

Improving the WMO Guide n.8. Results on the experimental evaluation of the effect of presence of obstacles in the vicinity of sites hosting near-surface meteorological measurement. The case of the road.

> <u>Graziano Coppa¹</u>, A. Quarello^{2,3}, A. Merlone¹ ¹INRiM, Istituto Nazionale di Ricerca Metrologica, Torino, Italy ²UniTo, Università di Torino, Torino, Italy ³Université Paris Diderot, Paris, France

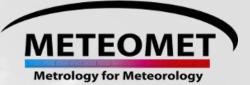
Siting related uncertainty

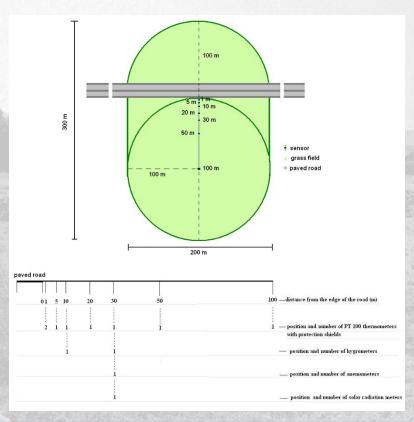
WMO current classification of meteorological observation sites is a qualitative one based on operative procedures by Météo-France.

It establishes a 5-class hierarchy based on the distance of the sensors from a range of obstacles (roads, trees, buildings,

Class 5

None of the previous!

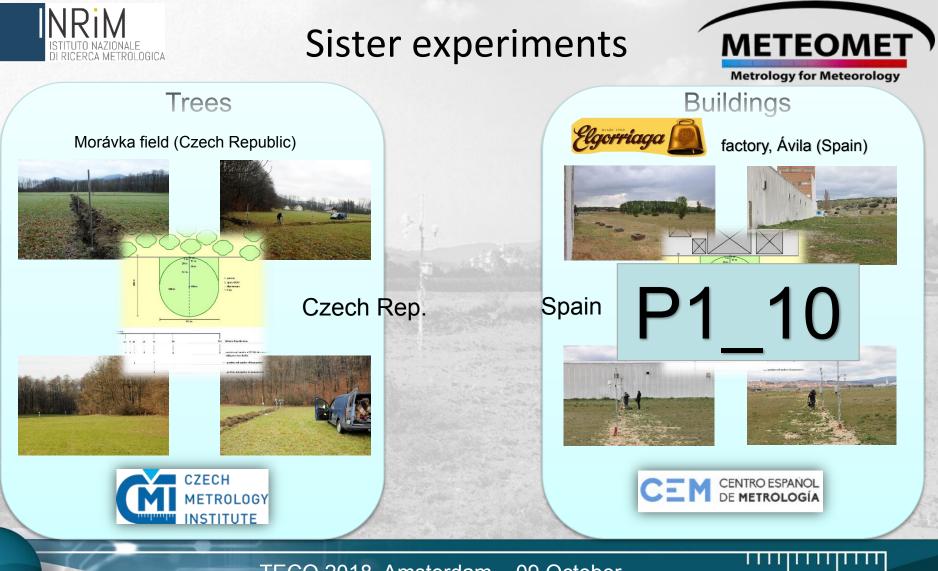



Within project MeteoMet2 a task is dedicated to the evaluation of the influence of obstacles («siting») on the <u>uncertainty in surface air temperature measurements</u>.
INRiM, CEM, CMI and IMBIH prepared a threefold experiment, in three different countries, each one dedicated to the evaluation of different siting effects on temperature.

Experimental layout

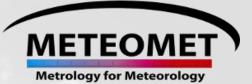
TECO 2018, Amsterdam – 09 October

- 7 Pt100 thermometers + 1 redundancy
- 2 hygrometers (#3 #5)
- 1 anemometer (#5)
- 1 radiometer (#5)


unhunhund

NRIM ISTITUTO NAZIONALE DI RICERCA METROLOGICA Castelnuovo Don Bosco airfield Metrology for Meteorology

Modifica - Cronologia Esporta OpenStreetMap gspinoza * Tracciati GPS Diari degli utenti Copyright Aiuto Informazioni

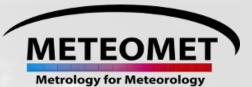

TECO 2018, Amsterdam – 09 October

......

