

ocean RAIN

Ocean Rain And Ice-phase precipitation measurement Network

Christian Klepp^{1,2}, Jörg Burdanowitz^{2,3}, Simon Michel², Alain Protat⁴, Nicole Albern^{2,3}, Marvin Kähnert², Valentin Louf⁴

> ¹ CliSAP/CEN Excellence Cluster, University of Hamburg, Germany ² Meteorological Institute, University of Hamburg, Germany ³ Max Planck Institute for Meteorology, Hamburg, Germany ⁴ Bureau of Meteorology, Melbourne, Australia christian.klepp@uni-hamburg.de

Outline

- Why **ocean**RAIN
- Automatic optical disdrometer system
- Advantages, Calibration and Accuracy
- Ship Fleet, Data Ingest and Data Set Construction
- Measurement Examples and Applications
- Summary

Why oceanRAIN (\$) ?

- Precipitation is ... notoriously difficult to measure: spatio-temporal variability, intermittent, phase dependent, part of the energy and water cycle, freshwater flux and thus an ECV
- Oceans void of in-situ precipitation data due to lack of suitable instrumentation, VOS, ship and buoy gauge undercatch and snow issues
- Large uncertainties and variability of GPM era satellite data (and re-analysis / model) requires in-situ surface validation and calibration reference data for rain and snow
- Development of ODM470 into an automatic measurement device

In-situ Shipboard Global Ocean Water Cycle Components Dataset

aims at providing a comprehensive statistical basis of high-quality in-situ global oceanic phase-dependent precipitation through PSDs evaporation and freshwater flux data

for water cycle analysis and satellite validation and to improve our knowledge about oceanic precipitation

Automatic optical disdrometer system ODM470

- sensitive volume 120 mm x 22 mm
- photoelectric barrier IR-LED
- reference voltage attenuation
- size dependent light extinction measures cross-sectional area
- 128 size bin allocation with particle counting during 1 min integration
- relative wind speed
- IRSS88 precipitation detector

Advantages over existing optical disdrometers

- developed for shipboard usage
- all-weather capability
- fully automatic
- low maintenance requirements
- cylindrical volume
- pivoting
- high dynamic range
- rain and snowfall algorithm (PSD)
- sensitivity 0.01 mm/h
- high accuracy

Output

rain/snow/mixed occurrence incl. true-zeros, intensity, accumulation and raw/NC PSD

Automatic operation improvements

- network data logger (IP time server synchronization) / data feed into ship system
- log files to check instrument state
- automatic rebooting if power is lost
- instruments feed into the computer box at the ODM, onle cable for data and power
- IRSS coupling to the ODM
- delay-mode to near real-time possible

Klepp, C., 2015: The Oceanic Shipboard Precipitation Measurement Network for Surface Validation – OceanRAIN. Atmos. Res., Special issue of the International Precipitation Working Group (IPWG), 163, 74-90, doi: 10.1016/j.atmosres.2014.12.014.

Burdanowitz, J., Klepp, C., and Bakan, S.: An automatic precipitation-phase distinction algorithm for optical disdrometer data over the global ocean, Atmos. Meas. Tech., 9, 1637-1652, doi:10.5194/amt-9-1637-2016, 2016.

ODM470 Calibration and Accuracy

Optical axis adjustments Steel ball bearing calibration Disdrometer-constant for precip volume scaling

ANS410 gauge vs ODM470 disdrometer Windspeed < 1 m/s to avoid gauge undercatch

Precipitation ANS410 (mm/h)

Hou

20

bold = permanent installation black = campaign data

RV Sonne

RV Roger Revelle

MS The World

RV Thompson

RV Aurora Australis

plus experimental campaign data from

RV Celtic Explorer KV Senja RV Aranda RV Akademik loffe RV Agulhas II

OCEANRAIN **S** Data Ingest and Dataset Construction

Input

- 4 shipboard data streams
- + meta data

Postprocessing

Precipitation module Precipitation microphysics module Evaporation module

Output

minute-resolution

OceanRAIN-W: 76 parameters, temporally continuous

OceanRAIN-M: NC PSD and microphysics

OceanRAIN-R Raw PSD and microphysics

oceanRAIN Solution

Ships

Seasons

> 6.83 million minutes

> 0.69 million minutes with precipitation

OceanRAIN-M applications

input: Raw and NC PSD

output:

