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Abstract— Ash from explosive volcanic eruptions can affect our 

environment by disrupting airline flights and marine traffic, 

reducing air quality, and impacting downwind communities. 

Understanding the processes occurring during eruptions can help 

mitigate these hazards by giving early warning of the eruption 

onset and improving the forecasts of ash dispersal. An emerging 

tool in this approach is volcanic lightning detection. Recent field 

campaigns have focused on how to link electrification to eruption 

dynamics such as mass flux, water content, and microphysical 

processes (e.g., volcanic hail formation). However, many 

volcanoes are remote and lack local monitoring equipment, 

making fine-scale electrical measurements particularly 

challenging. Here, we present a new technique to detect volcanic 

electrification that requires only two wideband radiofrequency 

sensors located within approximately 1,000 km of the volcano. 

The technique calculates the expected time delay of the signal 

between the two sensors, and from the volcano under 

observation. With this time delay, a cross-correlation can be 

applied to determine signals of possible volcanic origin. The 

sensors used in this study are from the Earth Networks Total 

Lightning Network (ENTLN), which are wideband electric field 

sensors in the range of 5–500 kHz. To demonstrate the technique, 

we examine the eruption of Bogoslof volcano in Alaska and 

specifically the explosive event on June 10th, 2017. We also 

investigate the likelihood and origin of false positives. Initial 

results indicate that this technique can detect many electrical 

discharges that were filtered out by the ENTLN operational 

algorithm or were not detected by other global lightning 

detection networks. An important implication is that this 

technique could reduce the latency of eruption alerts indicating 

that significant ash emissions have begun, and increase the 

number of detected discharges available to characterize the 

eruption dynamics in near-real time. We suggest this technique 

could be used operationally as part of an eruption monitoring 

system, which would be especially useful for volcanoes that are 

not currently instrumented. 
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I.  INTRODUCTION 

Volcanic plumes from powerful eruptions commonly 
become electrified and produce lightning due to charging of 
ash particles at different stages of plume development [Thomas 
et al. 2010; Behnke et al. 2013]. Lightning produces radio 
emissions that are relatively easy to detect over long distances. 
For this reason, volcanic lightning is increasingly being used as 

a tool for characterizing explosive eruptions [Behnke and 
McNutt 2014; Fee et al., 2017; Haney et al., 2018]. However, 
many volcanoes are located in remote areas with sparse 
networks of lightning sensors, which makes it difficult and 
costly to detect their electrical activity. 

The goal of this study is to develop a new form of lightning 
detection for regions with sparse network coverage. The data 
used for this study comes from the Earth Networks Total 
Lightning Network (ENTLN), which archives the raw 
waveform data needed for this technique. Here, we describe the 
approach, validate the results with two other long-range 
lightning detection networks, and consider the broader 
implications for volcano monitoring. 

II. DATA 

A. Earth Networks Total Lightning Network 

The ENTLN continuously measures lightning stroke 
occurrence time, location, type (IC and CG), polarity, and peak 
current. The ENTLN network consists of over 1,600 ground-
based wideband sensors around the world to detect both the IC 
and CG lightning, having a detection efficiency for IC strokes 
of up to 95% [Liu et al. 2010] and CG strokes of up to 97% 
[Zhu et. al. 2017]. These peak detection efficiencies are located 
over the central and eastern U.S., where the sensors are 
densest, and varies depending on network coverage. The region 
of this study, the Aleutian Islands in Alaska, is quite remote. 
As such, ENTLN only has a few sensors in the surrounding 
area and the detection efficiency will be much lower than the 
referenced values above.  

ENTLN archives the electric field waveforms from each 
sensor. These waveforms allow for the unique opportunity to 
apply the technique developed in this study. We use data from 
two sensors, named UNLSK and USGS01, that are 98 and 622 
km away from Bogoslof volcano, respectively. The map 
showing the location of the volcano and the two sensors is 
shown in Figure 1. 

 

 

 



Figure 1.  Map of Bogoslof volcano (X) and both ENTLN sensors (red dots). 

The black line is an approximaton of the hyperbolic equation describing the  

time-of-arrival solutions using two stations. 

B. Lightning Location Datasets 

As validation for this new method, we use lightning 
location data from two systems, which will be referenced as 
LLS1 and LLS2 in this paper. Both systems measure very low 
frequency radio signals and can detect lightning over long 
range (~2000-3000 km). This allows for detections in remote 
regions such as Bogoslof volcano. 

