

Royal Netherlands Meteorological Institute Ministry of Infrastructure and Water Management

DEEP NEURAL NETWORK APPROACH FOR AUTOMATIC FOG DETECTION USING TRAFFIC CAMERA IMAGES

G.A. Pagani, W. Wauben, and J.W. Noteboom

CIMO TECO 2018 Amsterdam, 11th October 2018

Outline

- > Fog hazard
- > Goal of the project
- > The approach
- Machine learning
- > Data
- > Neural networks
- > Image to features
- > Model fitting
- > Results
- > Summary
- > Future work

Fog as hazard

- Substantial impact on air, marine, and road traffic
- Appears and dissipates suddenly
- Large spatial differences (local phenomenon)
- Hard to accurately forecast

Goal

Short term

- Increase fog observations without placing new visibility sensors
- Use cameras to identify fog conditions and issue warnings

Long term

- Feed detected fog from camera observations to weather rooms and traffic control centers
- Assimilate detected fog into weather model to improve fog predictions

Limitations

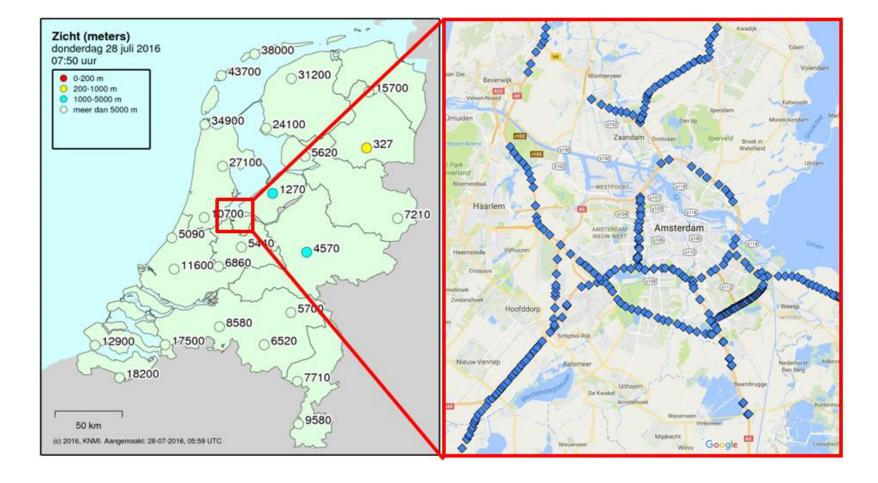
 Daylight fog identification from static and moving cameras using image analysis

Traditional visibility sensors vs. traffic cameras

 25 KNMI AWS with visibility sensor

VS

 5000 cameras along highways

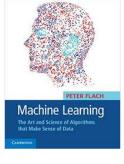


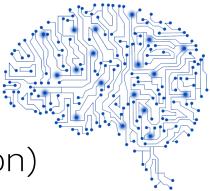
The dataset

- Some facts:
- 7 cameras at KNMI AWS
- 160 cameras along Dutch highways (since June 2017) +160 new cameras (since October 2018)
- ~10 million images archived
- Image sampling every 10 minutes
- Upon collection day phase is associated (day, night, dawn, dusk)
- Limited camera metadata (only lat/long position)

Idea of machine learning

- "Machine learning is the systematic study of algorithms and systems that improve their knowledge or performance with experience." Prof. Flach author of Machine Learning: The Art and Science of Algorithms that Make Sense of Data
- Use an algorithm to train a model just on data
- Supervised learning:
 - The response variable is known and available (evidence, ground truth)
- Have a good understanding of the domain (feature selection)
- Key: have a sufficient amount and variability of (good) data





Labeling the data

- Visibility, Meteorological Optical Range (MOR) of visibility sensor
- From visibility to categorical indicator:
 - MOR<=250m → FOG
 MOR>250m → NO FOG

- Only few cameras have co-located visibility sensors
- Trade-off:
 - automatic labeling vs. manual labeling
 - enough data and enough GOOD data

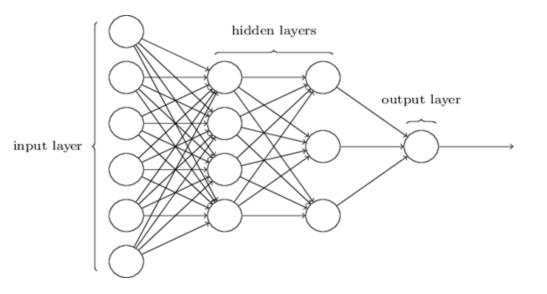
Labeling the data

• Two cases are considered:

- Case A: 16 cameras along the highways in range of 4 MOR sensors
- Case B: 82 cameras along the highways in range of 7 MOR sensors

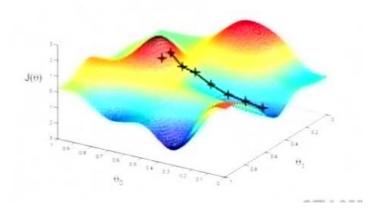
Neural network

- Brain inspired
- Each node (neuron) operates on the inputs and if a threshold is passed it "fires"
- Goal: learn about the phenomenon under investigation without explicitly providing specific rules
- A node sums up the (weighted) inputs and applies a rectifier
- Choice for type of rectifier, # layers, # nodes



Neural network in action

- Learning phase: find the right weights that are best suited in approximating the desired output
- Weights start from an initial random guess and they are updated iteratively in order to minimize a loss function using some form of gradient descent
- By exposing to many (tens of thousands to millions) examples, the network will learn to approximate the output from the inputs provided



