

Agency for Meteorology, Climatology, and Geophysics of the Republic of Indonesia

AUTOMATION OF OBSERVING NETWORK IN BMKG

Agung Saifulloh Majid, G.S. Budhi Dharmawan,

Damianus Tri Heryanto, Untung Merdijanto

International Conference on Automatic Weather Stations 24 – 26 October 2017, Offenbach am Main, Germany

OUTLINE

- Introduction
- Automation Roadmap
- Implementation
- Data flow
- Parallel Observation
- Challenges
- □ Conclusion

Introduction

- BMKG surface observing network:
 - 120 meteorological stations,
 - 21 climatological stations/posts,
 - 3 Global Atmosphere Watch (GAW),
 - 285 Automatic Weather Station (AWS),
 - 44 Automated Weather Observing System (AWOS),
 - 402 Automatic Rain Gauges (ARG),
 - 44 Radiosonde stations,
 - 40 weather radar, and
 - 3 Wind Profiler Radar (WPR)

Weather Radar Network

- □ EEC : 20
- □ Gematronik : 14
- □ Baron : 5
- Vaisala : 1

AWS Network

□ Total : 285 locations

Automatic Rain Gauge (ARG) Network

Total : 402 locations

Manual Station

- □ Meteorological Station : 120
- □ Climatological Station : 21
- □ Geophysical Station : 31

Why Automation?

- □ The needs for the observing network automation:
 - Minamata Convention on Mercury 2013
 - ICAO Technical Instruction for the Safe Transport of Dangerous Goods by Air
 - WIGOS Pre-Operational Phase 2016 2019.
 - BMKG roadmap on the automation of observing network 2014 – 2019

General Policy

Automation Roadmap

	STATION		GRAND				
FUNDING		2015	2016	2017	2018	2019	TOTAL
	BASIC	5	25	5			35
	NON-BASIC				7	45	52
APDIN	CLIMATOLOGY			21			21
STR-1**	BASIC	25					25
	NON-BASIC	8					8
Total		38	25	26	7	45	141

* State Budget

** Strengthening project in collaboration with Meteo France International (MFI)

ICAWS-2017, Offenbach am Main Germany

10

Implementation

- Provision of integrated grounding system and surge protector.
- Rearrangement of met garden, e.g. ground levelling; cable ducting set up, sensors siting and exposure;
- Equipment replacement from manual/conventional to electronic/digital.
- Provision of supporting facilities such as UPS, solar panels, and generator sets
- Reconfiguring communication network.
- Adjustment of data format and metadata.
- Designing client interface and monitoring application.
- Parallel observation.

Integrated Lightning Protection System

Maumere Station, East Nusa Tenggara, Indonesia

13

Met Garden Rearrangement (1)

Met Garden Rearrangement (2)

Met Garden Rearrangement (3)

15

Kualanamu Station, North Sumatera, Indonesia

Before (2015)

Datalogger

- □ Supply voltage 10 24 V with power consumption 0.5 0.7 W
- The Datalogger equipped with an LCD display, 13 input, 6 output, and configurable virtual channel with an easily adjustable measuring interval for single values per channel.
- The Compact Flash Card (CF Card) data memory provide a data storage buffer for 1 year.
- The Datalogger also provides mobile and wireless data transfer via CF card, with cable via interface RS232 or optional via GSM modem, telephone modem, radio modem, or RS485.

17

Sensors Specification

No	Parameter	Sensor	Accuracy	Range	Resolution
1	Wind Speed	Ultrasonic	\pm 0.2 m/s	0 – 75 m/s	0.1 m/s
2	Wind Direction	Ultrasonic	< 2 °	0 - 359.9 °	0.1 °
3	Temperature	Pt100 RTD Class F0		-40 s/d +85 °C	± 0.1 °C
4	Relative Humidity	Capacitive thin film	±1,5%RH for 0 - 90%RH	0 – 100%	
5	Atmospheric Pressure	Silicone Capacitive	+ 0.15 hPa	500 - 1100 hpa	0.1 hPa
6	Rainfall	Tipping bucket	2%		0.2 mm
7	Solar Radiation	Silicon photodiode	100m V/W/m2	0 - 2.000W/m2	0.4 – 1.1 µm
8	Evaporation	Open pan			
	a. Water level	Pressure difference	0.4 mm	0 - 200 mm	
	b. Water temperature	Thermistor	± 0.03°C	-50 - +70 °C	
	c. Wind speed	Сир	+ 0.5 m/s	0.4 - 55 m/s	\leq 0.1 m/s

