Development of the Upper Air Simulator (UAS) for the Calibration of Radiosondes

Yong-Gyoo Kim* and Upper air measurement team

Center for Thermometry and Fluid Flow

KRISS, Daejeon, Korea

*dragon@kriss.re.kr

CIMO TECHNICAL CONFERENCE ON METEOROLOGICAL AND ENVIRONMENTAL INSTRUMENTS AND METHODS OF OBSERVATION (CIMO TECO-2018)

WORLD METEOROLOGIC

DCANIZATION

<Upper air measurement team>

METEOROLOGICAL AND ENVIRONMENTAL STRUMENTS AND METHODS OF OBSERVATION (CIMO TECO-2018)

ORGANIZATION

HER CLIMATE WA

Introduction

Design of Upper Air Simulator (UAS)

Performances of UAS

Calibration of DTR and RS41

Summary

Radiosonde

- Crucially important instruments for upper-air measurements by WMO
 - Battery-powered telemetry instrument
 - Carried into atmosphere by a weather balloon
 - to measure temperature, humidity, pressure, altitude, geographical position, wind speed and direction, cosmic ray, etc
 - Operated at a radio frequency of 403 MHz ~ 1680 MHz
- □ Calibration with high accuracy required.

CIMO TECHNICAL CONFERENCE ON METEOROLOGICAL AND ENVIRONMENTAL INSTRUMENTS AND METHODS OF OBSERVATION (CIMO TECO-2018)

WORLD METEOROLOGICA

DCANIZATION

Radiosondes in upper air

CIMO TECHNICAL CONFERENCE ON METEOROLOGICAL AND ENVIRONMENTAL INSTRUMENTS AND METHODS OF OBSERVATION (CIMO TECO-2018)

WORLD METEOROLOGICAL

Calibration of radiosonde

DI OCICAL AND ENVIRONMENTAL

TECO-2018

- In common, calibration is done at ground laboratory.
 - ◆ It cannot reflect the upper air conditions.
 - Radiation effects are the most important parameter.
 - It causes heating in daytime and cooling at nighttime.
 - Low-pressure and low-temperature increases solar heating effects.
 - Air ventilation decreases solar heating effects.
 - There is no combined system which can control all parameters together.
- □ For the precise calibration of radiosonde, upper air simulation system is required.

In this work

- □ Upper air simulator (UAS) for radiosonde calibration is designed and constructed.
 - Temperature from -70 °C to ambient
 - Pressure range from 10 hPa to 1000 hPa
 - Solar radiation to 1 500 W/m²
 - Wind ventilation up to 5 m/s
 - Dew point from -40 °Cdp to 25 °Cdp
- Temperature sensors of KRISS DTR and Vaisala RS41 tested at 3 points
 - Ventilation about 5 m/s and irradiance about 1000 W/m²
 - 1st at about 15 km (-70 °C, 100 hPa)
 - 2nd at about 25 km (-50 °C, 50 hPa)
 - 3rd at about 30 km (-40 °C, 10 hPa)

<Temperature profile on Aug. in Korea>

METEOROLOGICAL AND ENVIRONMENTAL INSTRUMENTS AND METHODS OF OBSERVATION (CIMO TECO-2018)

WORLD METEOROLOGICA

DCANIZATION

Design of UAS

Schematic design of UAS

Standards and Science

NSTRUMENTS AND METHODS OF OBSERVATION (CIMO TECO-2018)

120

ORGANIZATION

ATHER CLIMATE WATER

Constructed UAS

KRIS

Korea Research Institute of

Standards and Science

Data acquisition software by Labview

CIMO TECHNICAL CONFERENCE ON METEOROLOGICAL AND ENVIRONMENTAL INSTRUMENTS AND METHODS OF OBSERVATION (CIMO TECO-2018)

WORLD

METEOROLOGICAL

ATHER CLIMATE WATE

Air Temperature

-67.6

Temperature stability inside chamber@-70 °C set

- ➢ Type E thermocouple
- Stability of ± 0.1 °C
- Solution Gradient of ± 0.4 °C

Korea Research

Standards and Science

Institute of

Reference air temperature

Uncertainty of 50 mK(k=2)

