spatial scale. Hence a meteorological measurement network is generally not 
dense enough to detect all occurrences of fog. 

Nowadays, cameras are widely used for various applications such as security, supervision, traffic, 
construction and tourism, and images are readily available on the internet. Furthermore, image 
processing software is available for the interpretation of these images. Visibility extracted from camera 
images has therefore the potential to provide useful information. KNMI operates visibility sensors at 
about 25 automatic weather stations throughout The Netherlands whereas Rijkswaterstaat (the Dutch 
road authority) has about 5000 traffic cameras along the motorways and near tunnels, bridges etc. (see 
Figure 1). Using existing cameras, although that are not distributed evenly around the country, is an 
efficient means to obtain additional information on visibility or the occurrence of fog. Combining these 
different sources of (big) data is of mutual interest of meteorological institutes and road authorities. 

In a previous paper (Wauben and Roth, 2016) an exploration of applying image processing 
techniques to camera images in order to study the feasibility of deriving visibility was performed. The 
exploration considered fog detection as well as quantitative estimation of the visibility. Several methods 
were considered to derive visibility such as; (i) edge detection; (ii) contrast and (iii) dehazing techniques. 
In this paper we consider traffic camera images that have been provided by the Dutch road authority. 
They contain sceneries that differ between cameras and may even differ over time for a specific camera 
since cameras can tilt, pan, and zoom. This makes the processing techniques to derive visibility 
developed in (Wauben and Roth, 2016) not applicable and requires a new approach. A data-driven 
modelling approach is considered using a supervised learning by means of deep neural networks where 
visibility is not estimated, but visibility classes are detected. 

 
Figure 1: Overview of the automatic weather stations in The Netherlands measuring 
visibility (left) and the locations of traffic cameras of Rijkswaterstaat around Amsterdam. 

 

2. DATA SETS  

The data sets used in this investigation are composed of several sets of images collected by KNMI in the 
past years. The images are archived every ten minutes. This sampling rate is an trade-off between the 
dynamics of the meteorological phenomenon and the computer storage and processing constraints and 
costs. Four image data sets are used in this work. The first is a collection of images of the KNMI test field 
in De Bilt. For this collection the images are archived since 1st June 2015. The second set is composed 
of images from two cameras of the Cabauw atmospheric research site of KNMI and collection started on 
7th October 2016. The third collection contains images of seven cameras from four civil airports, namely 
Eelde, Rotterdam, Schiphol, and Beek. These images are archived since 6th June 2017. The last 
collection of images contain images from 160 cameras for traffic monitoring along the Dutch highways. 
These last collection is archived since 28th June 2017. All these collections combined total to about 10 
million images archived till the moment of writing this article. 
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While archiving the images, an important set of metadata are stored in a database to ease the 
selection and processing of the images. When an image is archived its timestamp, camera identifier and 
the phase of day (e.g., day, night, astronomical/nautical/civil dawn or dusk) are also stored in the 
database. In addition, the location of the camera (in longitude and latitude coordinates) are stored in the 
database as well as the location of the KNMI visibility sensors. Obtaining the location of a camera is not 
as trivial as it seems. For the cameras at KNMI locations the coordinates are available. For the cameras 
along the highways, the highway location marker (i.e., highway milestone marker) and the direction of 
travel are the only information available. The conversion from highway location marker to a 
longitude/latitude coordinate pair was achieved through a web resource (i.e., hmpaal.nl) or else by a 
careful inspection of highway pictures via google maps. 

 

3. LABELLING THE DATA 

One essential aspect when exploiting a supervised machine learning technique is to provide the data 
(i.e., the camera images) with true and accurate values of the variable (i.e., ground truth) that is going to 
be predicted by the machine learning system. The visibility measurements, in fact the so-called 
meteorological optical range (MOR), obtained at KNMI automatic weather stations is used as the ground 
truth. The values of visibility less or equal to 250m are categorized as “foggy”, and “non-foggy” 
otherwise. The threshold of 250m for dense fog is used by traffic management operators as a key 
visibility distance. The association of this categorical label (i.e., visibility class) to an image is 
straightforward for the images taken at KNMI and airport locations. For these cameras the 10-minute 
averaged MOR of the visibility sensor at the same time the image has been captured is converted to a 
categorical fog/non-fog value. For the images taken from cameras along the highways the following two 
selections have been applied: i) only cameras within 2.5km of a visibility sensor are considered and the 
images are labelled with the visibility class obtained from the nearest visibility sensor at the same time; ii) 
as (i), but using cameras within 7.5km of a visibility sensor. Selection (i) resulted in only 16 cameras 
along highways with 4 associated visibility sensors, while selection (ii) leaves 82 cameras with 7 
associated visibility sensors. The first selection is a subset of the second one. 

