

Effects of shelter types on temperature measurements

Comparison of different shelter types

- → Why do we compare temperature measurements of different shelter types?
- ➔ Measurements: study configuration
- ➔ Results: analysis of differences
- ➔ Correlation analysis
- Summary and Outlook

Study of parallel measurements between manual and automatic measurements

Study of parallel measurements between manual and automatic <u>temperature</u> measurements:

Manual configuration:

- Mercury-in-glass
 thermometer
- Stevenson screen

Automatic instrument:

- PT100 sensor
- (mostly) LAM 630 screen

Kaspar, F., Hannak, L., and Schreiber, K.-J.: Climate reference stations in Germany: Status, parallel measurements and homogeneity of temperature time series, Adv. Sci. Res., 13, 163-171, https://doi.org/10.5194/asr-13-163-2016, 2016.

Kaspar, F., Hannak, L., and Schreiber, K.-J.: Climate reference stations in Germany: Status, parallel measurements and homogeneity of temperature time series, Adv. Sci. Res., 13, 163-171, https://doi.org/10.5194/asr-13-163-2016, 2016.

➔ When the instruments are in different shelter types the differences of daily maximum temperature have an annual cycle

Kaspar, F., Hannak, L., and Schreiber, K.-J.: Climate reference stations in Germany: Status, parallel measurements and homogeneity of temperature time series, Adv. Sci. Res., 13, 163-171, https://doi.org/10.5194/asr-13-163-2016, 2016.

→ When the instruments are in the same screen, there is no annual cycle

The shelter type has an effect on temperature measurements!

Measurement set-up

→ PT100 sensor inside the LAM 630 shelter (with integrated fan)

→ PT100 sensor inside the Stevenson screen

Measurement set-up

→ PT100 sensor inside the LAM 630 shelter (with integrated fan)

→ PT100 sensor inside the Stevenson screen.

Station sides: Lindenberg (since 2018) and Hohenpeißenberg (since 2015)

- Temporal resolution: 1 minute mean values
- other parameters: wind speed and direction (Lindenberg in 2m, \rightarrow Hohenpeißenberg in 10m), solar irradiance, relative humidity (inside the LAM 630), two temperature sensors inside the LAM 630

Lisa Hannak – DWD

national climate monitoring

Aim of the parallel measurements

→ Study/quantify the screen effect

➔ Regression model to model the screen bias

Results

Deutscher Wetterdienst Wetter und Klima aus einer Hand

1.0

-0.5

-1.0

0.0

Differences in K

0.5

Differences between the different screens

-1.0

-0.5

0.0

Differences in K

0.5

1.0

Results - Daily cycle

Deutscher Wetterdienst Wetter und Klima aus einer Hand

→ <u>Temporal resolution:</u>

one minute mean values every ten minutes of Hohenpeißenberg

- \rightarrow Sorting values of one specific time (e.g. 1:50 UTC) \rightarrow time series
- Averaging over all values for a specific time of the day or calculating correlation coefficients using the sorted time series

- ➔ Morning:
 - positive differences between shelter types
 - Positive correlation to radiation
 - Negative correlation to wind speed

- → Afternoon:
 - negative differences between shelter types
 - Positive correlation to wind speed
 - Negative correlation to radiation (with delay!)

- ➔ All day:
 - Constant correlation to temperature tendency (changes between two successive one minute mean values every ten minutes of the sensor in the LAM 630)

Results - Annual cycle

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Differences between screen types (1-min Data)

- → LAM 630 minus Stevenson screen
- No annual cycle in the median of the differences
- In summer the standard deviation is larger

Differences of daily maximum temperature

- ➔ LAM 630 minus Stevenson screen
- Annual cycle in the differences of daily maximum temperature

Differences of daily maximum temperature

Reasons for differences

- Different radiation effect on screens
- Different inertia time \rightarrow
- Different ventilation \rightarrow
- → Different heat accumulation inside the screen (especially when the wind is weak)
- → Temperature differences at two positions inside the shelter

Correlation analysis

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Correlation analysis

Solar irradiance: RAD

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Wind speed: V

Temperature tendency: Tdt

Solar irradiance tendency: RADdt ()0 0 Differences of two temperature sensors inside the lamellar shelter: T_S2-T_S1

Relative humidity: RH Relative humidity tendency: RHdt

Linden- berg	Diff - V	Diff - RAD	Diff - RADdt	Diff – T_S2- T_S1	Diff - Tdt	Diff - RH	Diff - RHdt
1 min mean	0.198	0.143	0.114	-0.154	0.305	-0.072	-0.126
10 min mean	0.233	0.195	0.269	-0.245	0.581	-0.097	-0.455
10 min actual	0.195	0.137	0.224	-0.163	0.564	-0.064	-0.381

Linden- berg	Diff - V	Diff - RAD	Diff - RADdt	Diff – T_S2- T_S1	Diff - Tdt	Diff - RH	Diff - RHdt
1 min mean	0.198	0.143	0.114	-0.154	0.305	-0.072	-0.126
10 min mean	0.233	0.195	0.269	-0.245	0.581	-0.097	-0.455
10 min actual	0.195	0.137	0.224	-0.163	0.564	-0.064	-0.381

Lindenberg:

- Temperature changes of two successive values (temperature tendency)
- Relative humidity changes of two successive values (relative humidity tendency)
- Global radiation and tendency
- Wind speed (2 meter height)
- Temperature differences inside lamellar shelter

Hohen- peißen- berg	Diff - V	Diff - RAD	Diff - RADdt	Diff – T_S2- T_S1	Diff - Tdt	Diff - RH	Diff - RHdt
1 min mean	-0.049	0.026	0.084	-0.243	0.275	0.069	-0.092
10 min mean	-0.061	0.044	0.263	-0.175	0.511	0.082	-0.335
10 min actual	-0.051	0.025	0.207	-0.243	0.272	0.068	-0.250

Hohen- peißen- berg	Diff - V	Diff - RAD	Diff - RADdt	Diff – T_S2- T_S1	Diff - Tdt	Diff - RH	Diff - RHdt
1 min mean	-0.049	0.026	0.084	-0.243	0.275	0.069	-0.092
10 min mean	-0.061	0.044	0.263	-0.175	0.511	0.082	-0.335
10 min actual	-0.051	0.025	0.207	-0.243	0.272	0.068	-0.250

Hohenpeißenberg:

- Temperature changes of two successive values (temperature tendency)
- Relative humidity changes of two successive values (relative humidity tendency)
- Global radiation changes of two successive values (Global radiation tendency)
- Temperature differences inside lamellar shelter

Summary

- → Mean differences between screen types are small
- Differences between screen types are larger for daily maximum temperature \rightarrow values
 - → Annual cycle with larger differences between screen types in summer
- Differences between screen types are correlated to
 - → Temperature tendency
 - Temperature differences inside lamellar shelter
 - → Radiation tendency
 - \rightarrow Relative humidity tendency
 - \rightarrow Wind speed in 2m height (Lindenberg)

Outlook

- → Fit linear model to model screen bias
- → Use variables with large correlation coefficients as predictors
- ➔ Test model

Outlook

- ➔ Fit linear model to model screen bias
- → Use variables with large correlation coefficients as predictors
- ➔ Test model

Thank you!

Lindenberg (data resolution: 10 minute)

Lindenberg

Correlation in the case of sunny moments (RAD > 120 W/m²)

```
(T_LAM 630 – T_Stevenson screen) and V : -0.16
```


