

Marielle Gosset (IRD/GET) and Hidde Leijnse (KNMI)

And many international collaborators

Introduction and history

- Microwave links can be used to measure rainfall (e.g. Atlas and Ulbrich, 1977; Jameson, 1991)
- Rain rate is nearly linearly related to specific attenuation (around 30 GHz)
- Commercial microwave link networks are abundant and can be used for rainfall monitoring (Messer et al., 2006; Leijnse et al., 2007)
- Technical challenges are:
 - Wet/dry classification
 - Wet antennas
 - Mapping

Open source packages

are available!

- Atlas, D. and C. W. Ulbrich (1977), J. Appl. Meteorol., 16, 1322–1331.
- Jameson, A. R. (1991), J. Appl. Meteorol., 30, 32–54.
- Messer, H. A., A. Zinevich, and P. Alpert (2006), Science, 312, 713.
- Leijnse, H., R. Uijlenhoet, and J. N. M. Stricker (2007), Water Resour. Res., 43, W03201.

Basic measurement principle

- Microwave links that are used for communication between cellphones can also be used to measure rainfall
- The radio signal is attenuated by raindrops in the path
- The relation between specific attenuation and rainfall intensity is nearly linear, and is nearly independent of the drop size distribution

Basic measurement principle

- A link is assumed to be affected by rain (wet) if nearby links also show a decrease in minimum RSL; RSL is corrected based on this
- Determine reference level based on RSL during dry weather
- Compute mean rainfall intensity from minimum and maximum RSL:
- R= a $[(A A_{ant})/L]^b$

Data

- In NL: ~1900 links
- Minimum and maximum received signal level (RSL) every 15 minutes
- Quantization 1 dB, some links have 0.1 dB
- Average link length: 3-4 km
- Link frequencies: 20-40 GHz (38 GHz most abundant): linear relation and sensitive to rain!
- In NL: Gauge-corrected radar dataset (5 min, 1 km²)

Results in the Netherlands

31-08-2012

Rain Cell AFRICA

opportunistic use of telcom network for rain estimation in Africa

Ouagadougou, Burkina Faso 2012-2014

Doumouni, Gosset et al, 2014, GRL; Rainfall Monitoring based on Microwave links from cellular telecommunication Networks: First Results from a West African Test Bed. *Geophysical Research Letters*, 10.1002/2014GL060724

Gosset, M., et al , 2016 BAMS : Improving Rainfall Measurement in gauge poor regions thanks to mobile telecommunication networks, Bull. Amer. Meteor. Soc doi:10.1175/BAMS-D-15-00164.1

Rain Cell AFRICA

opportunistic use of telcom network for rain estimation in Africa

Thanks to WB/GFDRR; KGGF; UNF Data4SDG, IRD initiated several operational pilots in Africa in collaboration with Orange since 2016

Rain Cell AFRICA

opportunistic use of telcom network for rain estimation in Africa

Example: Niger, Niamey

Revisiting the 2017 August 21rst storm that lead to intense flooding in Niger

Example : Real time rainfall maps in Cameroun

A flux of raw data at 15 minute time step (min/max/mean) is provided to an external FTP serveur.

Based on Orange SAM Network Monitoring System (script written by Orange tech team)

Oct 4rth morning in Douala A convective shower developped from 06:15 and receded at 7:45

Dense network over Douala

CML rainfall estimate – Scientific/technical Proof of concept

10 years research - Validation of QPF - Mature concept

- Uncertainties understood
- Applications for QPE/QPF Hydrological Applications tested.
- Open Source codes for data collection/processing/rain mapping exist

Recent review: Uijlenhoet R, Overeem A, Leijnse H. Opportunistic remote sensing of rainfall using microwave links from cellular communication networks. WIREs Water 2018, 5: null. doi: 10.1002/wat2.1289

DATA SHARING ISSUE

Archived data for R&D and Proof of concept – worlwide

- ➤ Many examples In Europe and Israel for ~10 years
- telecel Faso provided archived data in 2012-2014 for first validation study in Africa
- Orange is involved in 4 pilot sites in Sub Saharian Africa

Real time data flux provided by operator (on a good will basis)

- Cameroun
- Niger (currently in test)

Commitment for RT flux beyond pilot ?

- Sustainable PPP model to be developed
- will to participate to own country civil protection motivates current involvement (Cameroun; Niger; Mali; Burkina Faso) but how sustainable?
- Mutual interest model to be built
 - Image greening?
 - Shared benefit in future HyMet services to private users?
 - > Other?

Additional material

Results in the Netherlands

- Daily rainfall
- 1086 days
- Independent of calibration
- Bias close to 0
- Correlation > 0.6