WORLD METEOROLOGICAL ORGANIZATION

COMMISSION FOR BASIC SYSTEMS

OPAG ON INFORMATION SYSTEMS AND SERVICES

MEETING OF THE EXPERT TEAM ON DATA REPRESENTATION AND CODES

FINAL REPORT

ARUSHA, 17-21 FEBRUARY 2003

EXECUTIVE SUMMARY

The Meeting of the Expert Team on Data Representation and Codes (ET/DR&C) was held, at the kind invitation of the United Republic of Tanzania, in Arusha, from 17 to 21 February 2003.

The Team reviewed the status of validation tests for the new FM 92 GRIB Edition 2 encoding/decoding. Further validation tests and experimental exchanges were recommended for some templates: PDT 4.10 and 4.14, GDT 3.1000/1100/1200 and PDT 4.1000/1001/1002/1100/1101. The Team proposed, for experimental testing, the addition of two new compression schemes based on JPEG 2000 and PNG. Clarifications of regulations for scaling, use of local Tables and local Templates, and for spatial differencing were developed. The guide for GRIB Edition 2 was finalized.

Several Centres reported on experimental and operational exchanges of fields in GRIB2. Japan Meteorological Agency (JMA) had a separate GRIB2 encoder for specific generated products and a decoder for limited products. Provision of three and six month ensemble forecast products in GRIB2 should start next autumn for national and international users; new products in field form would be considered in GRIB Edition 2. NCEP has both a Fortran 90 and C version of an encoder/decoder. An experimental project (called National Digital Forecast Database) managed by NWS/TDL made use of GRIB2. ECMWF should start migration to GRIB2 and provide EPS probabilities on the GTS in 2003. A decoder will be available to decode these products. EUMETSAT is generating Cloud mask products in GRIB2. Satellite images will also be available in GRIB2. A decoder for this type of data is available to users upon request. It is still to be included in the PUMA work-station.

The Team agreed to define a new Common Code Table C-12 for recording Sub-Centre entries linked to originating Centres. The Team agreed that recording of Sub-Centres in the WMO Manual should be a recommended practice, and recommended also the allocation of entries in Table C-11 for all non-listed NMCs, RSMCs, RTH, etc.

The Team discussed, finalized and recommended additions of descriptors to BUFR Tables. Descriptors with pre-operational status were recommended for oceanographic data and for new satellite data, including ENVISAT and AIRS satellites. A proposal to encode in BUFR all SIGMET data (to be validated), including description in 3-D of meteorological features, was finalized. The Team also recognized the possible usefulness of a separate Master Table for satellite data to help managing the continuously increasing number of related descriptors. A proposal will be coordinated by EUMETSAT for the next meeting of the ET/DR&C.

The recommended BUFR templates for transmission of traditional observations were revisited by the Team. For PILOT and TEMP data, it was agreed to indicate by a note that the first time corresponds to the nominal time of observation, and to indicate that the first latitude and longitude are those of the launching site. Time increment in seconds and increments of high accuracy latitude and longitude will be reported at each level. These additions will satisfy requirements of high resolution modeling. In the BUFR/ CREX template for SYNOP and SYNOP MOBIL data, it was agreed to qualify the descriptor 0 20 014 as "height of top of the clouds above mean sea level" and to express the significant cloud layers using delayed replication.

The Team considered the impact that a change to a new edition in November 2005 might have on the migration process. The Team agreed to debate on this issue during the coming year to reach a final decision at its next meeting.

The Team noted that new experimental or operational exchange of new BUFR data was taking place. Experimental transmission of Buoy, BATHY and TESAC data by Service Argos in BUFR should start during 2003. JMA is planning to disseminate SHIP data in BUFR, and is already disseminating wind profiler data in BUFR. Météo-France will soon disseminate JASON 1 satellite data in BUFR. Within the EUMETNET PWS-GTS project, CHMI (Czech Republic), KNMI (Netherlands) and SHMI (Slovakia) are disseminating AWS observations in BUFR. DWD (Germany) will start in July 2003. As part of its EARS (EUMETSAT ATOVS Retransmission Service) project, EUMETSAT encodes in BUFR the level 1c ATOVS data.

In order to correct a weakness in the text of some regulations, the Team agreed to clearly specify, in code forms FM 71, FM 72, FM 73, FM 75, FM 76, FM 81, FM 82 and FM 83 that, when several reports

are included in a bulletin then each report inside the bulletin does not need to have the code name and MMJJJ indicated.

The Team proposed a potential list of keynote lecturers and defined a programme for a workshop on use of XML in meteorology.

To facilitate the implementation of new descriptors in Code Tables, the Team recommended that the Secretariat create a MS-Word merged file of all Table B and Table D entries, with an indicator attached to each entry: version number, or pre-operational or for validation. Another file in ASCII format for direct computer program processing will be created with the help of a data processing centre.

The Team agreed that samples of BUFR and CREX Templates will be placed in an Attachment to the Manual, and should include links to the general reporting practices. Appropriate common sequences may be generated as required. The Team recommended this activity to be performed under the responsibility of the WMO Secretariat. A consultant might be hired for a few weeks to finalize the task. The new Annex on reporting practices and the Templates, once finalized, will have to be reviewed by appropriate Teams of CBS.