Data and principle

- One full year of data
- Time interval: 30 s
- > 1,000,000 records (and 13,000,000 fields)

How to handle this very large amount of data?


No correction will be provided -> only the «worst case scenario»

The idea: we are going to identify subsets of data where our «road siting effect» is most evident

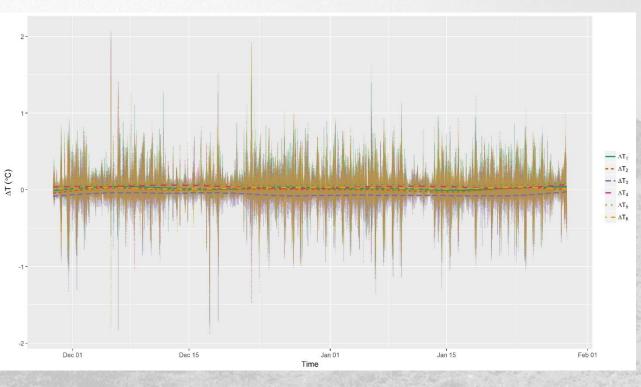
Measurement uncertainties



Evaluation of in-field behaviour of thermometers in the same conditions 28.11.2016

Measurement uncertainties

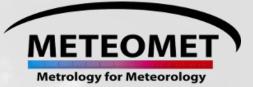
Evaluation of in-field behaviour of thermometers in the same conditions


 $MAX(\Delta T) = 2 \ ^{\circ}C \ (spikes)$

ST.DEV(Δ T) = 0.1 °C

This is what we assume as measurement uncertainty

Also useful to assess systematics (#1)



TECO 2018, Amsterdam – 09 October

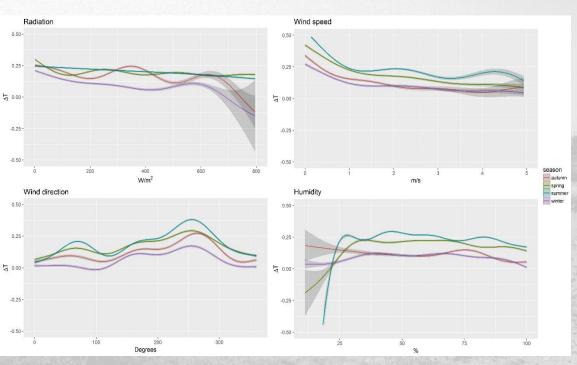
unhunhun

The analysis...

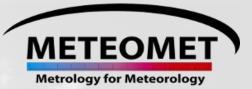
Semi-parametric GAM model for $\Delta T1$:

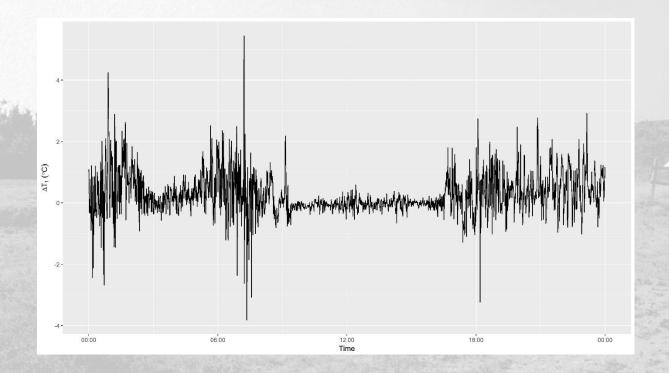
 $E(\Delta T_1) = s + s_1(RAD, \lambda, s) + s_2(WS, \lambda, s) + s_3(WD, \lambda, s) + s_4(H, \lambda, s)$


Where s_j are smooth non-linear functions, based on thin plate regression splines

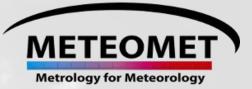


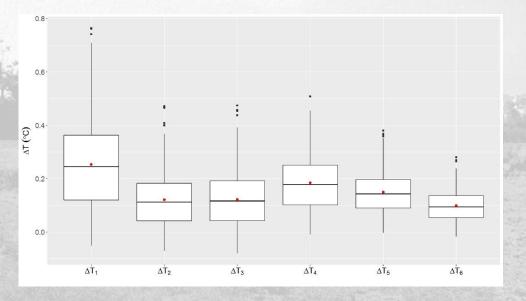
The analysis...


