

¹ Meteorological Observatory Lindenberg - Richard Aßmann Observatory (MOL-RAO), Deutscher Wetterdienst (DWD)

² Earth Observation Science, Department of Physics and Astronomy, University of Leicester

³ Faculty for Mathematics, Informatics and Natural Sciences, Meteorological Institute, Universität Hamburg

Nd

METAR – Meteorological Aviation Report

EDDT 120820Z 130	W ^{ind} 05K1	Visibility Cloudiness Lemper 9999 BKN011 02/M00	ature Air pressure Air Dressure Q1023 BEC	Trend MG SCT012
Cloud coverage (<i>N</i>)	(Few (FEW)	1/8 – 2/8	
		Scattered (SCT)	3/8 – 4/8	
	\rightarrow	Broken (BKN)	5/8 – 7/8	
		Overcast (OVC)	8/8	
		No significant cloud (NSC)	Missing cloud neither Cb not	s <1500 m, r TCU

Cloud base height (CBH) in hecto feet [hft = 100 ft], vertical resolution: 1 hft

Measuring instrument (ceiling \rightarrow ceilometer)

Compact and inexpensive Light Detection And Ranging (LIDAR) device for deriving CBH from the measured backscatter signal

Vaisala LD40 (47 stations + 51 airports)

LUFFT CHM15k (118 (165) stations)

Ceilometer

Backscatter profile

http://ceilonet.dwd.de/mwvs/mwvs ceilometer geoplot.php

3 TECO2018, 08.-11.10.2018, Amsterdam

LIDAR equation

Backscatter profile

- Basically additional dependency on wavelength (λ)
- Approximation: constant ratio $\beta/\sigma = const.$ along the optical path

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Backscatter signal and CBH of various ceilometers

Deutscher Wetterdienst G Wetter und Klima aus einer Hand

CBH obtained from different manufacturers

Ceilometer campaign Hansestadt Hamburg (CircaHH)

Deutscher Wetterdienst 6 Wetter und Klima aus einer Hand

CircaHH – "carpenter's rule for clouds"

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Image analysis

Methods for determination of CBH

- Red/white contrast CBH = height, where $C/C_0 \le 0.05$
- Gradient in extinction profile CBH = height, where $\Delta \sigma / \Delta z = \max$
- Meteorological optical range (MOR)

$$MOR = -\frac{\ln(C/C_0)}{\sigma} \approx \frac{3}{\sigma}$$

e.g. Poyer and Lewis (2009), Vande Hey (2013)

Slant optical range (SOR)

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Advantage of SOR as quantitative definition

Application of SOR definition to image analysis

Conclusions

- Slant optical range (SOR) with threshold value of 1000 m appears to be a suitable quantitative definition for CBH
- Image analysis of tall towers or masts can provide a reference method to evaluate CBHs obtained from various ceilometer types
- The measurements of recently installed visibility sensors in 175 m and 280 m height should help to verify the extinction profiles derived from the image analysis
- Combination of KLETT algorithm and SOR criterion offers a physically motivated method to determine CBH from ceilometer backscatter profiles

Thank you for your attention

Additional slides

TECO2018, 08.-11.10.2018, Amsterdam 15

Preliminary: Application of SOR definition to "raw" data (Input backscatter profiles from CL31)