PT100 thermometer

Stability of ±0.01 °C

KRI

CIMO TECHNICAL CONFERENCE ON METEOROLOGICAL AND ENVIRONMENTAL INSTRUMENTS AND METHODS OF OBSERVATION (CIMO TECO-2018)

WORLD METEOROLOGICAL

Wind ventilation

□ Mass flow control using sonic nozzle

- Three set of nozzle diameter (*d*)
 - 0.4 mm for about $(10 \sim 50)$ hPa
 - 1.12 mm for about (50 ~ 100)hPa
 - 3.2 mm for about (100 ~ 1 000)hPa
- Set accuracy of ±0.05 m/s
- Stability of ±0.02 m/s

CIMO TECHNICAL CONFERENCE ON METEOROLOGICAL AND ENVIRONMENTAL INSTRUMENTS AND METHODS OF OBSERVATION (CIMO TECO-2018)

WORLD

METEOROLOGICAL

Pressure

- □ Vacuum gauge
 - INFICON CDG 020D
 - ◆ (10 ~ 1000) torr
 - 1 % of reading accuracy

Stability of \pm 0.1 hPa

CIMO TECHNICAL CONFERENCE ON METEOROLOGICAL AND ENVIRONMENTAL INSTRUMENTS AND METHODS OF OBSERVATION (CIMO TECO-2018)

WORLD METEOROLOGICAL

Solar Irradiance

□ Solar simulator

- Newport Research Xe Arc Lamp
- Max. 1000 W with ozone-free Xe
- Tested at irradiance (~1000 W/m²)
- Stability of ± 1.5 W/m²

Reference pyranometer

KRISS Korea Research Institute of Standards and Science

4 Calibration of DTR and RS41

DTR (Dual Thermistor Radiosonde)

$$\Delta t_{s} = S \times f(T, P, v) \rightarrow S$$

$$\downarrow$$

$$\Delta t_{cor} = S \times g(T, P, v) \rightarrow T_{cor}$$

- $t_B = \Delta t_s + \Delta t_r + t_{cor}$
- $t_{cor} = t_B \Delta t_r \Delta t_s$
- > t_B , Δt_s : Can be measured during flight
- > Δt_r : obtained by calibration

Related Articles *Meteorol. Appl.* **23**: 691–697 (2016) *Meteorol. Appl.* **25**: 49–55 (2018) *Meteorol. Appl.* **25**: 209–216 (2018) *Meteorol. Appl.* **25**: 283–291 (2018) Patent FI 127041 B Patent KR 1742906 Patent KR 1787189 Patent US 15/306,697

orea Research

dards and Science

Real time *in-situ* **radiation correction technique**

Setup of DTR

- DTR (Dual Thermistor Radiosonde) and DURAM sounding system
 - In-situ on sounding solar correction by measuring temperature differences between two thermistors having different emissivity (Black and White)

WORLD

METEOROLOGICAL

ORGANIZATION

DURAM - KRIS • X Setup Sounding Trace Data Temp. B **Observation Info** Pressure (hPa) -40.7 °C Serial No. 1 LST 20:38:39 🔵 Temp. W UTC 11:38:39 Black -40.8 °C SATS 0 TW-TB ۲ LAT(°) N 0.0000000 difference White E 0.0000000 LON(°) -0.1 °C 600 ALT(m) 0.0 RH 0 Asc Rate(m/m) 0.0 ime (sec) 1.0 % Battery(volt) 3.0 Pressure **Station Information** Black -32 White ပ္ရ -34 11.3 hPa 1.0 Temperature (°C) off erature -36 RH (%) 1.0 🔴 Wind Dir -38 Temp Pressure (hPa) 1.0 -4 on 0.0 ° 1.0 Wind Dir (°) Wind Spd Light off Wind Spd (m/s) 1.0 300 600 900 1200 1500 1800 Measurement time /s Apply 0.0 m/s 101 Temperature (°C) / RH(%) KRISS X WEATHER **RSSI:188**