The statistical analysis has given important insights about the dependencies of the effect:


- larger at lower radiation values
- larger at lower wind speeds
- larger with lateral winds
- Independent of humidity

The analysis...

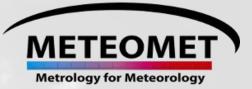

Typical day behavior

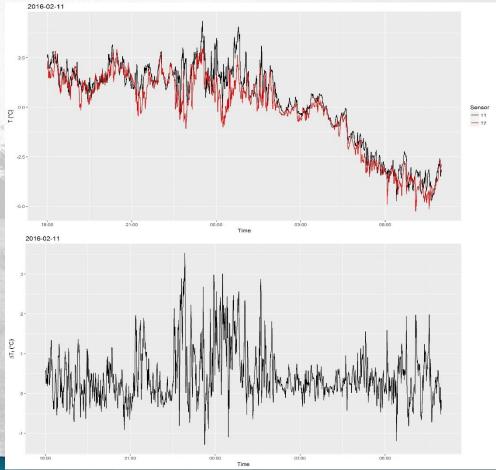

Differences lower during the day (as suggested by the GAM analysis

-> Only nights analysed

....h....h....

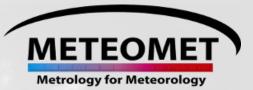
Underlying effect

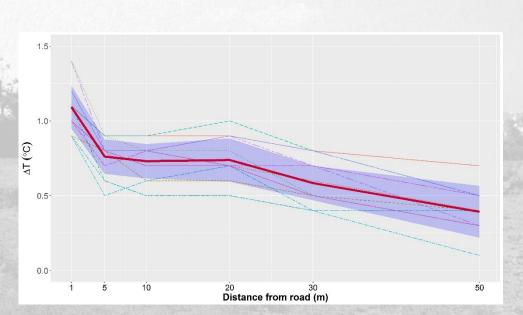

Distribution of Δ Ti during nights


- only ΔT1 shows a clear road effect signal,
- all other ΔTi are positive, even though no definite trend can be detected (compatible with a flat distribution)

Effect only detectable very close to the road (~ 0.25 °C)

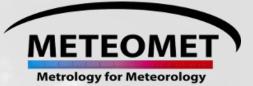
Principal effect


Shorter but sustained effects were found, especially right after sunset

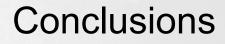

By visual inspection at the nightly plots, we selected some clear examples of sustained differential heating between TE1 and TE7: for these events, also the temperatures measured by the other stations were checked.

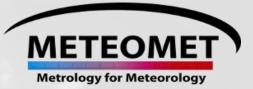
unhunhund

Principal effect

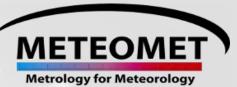

Plot of the Δ Ti from a number of sustained events converted into distances from the road considering TE7 as the reference measurement.

Sharp decrease in ΔT within 5 m from the road, a plateau up to 20 m, then a slow and steady decline until the 50 m station.

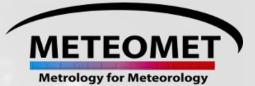



Uncertainty budget

	1 m	5 m	10 m	20 m	30 m	50 m	100 m
Туре А				20 27			
Measurement	0.13	0.13	0.14	0.13	0.09	0.12	0.11
Underlying	0.16	0.10	0.10	0.10	0.07	0.06	0
Effect	0.14	0.12	0.12	0.14	0.12	0.17	0
Туре В							
Calibration	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Datalogger	0.024	0.024	0.024	0.024	0.024	0.024	0.024
Total (<i>k=1</i>)	0.25	0.20	0.21	0.22	0.17	0.22	0.11
Extended (k=2)	0.50	0.40	0.42	0.44	0.34	0.44	0.22


- Instrumental contribution to uncertainty 0.1 °C
- Max ΔT up to 5 °C
- All ΔT larger than 2 °C are found in short spikes (0.08 % of all measurements) -> not attributable to road siting!
- Larger effect at nights and with weak or no wind. No dependence from humidity
- Underlying night effect of about 0.25 °C
- Sustained (1 hour) ΔT of about 1-2 °C

Summarizing


- Siting effect on uncertainties in temperature measurements
- 3 identical experiments (road, trees, building)
- Avoid rapid temperature changes!
- Semi-parametric statistical model built -> road experiment

Coming next

 Apply study to 10-20 minutes averages eliminating turbulent flows

Thanks for your attention