

Can commercial PRTs meet WMO CIMO response time specifications?

Stephen Burt

Department of Meteorology, University of Reading, UK

WMO TECO Conference Amsterdam, October 2018

WMO CIMO SPECIFICATION

World Meteorological Organization 2014: WMO No.8 - Guide to Meteorological Instruments and Methods of Observation (CIMO guide) (Updated version, May 2017), 1139 pp. WMO, Geneva

2.1.3.3 Response times of thermometers

• For routine meteorological observations there is no advantage in using thermometers with a very small time-constant or lag coefficient, since the temperature of the air continually fluctuates up to one or two degrees within a few seconds. Thus, obtaining a representative reading with such a thermometer would require taking the mean of a number of readings, whereas a thermometer with a larger time-constant tends to smooth out the rapid fluctuations. Too long a time constant, however, may result in errors when long-period changes of temperature occur. It is recommended that the time constant, defined as the time required by the thermometer to register 63.2% of a step change in air temperature, should be 20 s. The time constant depends on the airflow over the sensor.

RESPONSE TIME THEORY

For a first-order response, the rate of change of the instrument output is proportional to the size of the step change

Considering temperatures, where T is the temperature at any instant t, and T_a is the final temperature reached

$$\frac{dT}{dt} \alpha \left(T - T_{a}\right)$$

Differentiating wrt t for a step change of magnitude ΔT

 $T(t) = T_a + \Delta T \exp(-\frac{t}{\tau})$

... where τ is the **exponential response time**

... defined as the time taken for the instrument to respond to 1/e (~63%) of the total change

RESPONSE TIME *T*

- $T(t) = T_a + (T_0 T_a)exp(-t/\tau)$
- τ = 20 s 63% implies complete response (95%, 3τ) within 60 s averaging period
 - WMO specification is 60 s averages for air temperature sensors
 - Defines maximum and minimum temperatures
 - Very few manufacturers publish (meteorologicallyuseful) response time specifications

COMMERCIAL PRTs

20 'off the shelf' commercial 100 Ω PRTs evaluated in laboratory tests

- Three manufacturers
- PRT diameters 3 mm, 4.5 mm and 6 mm
- PRT length 50 mm to 100 mm
- 2-3 samples of each unit/type tested to allow for batch variability

LABORATORY METHOD

Cooling response time through controlled ventilation

- Heated in aluminium dry block within water bath jacket to ~ 35-40 °C then cooled in wind tunnel
- Wind tunnel ventilation variable 0.5 to 3.0 m/s \pm 5%
- PRT temperatures logged at 2 Hz
- 2 x PRT per run, 5 runs per ventilation value 0.5, 1.0, 3.0 m/s
 - 1.0 m/s is thermometer screen ventilation assumed in ISO 17714
 - ISO 17714 Meteorology Air temperature measurements Test methods for comparing the performance of thermometer shields/screens and defining important characteristics. International Organization for Standardization (ISO).
- Results averaged over 5-10 runs
- 427 individual evaluations performed

LABORATORY APPARATUS

EXAMPLE OUTPUT (2 Hz) Run 5, v = 1.0 m/s

140

Response time τ to 63%, seconds

Ventilation speed, m/s

MAJOR DETERMINANTS OF RESPONSE TIME

Ventilation speed

- Greater airflow velocity reduces response times owing to increased advective heat transport from sensor surfaces
- Averaged across all PRTs:
 - \circ τ63 **68.0 s** at 0.5 m s⁻¹ to **35.4 s** at 3.0 m s⁻¹
 - Huge variation between sensors of different sizes
- None of the PRTs tested met WMO CIMO response time specification at a 1 m s⁻¹ ventilation rate
 - Even at 3 m s⁻¹ airflow, more typical of permanently aspirated systems, only two smaller sensors met WMO CIMO τ63 specification

MAJOR DETERMINANTS OF RESPONSE TIME

Sensor diameter

- Key determinant sensor diameter, not length or volume
 - $\odot~\tau 63$ varied by factor of 3-4
- One 6x100 mm PRT τ63
 122.9 s at 0.5 m s⁻¹ to 64.4 s at 3 m s⁻¹
 - » Sensor would require
 > 6 minutes to register 95%
 change in temperature in
 light wind conditions

CONCLUSIONS

- None of the commercially-available PRTs met the WMO 'desired' response time for air temperature sensors
- Response times varied by almost an order of magnitude between sensor diameter and ventilation speed
 - Fastest: 3 x 50 mm PRT, τ 15.1 s average at 3.0 m/s
 - \checkmark Implies (3 τ) complete response within 60 s averaging period
 - Slowest: 6 x 100 mm PRT, τ 122.9 s average at 0.5 m/s
 Implies (3τ) complete response > 6 minutes

• Are improvements possible?

RECOMMENDATIONS

Are improvements possible?

- For air temperature measurements, PRTs no larger than 3 mm diameter should be specified in procurement tenders
 - Particularly where use within passively ventilated thermometer screens is intended
- Suppliers should be mandated to measure and specify τ63 response times for all PRTs intended for meteorological air temperature measurements
- Manufacturers should be encouraged to adapt existing PRT assembly processes to achieve sub-20 s τ63 PRT response time at a ventilation rate of 1 m s⁻¹
 - Without detriment to robustness and calibration stability of the sensor

ACKNOWLEDGEMENTS

THANK YOU

s.d.burt@reading.ac.uk ORCID ID 0000-0002-5125-6546

RELEVANT STANDARDS

- British Standards Institution, 2008: BS EN 60751:2008 -Industrial platinum resistance thermometers and platinum temperature sensors
- ISO 17714 Meteorology Air temperature measurements Test methods for comparing the performance of thermometer shields/screens and defining important characteristics.
 International Organization for Standardization (ISO)