Why Neural Networks

- Used proficiently in image processing and image classification
- More general method of fog detection than decision trees and image features
- To handle sceneries are very different even from the same camera (e.g., zoom, pan, tilt)

Image pre-processing

Reshape to 28x28 px Image blurring to Harmonize images Reduce computation Counter overfitting

From image to features

- RGB channels extracted
- RGB pixel intensity
- Pixels intensity are the features (i.e., predictors)
- The input of the image to the neural network is constituted by a vector of 28x28x3=2352 variables

Full data transformation and feature extraction

Model fitting

• Dataset split

Training	Validation	Test
----------	------------	------

- Training (60%) Case A ~350k images Case B ~1.2M images
- Validation (20%)
- Test (20%)
- Deep neural network fitting via R and H2O library
- Hyper-parameters optimization via random grid search

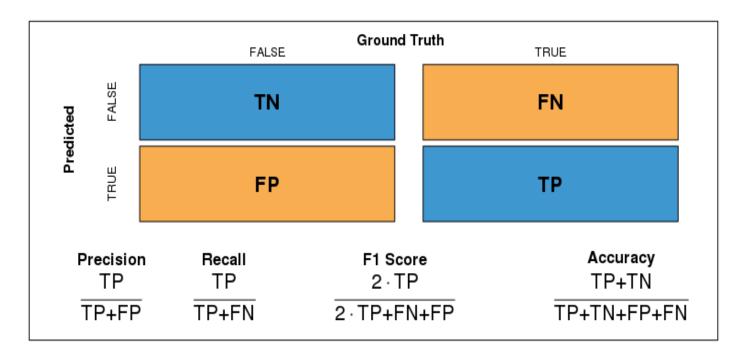
Model fitting

Case	Number of layers	Number of nodes in hidden layers	Activation function in hidden layers	F1 score training subset*
2.5km data set	7 (Input, 5 hidden layers, output)	75, 75, 50, 50, 10	Rectifier	0.986
7.5km data set	7 (Input, 5 hidden layers, output)	50, 50, 50, 25, 10	Rectifier	0.981

*F1 score computed on a balanced subset from the training set of 10000 images per class.

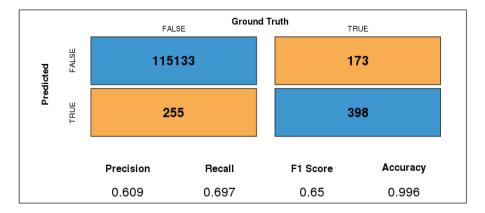
Results

How to interpret

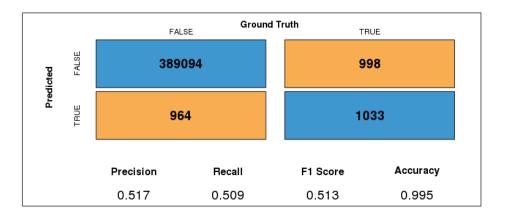


TRUE=foggy

Results on test set

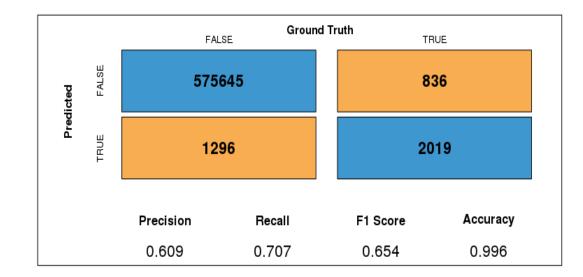


Case B



Results

• All data of case A (training + validation + test)

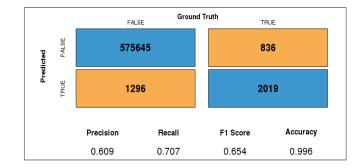


Analysis of results

- 1296 FP cases (model predicts dense fog and the sensor reports no dense fog)
- 707 (55%) the sensor reports fog (MOR<1000m)
- 235 cases (18%) not even report haze (MOR<5000m)
- FP occur mainly isolated in time (603 cases) and space (914 cases)

Examples FP cases

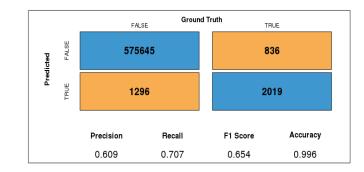
B H157021.450



Analysis of results

- 836 FN Cases (model predicts no dense fog and the sensor reports dense fog)
- FN isolated in time (270 cases)
- FN occurs less often spatially isolated (305 cases)

Examples FN cases



Possibilities of post processing

• Based on consistency in space and time

Post processing	Precision	Recall	F1 score	Accuracy	% omitted	Precision*	% fog
none		70.7%	65.4%	0.9963	0.00%		
change		74.7%	72.4%	0.9975	0.26%	22.5%	11.7%
change F> T		69.3%	69.7%	0.9972	0.11%	21.5%	4.8%
change T> F		76.0%	67.6%	0.9967	0.15%	23.3%	6.9%
difference with							
nearest	74.8%	77.6%	76.2%	0.9982	0.37%	31.2%	23.7%
change OR nearest	79.7%	80.6%	80.2%	0.9986	0.54%	28.4%	31.0%
change AND nearest	67.4%	72.7%	69.9%	0.9971	0.09%	23.4%	4.3%

Summary

- A deep learning approach to fog (binary) classification
- Reuse of images from traffic cameras surveillance
- Good performance given:
 - Ground truth, spatial differences
 - High dynamic scenery
- Issues in generalization
- Possibilities of post processing

Future work

- Test the solution benefit in weather room and traffic control centers
- Implement spatial consistency in the NN model
- Train new models for night, dawn/dusk
- Test convolutional neural network