This labelling procedure reduces the amount of images available for training the machine learning 
algorithm, but allows for a fast labelling process compared to human inspection of each image. The 
distance between the location of the camera and the visibility sensor is a factor that affects the quality of 
the labelling, particularly since visibility is a phenomenon that can have large spatial variations. The two 
selection thresholds for assigning the labels to the images are considered in order to investigate the 
impact of the label quality on the performance of the algorithm both during training and while assessing 
of the system. 

 
Figure 2: Example of an image of KNMI station Eelde (left) and a scenery along the N15 
highway at hm 236 (right). 
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4. NEURAL NETWORKS FOR IMAGE CLASSIFICATION 

Neural networks are a powerful class of machine learning methods that allow fitting complicated non-
linear functions. Historically, these networks have been inspired by neuroscience and the functioning of 
the brain, i.e. many neurons evaluate a set of inputs and fire an output when a certain threshold is 
exceeded (Fausett, 1994). The outputs then become inputs of the following layer of neurons that perform 
another evaluation and a new threshold for firing is applied again. Such mechanisms go on for a set of 
levels or depth of the neural network and it is the essence of the feed-forward neural networks (feedback 
loops are not in present in the network). The goal of neural networks is to learn about the phenomenon 
under investigation without being explicitly providing specific rules. It is by being exposed to many (in the 
order of tens of thousands to millions) examples that the network will learn to approximate the output 
from the inputs provided. 

 

Figure 3: Illustration of a (feed-forward) neural network with two hidden layers. 

The evaluation phase inside a neuron consists usually of summing the inputs by properly weighting 
them. In the learning phase, the algorithm tries to find the right weights that are best suited in 
approximating the desired output. The values assigned to the weights start from an initial random guess 
and they are updated iteratively in order to minimize a loss function using some form of gradient descent 
(Shalev-Shwartz and Ben-David, 2014).  

Image processing and recognition of objects in images has recently received a boost by the 
abundance of images in digital form as well as by the use of deep neural networks (CireşAn et al., 2012). 
Deep neural networks do not have a uniquely established definition, but the concept usually refers to 
many layers or at least more than one hidden layer in the network. The number of hidden layers refers to 
the number of nodes touched by a path traversing the acyclic directed graph representing a feed-forward 
neural network between an input and the output node (see Figure 3). 

4.1. Why neural networks? 

The previous work (Wauben and Roth, 2016) used other machine learning techniques in order to 
estimate the visibility for the KNMI test field in De Bilt and the automatic weather station in Twenthe. For 
that purpose we used decision trees and a set of features such as mean edges and contrast in the 
image. That method provided good results for that particular circumstances: scenery is fixed and the 
objects in the image are constant through time. Thus training two models for both De Bilt and Twenthe 
was the solution. The problem has drastically changed when the goal has become to detect fog from 
images of surveillance cameras along the highways. First, the cameras have different sceneries among 
each other, thus calling for training several individual models if the decision trees approach was to be 
followed. Second, and most important, almost all cameras along the highways have the possibility to 
change the scenery by panning, tilting, and zooming. These operations are essential for the traffic 
monitoring personnel to assure the safety of the traffic and facilitates immediate (remote) inspection in 
case of accidents. The high dynamicity in the scenery called for a more powerful method that can better 
generalize the image properties of dense fog. Given the good results reported in the literature by the use 
of deep neural networks in image classification and their ability to solve more complex classes of 
problems (Krizhevsky et al., 2012), we have decided to apply such techniques for the detection of fog 
from images obtained from various cameras. 
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4.2. Image pre-processing and feature extraction 

Before applying a neural network the images require pre-processing. This aspect is key in order to make 
them suitable and transform them into a set of features to be used as the predictors for the phenomenon 
one wants to predict. In this case two operations have been performed in the pre-processing phase: 

1. Dimension reduction of the image to a 28-by-28 pixel image. This operation has three goals, the 
first is to homogenize the pictures that come from different cameras that have different 
resolutions into a single common format; the second goal is to reduce the amount of variables 
(i.e., pixels) that have to be processed, thus reducing computation resources and time needed; 
the third goal is to reduce overfitting by having a reduced variable space. 
 

