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Fog as hazard 

 
 

● Substantial impact on air, marine, and road 
traffic 
 

● Appears and dissipates suddenly 
 

● Large spatial differences (local phenomenon) 
 

● Hard to accurately forecast 
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Goal 

Short term 
● Increase fog observations without placing new visibility sensors 
● Use cameras to identify fog conditions and issue warnings 

 
Long term 
● Feed detected fog from camera observations to weather rooms and 

traffic control centers 
● Assimilate detected fog into weather model to improve fog 

predictions 
 

Limitations 
● Daylight fog identification from static and moving cameras using 

image analysis 
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Traditional  visibility sensors vs. traffic cameras 

 
 
 
 

● 25 KNMI AWS with 
visibility sensor 

 
vs 

 
● 5000 cameras 

along highways 
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The dataset 

● Some facts:  
● 7 cameras at KNMI AWS 
● 160 cameras along Dutch highways (since June 2017) +160 new 

cameras (since October 2018) 
● ~10 million images archived 
● Image sampling every 10 minutes 
● Upon collection day phase is associated (day, night, dawn, dusk) 
● Limited camera metadata (only lat/long position)  
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Idea of machine learning 

● “Machine learning is the systematic study of algorithms and 
systems that improve their knowledge or performance with 
experience.” Prof. Flach author of Machine Learning: The Art and Science of Algorithms 
that Make Sense of Data 

 
● Use an algorithm to train a model just on data 

 
● Supervised learning:  

○ The response variable is known and available (evidence, ground 
truth) 

 
● Have a good understanding of the domain (feature selection) 

 
● Key: have a sufficient amount and variability of (good) data 
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Labeling the data 

● Visibility, Meteorological Optical Range (MOR) of visibility sensor 
 
● From visibility to categorical indicator: 

○ MOR<=250m    FOG  

○ MOR>250m    NO FOG  
 

● Only few cameras have co-located visibility sensors 
 

● Trade-off:  

○ automatic labeling vs. manual labeling 

○ enough data and enough GOOD data 
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Labeling the data 

● Two cases are considered: 
 
 
 
 
 
 
 
 
 
 
 

● Case A: 16 cameras along the highways in range of 4 MOR sensors 
 

● Case B: 82 cameras along the highways in range of 7 MOR sensors 
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Visibility sensor 

Visibility sensor 

Case A Case B 



Neural network 

● Brain inspired 
 

● Each node (neuron) operates on the 
inputs and if a threshold is passed it 
“fires” 
 

● Goal: learn about the phenomenon 
under investigation without explicitly 
providing specific rules 
 

● A node sums up the (weighted) inputs 
and applies a rectifier 
 

● Choice for type of rectifier, # layers, # 
nodes 
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Neural network in action 

● Learning phase: find the right weights that 
are best suited in approximating the desired 
output 
 

● Weights start from an initial random guess 
and they are updated iteratively in order to 
minimize a loss function using some form of 
gradient descent 
 

● By exposing to many (tens of thousands to 
millions) examples, the network will learn to 
approximate the output from the inputs 
provided 
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Why Neural Networks 

● Used proficiently in image processing and image classification 
 

● More general method of fog detection than decision trees and 
image features 
 

● To handle sceneries are very different even from the same camera 
(e.g., zoom, pan, tilt) 
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Same camera, same day, few hours apart 



Image pre-processing 
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Reshape to 28x28 px 
Image blurring 

to 
Harmonize images 

Reduce computation 
Counter overfitting 



From image to features 

● RGB channels extracted 
 

● RGB pixel intensity 
 

● Pixels intensity are the features (i.e., predictors) 
 

● The input of the image to the neural network is constituted by a 
vector of 28x28x3=2352 variables 
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Full data transformation and feature extraction 



Model fitting 

● Dataset split  

○ Training (60%) – Case A ~350k images – Case B ~1.2M images 

○ Validation (20%) 

○ Test (20%) 

 
● Deep neural network fitting via R and H2O library 

 
 

● Hyper-parameters optimization via random grid search 
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Model fitting 

 
 
 
 
 
 
 
 
 
 
 
 

*F1 score computed on a balanced subset from the training set of 10000 images per class. 
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Case Number of 
layers 

Number of nodes in 
hidden layers 

Activation function in 
hidden layers 

F1 score 
training 
subset* 

2.5km data 
set 

7 (Input, 5 hidden 
layers, output) 

75, 75, 50, 50, 10 Rectifier 0.986 

7.5km data 
set 

7 (Input, 5 hidden 
layers, output) 

50, 50, 50, 25, 10 Rectifier 0.981 

 
 



Results 

How to interpret 
 
 
 
 
 
 
 
 
 
 
 
TRUE=foggy 
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Results on test set 
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Case A Case B 



Results 

● All data of case A (training + validation + test) 
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Analysis of results 

● 1296 FP cases (model predicts dense fog and the sensor reports no dense fog) 

● 707 (55%) the sensor reports fog (MOR<1000m) 
● 235 cases (18%) not even report haze 

(MOR<5000m) 
● FP occur mainly isolated in time (603 cases) and 

space (914 cases)  
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Examples FP cases 



Analysis of results 

 
● 836 FN cases (model predicts no dense fog and the sensor reports dense fog) 

● FN isolated in time (270 cases) 
● FN occurs less often spatially isolated (305 

cases)  
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Examples FN cases 



Possibilities of post processing 

● Based on consistency in space and time 
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Post processing Precision Recall F1 score Accuracy % omitted Precision* % fog 

none 60.9% 70.7% 65.4% 0.9963 0.00%   

change 70.2% 74.7% 72.4% 0.9975 0.26% 22.5% 11.7% 

change F --> T 70.2% 69.3% 69.7% 0.9972 0.11% 21.5% 4.8% 

 change T --> F 60.9% 76.0% 67.6% 0.9967 0.15% 23.3% 6.9% 

difference with 
nearest 74.8% 77.6% 76.2% 0.9982 0.37% 31.2% 23.7% 

change OR nearest 79.7% 80.6% 80.2% 0.9986 0.54% 28.4% 31.0% 

change AND nearest 67.4% 72.7% 69.9% 0.9971 0.09% 23.4% 4.3% 



Summary 

● A deep learning approach to fog (binary) classification 
 

● Reuse of images from traffic cameras surveillance 
 

● Good performance given: 

○ Ground truth, spatial differences 

○ High dynamic scenery 

 
● Issues in generalization 

 
● Possibilities of post processing 

 
 
 

   



Future work 

● Test the solution benefit in weather room and 
traffic control centers 
 
 

● Implement spatial consistency in the NN model 
 
 

● Train new models for night, dawn/dusk 
 
 

● Test convolutional neural network 
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