Data flow

19

AWS Center Server

ICAWS-2017, Offenbach am Main Germany

AWS Data Display

BMKG Jumat, 08 Sep 15:45:19 Will	DIE I LOI ETEOROLOG ptember 201	GI BUDIART	O CURUG	GI DAN G	08:45:19
Nomor Stasiun : 96739 ID WMO : WIRR	REA	LTR	ME DATA	Lintang Bujur Ketinggian Di	: -6.287800 ° : 106.564000 ° PL : 46.0 meter
Suhu Udara (T)	: 32.0	°C		N	
Suhu Titik Embun (T	'd): 21.6	°C			2
Kelembaban (RH)	: 54	%	w-		E
Curah Hujan (RRR)	: 0.0	mm			
			SW	s si	6
Tekanan Udara (P)			Arah Angin (d	dd) : 34	7 0
Stasiun	Landasan		Kecepatan Ang	gin (ff) : 2.0	0 Knot
QFE : 1002.9 mb	QFE : 10	03.1 mb	Penguapan Ud	lara : 2. (6 mm
QFF : 1008.0 mb	QNH : 10	08.6 mb	Radiasi Matah	ari : 71	2 W/m ²

Local Server Display

BADAN METEOROLOGI, KLIMATOLOGI DAN GEOFISIKA STASIUN METEOROLOGI BUDIARTO CURUG. KAMPUS STPI BANDARA BUDIARTO CURUG Friday, 08 September 2017 08:45:57 UTC TEMPERATURE GROUP-STATION INFORMATION-WIND VIEW-PRESSURE GROUP N NE WET BULB NW 08:30-08:40 DIGITALISASI MONITORING w-06:00-09:00 LAST UPDATE SW 06:00:09:00 08:30-08:40 00:00-24:00 WIND GROUP-LOGGER OUTPUT 08:30-08:40 1002.5 08:30-08:40 LAST UPDATE 2017-09-08 08:30:00 00:00-24:00 THERMOMETER IDENTIFIER (aT) 08:42-08:44 EII ENAME BAROMETER IDENTIFIER (aP) HUMIDITY IDENTIFIER (aU) 08:30-08:40 WIND SPEED STATION PRESSURE AIR TEMPERATURE LAST UPDATE 08:30-08:40 RELATIVE HUMIDITY 08:40-08:50 08:30-08:40 WIND IDENTIFIER (IW) 06:00-09:00 08:30-08:40 SOLAR RADIATION BMKG-SOFT SERVER-SOLAR RADIATION GROUP-AMOUNT OF SOLAR RADIATION 00:00-24:00 00:00-24:00 WATER LEVEL LAST UPDATE SUNSHINE DURATION RAIN INDICATOR (iR) TOTAL EVAPORATION WATER TEMPERATURE EVAPORATION IDENTIFIER (IE) SOLAR RADIATION TRESHOLD RAIN GAUGE IDENTIFIER (aR) WIND EVAPORATION AAXX 08084 96739 4//// /0204 10329 20217 30078 40027= SYNOP METAR METAR WIRR 090845Z KT 32/23 Q1008 WXRev WXREV 09084 96739 03323 20702 29351 20000 37307

Parallel Observation

- □ WMO/TD No. 1378 : minimum 2 years parallel observation is preferable.
- Director General of BMKG's Instruction No: IKB.02/II/2014 Year 2014: 4 years parallel observation

\leftarrow Evaporation

Parallel Measurement

Challenges

- Capacity building capabilities on maintenance human resources.
- Financial limitation.
- Traceability maintenance
- Electricity
- Communication

Conclusion

- 63 stations have been automated
- 22 stations automation are in progress till the end of 2017
- Parallel observations have being conducted on 30 locations

THANK YOU