2. The image is blurred to avoid the presence of specific pixels representing signs, objects or 
written information on the image (e.g., camera location) that could be learnt by the network, thus 
compromising the generalizability of the knowledge learnt by the network. 

Two examples of the effect of dimension reduction and blurring of images are provided in Figure 4. 
Once these two pre-processing steps are applied, the red, green, and blue (RGB) channels containing 
the intensity of each pixel in the image are extracted and used as features for the machine learning 
problem. Therefore, the input of the image to the neural network is constituted by a vector of 
28x28x3=2352 variables. 

 
Figure 4: Same images of Figure 2, but after dimension reduction and blurring. 

 

5. MODEL FITTING AND SETUP 

Once the data have been pre-processed as described in Section 4.2, the neural network model can be 
fitted. The fitting was performed individually for the 2.5 and 7.5km selections as described in Section 3. 

Both data sets have been split in a training, a validation, and a test set. The split is random and the 
training set contains 60% of the data (i.e., 60% of the total dense fog cases and 60% of the total non-fog 
cases), while the validation and test sets contain evenly the remaining data (i.e., each 20% of the original 
data). In order to train the neural network the R programming environment has been used. In particular 
the library H2O (www.h2o.ai) has been used which is a specialized package for modelling machine 
learning problems. H2O has been used since it is a modern, up-to-date library that gets updated 
frequently and contains cutting edge machine learning techniques. Furthermore, H2O allows for high 
performance by facilitating parallel and distributed computation, and in-memory computations. 

Fitting a neural network is not as trivial as it might seem since there are many parameters that need 
to be tuned in order to obtain a good performance of the network for the classification task. The 
identification of the parameters (e.g., number of layers, amount of nodes per layer, type of activation 
function, training with or without balanced classes, see Montovan et al. (1998)), known as hyper-
parameter space, is a critical task that requires time due to re-fitting of the network at any new 
configuration of the parameters. The H2O library has a solution for effective searching in the hyper-
parameter space that is based on a grid search on all the possible combinations of the hyper-parameters 
and fitting models for each combination. A random exploration (i.e., a random subset of all the possible 
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hyper-parameters combinations is used) of the hyper-parameters space using various initial 
configuration has been used, selecting the models that provided the best F1-score (Powers, 2011). 
Balancing of classes in training is applied to tune the results using even fog and non-fog occurrences, 
since the model should be tuned to recognize the fog events. The validation set has been used to 
evaluate the performance of various models produced with different configurations of hyper-parameters. 
The fitted models and their main parameters are presented in Table 1. 

Table 1: Fitted deep neural networks for the two data sets. 
 

Case Number of 
layers 

Number of nodes 
in hidden layers 

Activation function in 
hidden layers 

F1 score 
training subset* 

2.5km data 
set 

7 (Input, 5 
hidden layers, 
output) 

75, 75, 50, 50, 10 Rectifier 0.986 

7.5km data 
set 

7 (Input, 5 
hidden layers, 
output) 

50, 50, 50, 25, 10 Rectifier 0.981 

 

6. RESULTS 

The results of each model are evaluated against the respective test set, which is an unseen data set. 
The results are reported by using a confusion matrix that is a 2 by 2 contingency table containing the 
number of cases correctly or incorrectly classified as fog or non-fog. Columns indicate the ground truth 
and rows the prediction of the neural network model. Figure 5 contains a representation of how to 
interpret the confusion matrix and the metrics used to assess the performance. In the matrix, TRUE 
means a positive case of dense fog, that is a visibility equal or lower than 250m, while FALSE means a 
negative case, thus a visibility higher than 250m or non-fog. 

Figure 6 (left) shows the results of the model built on training cameras within 2.5km from a visibility 
sensor. Overall the accuracy (fraction of cases correctly predicted) is very high (99.6% accurate 
detection by the neural network). However, since the data set is unbalanced towards non-fog, this 
indicator is misleading. Therefore it is more informative to look at the indicators precision and recall. 
Precision (or 1 – false alarm rate, 1 – FAR)  is the fraction of predicted fog cases correctly predicted by 
the model. Recall (or probability of detection, POD) is the fraction of dense fog cases correctly predicted. 
F1 score is the harmonic mean of precision and recall. 

