

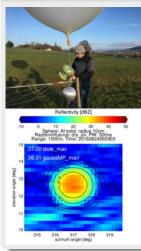
Traceability and Calibration of Weather Radar Reflectivity Measurements by Means of a Target Simulator

M. Schneebeli¹, A. Leuenberger¹, E. Tas², O. Schreiber³, T. Pittorino³

¹Palindrome Remote Sensing GmbH, Landquart, Switzerland ²Swiss Federal Institute of Metrology METAS, Wabern, Switzerland ³ NTB Interstate Applied University of Technology Buchs, Buchs, Switzerland

WMO CIMO TECO, 8.10.2018, Amsterdam

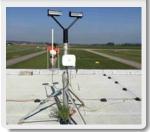
Swiss Confederation Commission for Technology and Innovation CTI



Stiftung für Innovation, Entwicklung und Forschung Graubünden

Radar calibration is difficult

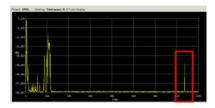
Sphere calibration



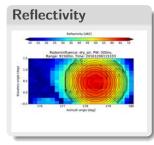
Manual maintenance

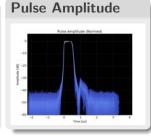
Sun calibration

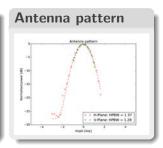
Ground truth



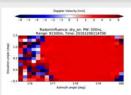
Palindrome Radar Target Simulator (RTS)

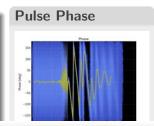

- Generates a calibrated, virtual radar target
- Receives incoming radar pulses
- Every individual pulse is sampled and stored
- Pulses are sent back with predefined amplitude, Doppler shift and time delay

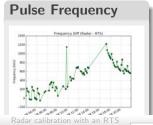




Introduction


Measurement capabilities





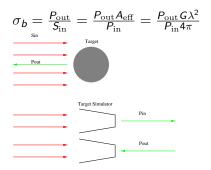
Doppler

4 / 13

Calibration theory

$$Z_{e} = f(\sigma_{b}, \lambda, \theta, r)$$

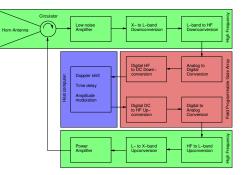
- Z_e: radar reflectivity
- σ_b : radar cross section
- λ : wavelength
- θ: half power beam width of radar antenna
- r: distance to target


$$\sigma_b = \frac{P_{\text{out}}}{S_{\text{in}}} = \frac{P_{\text{out}}A_{\text{eff}}}{P_{\text{in}}} = \frac{P_{\text{out}}G\lambda^2}{P_{\text{in}}4\pi}$$

- *S*_{in}: incoming power density on target
- Pout: reflected power
- A_{eff}: Effective antenna area
- G: antenna gain

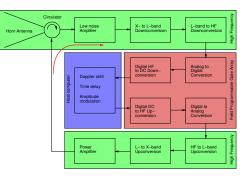
If the fraction between outging and incoming power is known, the RCS σ_b of a target is known precisely

Calibration theory


- $Z_{e} = f(\sigma_{b}, \lambda, \theta, r)$
 - Z_e: radar reflectivity
 - σ_b : radar cross section
 - λ : wavelength
 - θ: half power beam width of radar antenna
 - r: distance to target

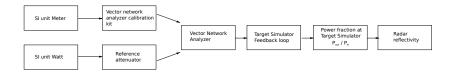
If the fraction between outging and incoming power is known, the RCS σ_b of a target is known precisely

Calibration with a target simulator



Analog up- / down-conversion, amplification Analog ⇒ digital conversion Digital up- / down-conversion Signal processing

Calibration with a target simulator

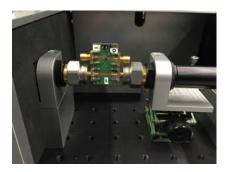


Feedback loop with gain G_f $\rightarrow \frac{P_{\text{out}}}{P_{\text{im}}} = f(G_f)$ $\rightarrow G_f$ needs to be determined precisely.

Analog up- / down-conversion, amplification Analog ⇒ digital conversion Digital up- / down-conversion Signal processing

Traceability to SI units

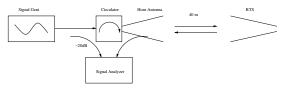
Calibration Kit



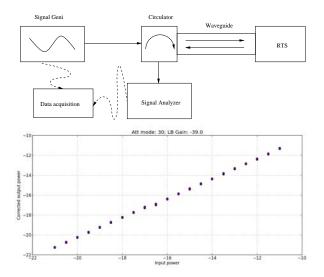
VNA measurements

Target simulator calibration unit

Network analyzer measurements



- High-precision measurements of feedback gain *G*_f
- Accuracy: below 0.1 dB
- Measurement of antenna gains in anechoic chambers
- Swiss Metrology Institution METAS is responsible for the calibration and traceability


Outdoor verification with Antennas

Measurement of the difference between the outgoing and incoming pulse power ΔP

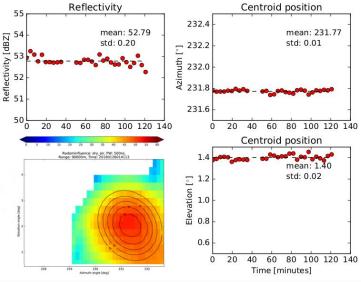
Laboratory verification without antennas

Measurements during Olympics 2018

60DX calibration

- Distance: 2.1 km
- Δ*h*: 100 m
- 3 observation days
- window scans

Long-term measurements with MXPol


- Distance: 13 km
- Δ*h*: 700 m
- 40 observation days
- RHI scans

MXPol test measurements

- Distance: 5 km
- Δ*h*: 0 m
- 1 observation day
- window scans

60DX calibration with 50 dBZ target

- A target simulator provides a mean to calibrate and trace weather radar reflectivity measurements back to SL units
- Accuracy depends on the measurement precision of the feedback gain

- Certified commercial instrument available in 2019 for X- and C-band
- Extensive tests will be performed

Booth 9070

INSTRUMENTS

Radar calibration with an RTS

13 / 13