III. METHODOLOGY 

The technique used in this study relies on the cross-

correlation of electric field waveform data from two ENTLN 

sensors. Cross-correlation measures how similar two 

waveforms are when a specific time offset is applied. In this 

case, the time offset between the two sensors is known since 

the location of the source (Bogosolf volcano), as well as the 

wave velocity (speed of light) is known. In comparison, most 

lightning location systems, including the two used in this 

study, use time-of-arrival and/or magnetic direction-finding 

techniques to locate lightning, which requires are least 3 

sensors to provide a location. In the case of cross-correlation, 

only two sensors are required, though any signal with the same 

delay time will also trigger a detection. The solution for time-

of-arrival using two sensors is a hyperbola [Drake et. al. 2004] 

and crosses in between the two sensors (see Figure 1). Any 

source that is also on that line will have the same time delay as 

that from Bogoslof volcano and result in a false detection. 

To test for the presence of a signal at a given location, a 

cross-correlation is used and is given by, 

 

Xc = Σ (x[t] * y[t-τ]) / (sqrt( Σ x[t]2 ) * sqrt( Σ y[t]2 )) 

 

Where x and y are the normalized waveform data from the 

closest and farthest sensor, respectively, τ is the expected 

delay between the stations given the expected location of 

Bogoslof, t are the times of the samples of closest sensor. The 

denominator acts to normalize the cross-correlation between 

+/- 1.  In general, t-τ will not correspond to an even sample 

time of y, so the amplitude of y at this time is found using 

linear interpolation.  Further, because the waveform data use 

non-uniform sampling as part of the data compression routine, 

Xc( x,y ) != -Xc( y,x ). However, both terms will have local 

maxima if a source exists at the test location. The cross-

correlation is calculated for every data point of the waveform 

from the closest station and using a 5 ms time window. 

Once the cross-correlations are calculated, these data are 

used to characterize lightning pulses granted certain 

requirements are met. First, the cross-correlation must be 

above one standard deviation. Next, a “pulse” must be at least 

10 data points and last longer than 66 μs, which are used to 

filter out noisy data. Finally, each data point cannot be 

separated by more than 1 ms. A pulse that meets these 

requirements is then saved with a start and end time. 

Finally, to validate the technique, each pulse is matched to 

a detection from the two other independent lightning networks 

by time matching the cross-correlation pulses. A successful 

match is one where the network time occurs within the start 

and end time of pulse, accounting for the travel time to the 

sensor (0.3 ms) as well as the timing accuracy of the data, 

ranging from 1 ms to 1 second depending on the network. 

 

IV. RESULTS AND DISCUSSION 

Here we apply the detection technique to a single eruptive 

event from Bogoslof volcano in Alaska. Bogoslof is a volcanic 

island partially submerged beneath Bering Sea in the Aleutian 

Arc. Its eruption from December 2016 through August 2017 

produced more than 60 volcanic ash plumes, many of which 

were electrified [Coombs et al., 2018]. One particularly well-

characterized event occurred on June 10th, 2017 [Haney et al., 

2018]. The seismic onset of this explosive eruption was 

12:13:55 UTC and the event lasted until 14:51:18 UTC 

according to the U.S. Geological Survey’s seismic network. 

During the event, LLS1 detected 31 strokes while LLS2 

detected 6. The first discharge was detected by LLS1 and 

occurred at 12:16:16, approximately 2.5 minutes after the 

onset of seismic activity.  

Results of the detections and cross-correlation are 

summarized in Table 1. Overall, we identified 552 pulses 

during the explosive event. Limiting to only the 10 minutes 

where LLS1 detected any activity, that overall count drops to 

490. The peak in activity for LLS1 and pulses both agree at 

12:50 UTC. Overall, this technique matches 88% of LLS1 and 

100% of LLS2 detections. Furthermore, we detect 

significantly more discharges than the two independent 

networks, although many of these are likely to be false 

detections. This may be due to local noise sources as well as 

distant lightning that happens to also correlate with the same 

time difference. 

 

 

 

 

 



 

TABLE I.  CROSS-CORRELATION OF VOLCANIC LIGHTNING FROM THE 

JUNE 10TH
 2017 ERUPTION OF BOGOSLOF VOLCANO IN ALASKA 

Time 

(UTC) 

LLS1 

Stroke 

LLS1 

Match 

LLS2 

Stroke 

LLS2 

Match 

Pulses  

(this 

method) 

12:00 0 0 0 0 19 

12:10 7 6 0 0 47 

12:20 4 3 0 0 54 

12:30 2 2 0 0 69 

12:40 3 3 1 1 68 

12:50 8 6 2 2 119 

13:00 6 5 2 2 93 

13:10 1 1 1 1 40 

13:20 0 0 0 0 25 

13:30 0 0 0 0 18 

Total 31 26 6 6 552 

 

Figure 2 illustrates an overview of all the data between 

12:10 UTC and 12:20 UTC. The onset of the seismic activity 

occurred at 12:13:55 UTC (depicted by the vertical green 

line). The upper panel shows the waveform data from both 

sensors (UNLSK and USGS01).  