 
Figure 5: Confusion matrix elements and metrics for performance assessment. 

 

                                                      
* F1 score computed on a balanced subset from the training set of 10000 images per class. 
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The model built on training cameras within 7.5km from a visibility sensor has also been assessed on 
the respective test set. The results are shown in Figure 6 (right). The overall accuracy is similar to the 
2.5km case, but precision, recall and F1 score are much lower. This is probably caused by the ground 
truth labels that are generally less accurate when considering cameras further away from the 
measurement locations. 

 
Figure 6: Confusion matrix for 2.5km-trained model (left) and 7.5km-trained model (right) on 
their respective test set. 

 

In addition to assessing the performance of the models on their respective test set, the models have 
also been applied to a joint test set. This joint test set is built from merging the test sets of the 2.5km 
case and the 7.5km case, but removing any image that is present in the training or validation set of the 
2.5km case or the 7.5km case. The creation of such a set is due to guarantee that the images are 
unseen by both the models. The results on this joint test set when using the 2.5km- and the 7.5km-
trained model are shown in Figure 7. The 2.5km-trained model performs much worse for F1 score 
compared to the 7.5km-trained model. This is caused by the cameras (and therefore scenery) in the 
7.5km set that are unknown to the 2.5km-trained model. This indicates issues of generalization (i.e., 
overfitting) of the model and limitations of applying the model trained on one domain to a different one. 

 
Figure 7: Results on the joint test set with 2.5km-trained model (left) and 7.5km-trained 
model (right).  

 

7. ANALYSIS OF RESULTS 

The combination of the training, validation and test set of the 2.5km case is considered here to 
investigate the FP (false positive) and FN (false negative) cases in more detail (see Figure 8).  There are 
1296 FP cases where the model predicts dense fog and the sensor reports no dense fog. Of these 
cases, 707 (55%) the sensor reports fog (MOR<1000m), so the visibility is indeed reduced. However, in 
235 cases (18%) the sensor does not even report haze (MOR<5000m). 

Analysis of the FP cases showed that they occur mainly isolated in time (603 or 47%) and the 
longest duration is 24 consecutive 10-minute intervals. The latter occurred for camera A15-HM207 on 
March 16, 2018 from 09:30 to 13:20 UT. During this period a visibility reduction is clearly visible on 
images, but the visibility sensor, at 2.3 km distance, reports visibilities above 1 km. The sensor shows a 
visibility reduction of 4 km to 1.1 km and back to 4 km. A similar trend can be seen in the images. The 
number of isolated cases in time is less for FN (270, 32%) and TP (302, 15%) cases. The longest 
duration for FN and TP are 15 and 46 consecutive 10-minute intervals, respectively. The longest 
duration for FN occurred for camera A4-HM59 on August 16, 2017 from 04:30 to 6:50 UT. The images 
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show a clear visibility reduction. It is unclear why the model did not predict dense fog. Possibly the 
camera location printed on the image affected the results. Also, the scenery on the images at the start of 
the FN event was different from the generally observed scenery that is shown again on images near the 
end of the FN event. 

 
Figure 8: Results on the combination of the training, validation and test set of the 2.5km-
trained model.  

 

The scores for individual cameras show spatial differences, also for nearby cameras using the same 
visibility sensor as ground truth. The higher FP rates for the cameras at Cabauw are probably related to 
scenery (meadows with few objects and large fraction of grass with more sky), whereas the higher FP for 
camera A15-HM207 (camera with longest FP event) is not present at nearby camera A15-HM206. The 
largest TP numbers occur on sites (Cabauw and Eelde) that are prone to fog events. The FP events 
occur mainly isolated in space (914 or 71%) and at most 4 FP occur at the same time. FN occurs less 
often spatially isolated (305 or 37%) with at most 7 events at the same time. For TP the numbers are 522 
(26%) for spatially isolated with at most 9 events at the same time. 

 
Table 2: Results of various post processing steps on the combination of the training, 
validation and test set of the 2.5km-trained model.  