-40 °C set, 10 hPa, 5 m/s, 1 000 W/m²

Calibration results of DTR

Solar irradiance (S) = $1 \ 000 \ \text{W/m}^2$

Height /km	Temperature <i>T_{ref}/</i> °C	Pressure <i>P</i> /hPa	Air speed v/m/s	T _{W_Before} /°C	T _{W_After} /°C	T _{B_Before} /°C	T _{B_After} /°C	∆T _{W,Before} /°C	∆T _{W,Rad} ∕°C	∆T _s /°C
15	-69.0	101.7	5.19	-70.6±0.1	-69.1±0.1	-70.3 ± 0.2	-66.7±0.2	1.6	1.5	2.4
25	-50.5	50.5	5.22	-51.9±0.1	-49.1 ± 0.1	-51.9±0.1	-45.7±0.1	1.4	2.8	3.4
30	-40.3	10.2	5.18	-40.7 ± 0.1	-38.1±0.1	-40.7 ± 0.1	-34.9 ± 0.1	0.4	2.6	3.2

 $(\Delta T \text{ (correction value)} = \text{reference temperature} - \text{measured temperature})$

- DTR shows a large temperature rise by solar heating.
- □ Temperature differences between two thermistors are about 2 ~ 3 °C depending on air condition.
- From the relationship ΔT_s and other parameters (*T*, *P*, *v*, *S*), we can get the in-situ solar correction formula.

Setup of RS41

- □ Vaisala RS41 and MW41 sounding system
 - Well-known radiosonde with PT1000 Ω resistive temperature sensor

WORLD

METEOROLOGICAL

ORGANIZATION

-40 °C set, 10 hPa, 5 m/s, 1 000 W/m²

Calibration results of RS41

Solar irradiance(S) = 1 000 W/m²

Height /km	Temperature T _{ref} /ºC	Pressure <i>P</i> /hPa	Air speed v/m/s	T _{RS41_Before} /°C	T _{RS41_After} /ºC	∆T _{Before} /°C	∆T _{rad} ∕°C	∆T _{cal} ∕°C
15	-68.5	99.2	5.18	-68.5 ± 0.1	-68.1±0.1	0.0	0.4	0.4
25	-50.4	50.8	5.16	-50.4 ± 0.1	-49.5±0.1	0.0	0.9	0.9
30	-40.5	10.2	5.19	-40.5 ± 0.1	-39.7±0.1	0.0	0.8	0.8

 $(\Delta T \text{ (correction value)} = reference temperature – measured temperature)}$

- Temperature accuracy of RS41 is as good as same to the reference temperature.
- □ It is less affected by solar heating than thermistors.
- At higher altitude, solar correction value increases by about 2 times.

Success in UAS development

OLOGICAL AND ENVIRONMENTAL

MO TECO-2018

- □ We have developed the **upper air simulator** for the calibration of radiosondes.
 - Air temperature, humidity, pressure, wind ventilation and solar irradiance can be precisely controlled simultaneously.
 - **Sonic nozzle technique** to mimic upper air ventilation is the our best uniqueness.
- **Calibrations of DTR and Vaisala RS41** have been performed in remote mode.
 - Simulation of upper air at -70 °C (15 km, 100 hPa), -50 °C (25 km, 50 hPa) and -40 °C (30 km, 10 hPa) with ventilation speed of 5 m/s and solar irradiance of 1000 W/m²
 - Solar correction values with altitude are obtained with high measurement accuracy.
- Any radiosondes in market can be calibrated at various air conditions.
- Collaborations with other institutes or suppliers are always welcome.

Further works

- Improvement of control accuracy of UAS including wind velocity profile measurements, rotation of sensor and control of incident beam area
- Calculation of calibration uncertainty and development of calibration procedures
- □ Improvement of measurement accuracy of DTR
- Development of accurate *in-situ* real time solar correction formula using DTR
- **Sounding tests of DTR with formula**

Thank you for your attention

Thank my team!