Figure 2.  ENTLN waveform data from two ENTLN sensors (top) and their 

cross-correlation (bottom). The vertical green line represents the seismic onset 

time. The green dots represent the LLS1 reported times. The red stars 

represent the detected pulses from the cross-correlation technique. The y-axis 
is omitted on the upper panel because it was arbitrarily scaled to highlight the 

details. The lower panel shows the cross-correlations. The red stars are the 

cross-correlation pulses.  

 We can take a closer look at the first LLS1 detection, 

which is shown in Figure 3. Here, the green star is the 

beginning of the pulse and the red is the end. Considering the 

travel time and timing uncertainty from the LLS1 data, this is 

a positive match. The time difference between the two sensors 

is 1.7 ms, which is precisely the difference between the first 

waveform and the second and the reason for its designation as 

a pulse. 

 

 
Figure 3.  Similar format as Figure 2 with an example of first detection by 

LLS1 and matched cross-correlation pulse. 

As mentioned, this technique is prone to false alarms. 

Figure 4 gives an example of this. These signals do not exhibit 

typical lightning discharge characteristices such as a clear, 

short duration peak (as in the top panel of Figure 3). 

Furthermore, the signal arrives at the more distant sensor 

before the closer sensor, meaning it is not coming from 

Bogoslof volcano. In the future, some of these key features 

could be used to identify and remove false alarms.  

 
Figure 4.  Example of first detection by LLS1 and matched cross-correlation 

pulse.  

Figure 5 below shows an example of a LLS1 detection that 

was detected in the EN waveform data, but missed by the 

pulse categorization algorithm. These two signals are clearly 

correlated with a ~1.7 ms time difference, however the 

correlation is lower than one standard deviation, which was 

4.5 ms in this case. Decreasing the threshold so that this pulse 

would have been accepted increases the number of pulses 

overall. It remains unclear whether these pulses are real or not. 
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Figure 5.  Example of a LLS1 detection that was missed. 

 Figure 6 shows three examples of cross-correlation pulses 

that are detected before the first LLS1 detection, but after the 

onset of seismic activity, and are discharges likely originating 

near Bogoslof volcano based on the time difference of the 

signals. The top example is the first pulse after the onset of 

seismic and occurred at 12:14:38 UTC, about 43 seconds after 

the onset of seismic activity. There are other pulses occurring 

sooner than this, however, based on their waveform 

characteristics those are thought to be false alarms due to 

noise. 

 

 
Figure 6.  Three examples of cross-correlation pulses occurring before the 

first LLS1 detection that are possibly real lightning occurring near Bogoslof 

volcano. 

Finally, we present an example of a possible lightning 

discharge that occurred before the seismic onset (Figure 7). 

This pulse likely occurred near Bogoslof based on the time 

difference between the two signals matching the expected 

travel time from the volcano. Despite being somewhat small in 

amplitude, this signal shows characteristics of a typical 

lightning discharge, short duration and distinctly peaked. It 

occurred at 12:10:18 UTC, about 3.5 minutes before the onset 

of seismic activity. 

 

 
Figure 7.  Possible volcanic discharge that occurred before seismic activity. 

V. CONCLUSIONS 

The goal of this study was to develop a new lightning 

detection technique that leverages the archived waveform data 

from electric field sensors operated by Earth Networks. This 

technique uses waveform data, a known location of interest, 

and cross-correlation technique to detect lightning occurring in 

the region of interest, in this case the Bogoslof volcano in 

Alaska. This technique is especially useful in remote regions 

where lightning detection networks are sparse, since only two 

sensors are required. 

Results indicate that this technique detects >80% of the 

lightning located by independent networks. Furthermore, we 

identify significantly more pulses that were not detected by the 

other networks, many of which show indications of being real 

signals associated with the volcanic eruption. Some of these 

pulses occurred before the first detections of existing lightning 

networks, and some even before the onset of seismic activity, 

suggesting it could be a useful tool for early detection of 

explosive volcanism. Comparing the pulses with known 

detections reveals a number of characteristics that could be 

used to filter out false detections. For example, pulse length as 

well as cross-correlation wave shape could be used in the 

future to better exclude false alarms. Also, it was found that 

the current threshold can be lowered to include more LLS 

matches, however this may also increase the false alarm rate. 

Initial results indicate that it is possible to obtain useful 

volcanic lightning data using only two sensors. This will be 

especially useful for detecting electrical activity from remote 

volcanoes that are not currently instrumented. Further work is 

needed to: (1) train the algorithm with other eruptive events to 

ultimately reduce the number of false detections, and (2) 

compare with other monitoring datasets to understand the 

physical source of the electrical pulses.  
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