 

Post processing Precision Recall F1 score Accuracy % omitted Precision* % fog 

none 60.9% 70.7% 65.4% 0.9963 0.00%  

change 70.2% 74.7% 72.4% 0.9975 0.26% 22.5% 11.7% 

change F --> T 70.2% 69.3% 69.7% 0.9972 0.11% 21.5% 4.8% 

 change T --> F 60.9% 76.0% 67.6% 0.9967 0.15% 23.3% 6.9% 

difference with nearest 74.8% 77.6% 76.2% 0.9982 0.37% 31.2% 23.7% 

change OR nearest 79.7% 80.6% 80.2% 0.9986 0.54% 28.4% 31.0% 

change AND nearest 67.4% 72.7% 69.9% 0.9971 0.09% 23.4% 4.3% 
 

The characteristics of FP, FN and TP given above can be used to post process the predicted model 
values in order to improve the scores. The characteristics used for this purpose are the isolation in time 
and space of the faulty cases. In order to make post processing usable for real-time application only the 
current predicted model values and the prediction 10 minutes before are considered. If there is a change 
in predicted value the prediction is considered INCONSISTENT, otherwise the original model prediction 
is kept. The scores after this change with respect to previous post processing and omitting the 
INCONSISTENT cases are given in Table 2. The scores increase, but 0.26% of the images are 
classified as INCONSISTENT, containing 12% of the true dense fog cases. The precision* of the omitted 
INCONSISTENT cases is 23% (i.e. 23% of INCONSITENT cases are true dense fog cases), so less 
than for the predicted dense fog of the original data and for the post processed data. Note that specific 
changes (TRUE into FALSE or FALSE into TRUE) can also been considered, but allowing both changes 
gives the optimal results since Precision and Recall improve. Change TRUE into FALSE improves the 
Recall and FALSE into TRUE improves the Precision score while hardly affecting the other score. The 
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F1 score reaches intermediate values and the true dense fog cases that become INCONSISTENT are 
about 6% for both changes. Another post processing of the predicted model values is obtained by 
comparison with the predicted model value of the nearest camera that uses the same visibility sensor as 
the ground truth. Here the predicted value is set to INCONSITENT when the camera pair gives different 
predictions. The scores after this difference with pair post processing gives better results than change 
with respect to previous, but the number of images set to INCONSISTENT increases, containing  24% of 
the true dense fog cases. Finally, the two post processing methods of the predicted model values are 
combined. When it is required that either criterion (change of prediction with respect to previous or 
difference with nearest) needs to be met in order to obtain INCONSISTENT the scores are the best, but 
0.5% of the images are set to INCONSISTENT, containing 31% of the true dense fog cases. Requiring 
that both criteria need to be met in order to obtain INCONSISTENT gives optimum results while only 
0.09% of the images are set to INCONSISTENT, containing 4% of the true dense fog cases.  

Clearly the scores can be improved by post processing the predicted model values, but there is a 
trade-off with the number of cases that will be made INCONSISTENT. The INCONSISTENT cases can 
be made available to the users as third possible output of the prediction with lower quality. These cases 
can be treated as either fog or non-fog depending on the users wish to obtain higher TP or smaller FP 
values. 

  

8. CONCLUSIONS AND OUTLOOK 

In this paper a deep neural networks method to predict the presence of dense fog from daytime camera 
images has been implemented and evaluated. The results are promising especially when using a data 
set whose labels are acquired from a visibility sensor close to the location of the camera. Overall, 
accuracy is very high, but false positives and false negatives have an impact on the precision and recall 
scores. The faulty predictions are caused by several factors such as scenery, contamination and 
precipitation on the camera lens, and training with ground truth labels not fully representative for the 
camera locations.  The scores for precision and recall are 0.61 and 0.70 for the 2.5km-trained model and 
0.52 and 0.51 for the 7.5km-trained model. The difference points to the reduced quality of the ground 
truth when the distance between camera and visibility sensor increases, but also the larger fraction of 
images with varying scenery. Differences between the 2.5 and 7.5km-trained models indicate issues of 
generalization. Post processing can be used to optimize the results, but this introduces INCONSISTENT 
cases with lower quality.  

 
Figure 9: Geographical map showing the predicted values of the cameras (2.5km case). 
Selecting a camera shows the corresponding image.  
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It must be emphasize that the results presented in this paper are work in progress. The neural 
network will further improve by additional training using more labelled images with a higher variety. For 
the future we will look into fog detection during non-daylight conditions by relying on artificial lighting. In 
addition, the amount of visibility classes will be increased to better support the weather room and traffic 
control centres. A near real-time visualisation of the fog detection based on deep neural networks is 
under construction (see a preview in Figure 9) so that users can give feedback on the results and 
possibly it will allow users to provide input that can be used in further re-training of the model. 
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