- → normalized gamma distribition parameters (Testud et al. 2001)
- → microphysical parameters
- \rightarrow conv / strat (Thurai et al. 2010)
- → Reflectivity, differential reflectivity and specific differential phase for different radar frequencies
- → derivation of Z-R relationships
- → currently in analysis for GPM IMERG, CloudSat, HOAPS, CAPRICORN shipboard radar data

OceanRAIN-W applications

P (690.000) E (6.83 million) 90 90 80 80 70 -70 · 60 60 50 -50 · 40 40 30 30 20 -20 - 01 (°) 10 0 -10 10 -0 --20 -20 -30 --30 -40 -40 -50 -50 -60 -60 -70 -70 -80 -80 -90 -90 -100 0.01 0.1 0.1 evaporation rate (mm/h) 10 0.01 precipitation rate (mm/h) E-P Precip probability (%) rain, snow, mixed 90 80 A Rain (all ships) Snow (all ships) Mixed (all ships) 70 60 50 40 30 20 10 (°) 0 10 0 -20 -30 -40 -50 -60 -70 -80 PL -90 -10 0 -9 -8 -7 -6 -5 -4 -3 -2 -1 1

Freshwater Flux (mm/h)

Summary

OceanRAIN is to date the only systematic long-term global ocean measurement effort to combine in-situ precipitation, evaporation and freshwater flux products

- automatic all-weather optical disdrometers
- 76 meteorological and oceanic parameters plus 128 class PSDs
- 15 research vessels
- all climatic regions and seasons
- precipitation phase, occurrence, rates and accumulation through PSD
- more than 6.8 million minutes of data, steadily growing

OceanRAIN aims at

- improving knowledge on oceanic water cycle components and precip microphysics
- validation of satellite (re-analysis and model) data
- error characterization for satellite retrievals
- 3 dataset DOIs
- data descriptor paper

www.oceanrain.org

Thank You!

R/V Polarstern mast in 45 m height on 2 October 2012 in the Arctic

ODM470 precipitation algorithm

Particle size distributions

1996)

n(bin) = particle size distribution density (Clemens, 2002) by particle counting N(bin)

$$n(bin) = \frac{N(bin)}{l \cdot d \cdot t \cdot \sqrt{U_{rel}^{2} + (V_{fall}(bin))^{2}}} \quad \text{after Großklaus (}$$

Rain and snowfall algorithm

 $P = 3600 \cdot \sum_{bin=0}^{128} n(bin) \cdot V_{fall}(bin) \cdot M_{particle}(bin)$

Parameterizations for rain and snow

Rain: $\begin{array}{l} M_{particle}(bin) = \frac{4}{3} \cdot \pi \cdot 1000 \cdot \left(\frac{D_{p}(bin)}{200}\right)^{3} \\ V_{fall}(bin) = 9.65 - 10.3 \cdot e^{\left(-1.2 \cdot \frac{D_{p}(bin) \cdot 10}{2}\right)} \end{array}$ Atlas and Ulbrich, 1974

 $M_{particle}(bin) = 0.0000107 \cdot (D_{p}(bin))^{3.1}$ Snow (LWE): $V_{fall}(bin) = 7.33 \cdot (D_{p}(bin))^{0.78}$ Hogan, 1994 and Lempio, 2007

Adding turbulent heat fluxes, evaporation and freshwater flux

OceanRAIN evaporation (mm/h).

input: Tair, Twater, RH and abs. wind speed output: COARE 3.0 bulk flux algorithm, Fairall et al.,2003:

- Tennekes, 1972: → wind speed in 10 m height
- Murphy and Koop, 2005: \rightarrow specific humidity
- Donlon et al., 2000 → SST
- → transfer coefficients, sensible and latent heat fluxes, E and E-P
- \rightarrow ocean salinity
- Along-track precip is a true-zero in about 90% of the time
- Relevance for the SEAFLUX and SPURS working groups

OceanRAIN E-P (mm/d): tropics 1.9, subtropics 2.1, mid-lats -2.1, high lats 0