CONTENTS

1.	ORGANIZATION OF THE MEETING	
1.1	Opening of the meeting	
	Annex to 1.1.1 - Participants list	
1.2	Approval of the agenda	1
2.	GRIB CODE FORM	1
2.1	STATUS AND COORDINATION OF VALIDATION TESTS FOR GRIB 2 ENCODING/DECODING	1
2.2	VALIDATION OF SPECIAL TEMPLATES FOR THE TRANSMISSION IN GRIB 2 OF CROSS-SECTIONS	
	AND HOVMÖLLER TYPE DIAGRAMS	2
2.3	ADDITION OF NEW COMPRESSION SCHEMES	2
	Annex to 2.3.5	14
2.4	OTHER ADDITIONS OR MODIFICATIONS TO GRIB EDITION 2	3
2.4.1	New regulation related to scaling	3
	Annex to 2.4.1.2	18
2.4.2	Albers equal-area projection in GRIB2	3
	Annex to 2.4.2	18
2.4.3	Need for a Note on use of Local Tables or Templates in GRIB Edition 2	3
	Annex to 2.4.3	19
2.4.4		3
	Annex to 2.4.4	
2.5	REPORT ON EXPERIMENTAL AND OPERATIONAL EXCHANGES OF FIELDS IN GRIB2	4
3.	BUFR AND CREX	
3.1	ADDITIONS FOR SATELLITE DATA	I
	ENVISAT data	I
0.1.1	Annex to 3.1.1	
3121	Additional entries for AIRS satellite data in BUFR	21
0.1.2.1	Annex to 3.1.2.1	
3122	2 Other additional entries for satellite data in BUFR.	ـــــــــــــــــــــــــــــــــــــ
0.1.2.2	Annex to 3.1.2.2	- 20
3.2	UPDATED PROPOSAL FOR ENCODING SIGMETS IN BUFR	5
0.2	Annex to 3.2.2	
3.3	NEW ORIGINATING CENTRES AND SUB-CENTRES	40
0.0	Annex to 3.3	
3.4	OTHER ADDITIONS TO BUFR/CREX	40
3.4.1	Additions for oceanographic data	
0.4.1	Annex to 3.4.1	0 47
3.4.2	BUFR regulations: Points which require clarification	47
0.4.2	Annex to 3.4.2	50
3.4.3	Identification of ship's movement in the BUFR template for SHIP data	6
0.4.0	Annex to 3.4.3	
3.4.4	BUFR Templates for PILOT and TEMP data with identification of radiosonde drift	60
0.1.1	Annex to 3.4.4	
3.4.5	BUFR/CREX template for SYNOP and SYNOP MOBIL data	
0.1.0	Annex to 3.4.5	
3.5	ADDITIONS RELATED TO A NEW EDITION OF BUFR	
	Full date in BUFR	
0.0.1	Annex to 3.5.4	
3.5.5	Other addition with a new edition	
5.0.0	Annex to 3.5.5	
3.6	IMPLICATIONS OF A NEW EDITION OF BUFR	00
3.7	IMPLEMENTATION OF EXPERIMENTAL EXCHANGES OF OBSERVATIONS IN BUFR/CREX	
4.	MODIFICATIONS TO TRADITIONAL ALPHANUMERIC CODES	
4.1	MODIFICATIONS TO AERONAUTICAL METEOROLOGICAL CODES	
4.2	HARMONIZATION OF REGULATION FOR REPORT HEADER	
5.	FINALISING GUIDE TO GRIB EDITION 2	
J.	Annex to 5	
6.	WORKSHOP ON USE OF XML AND DEFINITION OF METEOROLOGICAL OBJECTS IN XML	
0. 7.	MANUAL ON CODES	
7.1	IMPLEMENTATION OF THE PROCEDURES FOR MODIFICATION TO TABLE DRIVEN CODES	10
1.1	Annex to 7.1.2	
70	PROPOSED MANUAL ON REPORTING PRACTICES	
7.2 8.	ACTIONS PLAN	
-		
8.1	NEXT MEETING	
8.2	TASKS CLOSURE OF THE MEETING	
9.		
LIST OF	acronyms	64

REPORT OF THE MEETING OF THE EXPERT TEAM ON DATA REPRESENTATION AND CODES

(Arusha, 17-21 February 2003)

1. ORGANIZATION OF THE MEETING

1.1 OPENING OF THE MEETING

1.1.1 At the kind invitation of the United Republic of Tanzania, the Meeting of the Expert Team on Data Representation and Codes (ET/DR&C) took place at Mount Meru Hotel in Arusha from 17 to 21 February 2003 (the participants' list can be found in the Annex to this paragraph). The Meeting was opened on Monday 17 February at 9.30 a.m. by Mr Mohamed Matitu, Manager of International Relations in Tanzania Meteorological Agency (TMA). Mr Matitu welcomed the Experts and recalled the importance of the work of the Team. He stressed that it was the first time this Expert Team meets in a developing country. It was an hopeful sign for the WMO strategy to share the advanced knowledge and technology with developing countries, especially the African countries. Mr Matitu wished to all Experts a good stay in Tanzania.

1.1.2 The representative of the WMO Secretariat thanked Tanzania for hosting the meeting. He thanked Tanzania Meteorological Agency for providing excellent hospitality and facilities and having work hard for the organisation and logistic of the meeting. He thanked especially the local organisers from TMA, Mr Matitu and Mr Scylla Sillayo (member of the Expert Team) and all the other staff involved, for their good work. The Team had several challenging tasks on the agenda, in particular: further refine GRIB 2 Tables and Templates, finalize the GRIB 2 Guide, consider the need for a new edition of BUFR and plan a workshop on XML, in additions to the usual examination of the set of requests for additions to the Codes Tables.

1.1.3 Mr Jean Clochard, Chairman of the Team, after having thanked Tanzania, welcomed the participants. He then led the Team with diplomacy and efficiency.

1.2 APPROVAL OF THE AGENDA

The Team agreed to the content of the agenda as proposed (see Table of Contents in front).

2. GRIB 2 CODE FORM

2.1 STATUS AND COORDINATION OF FINAL VALIDATION TESTS FOR GRIB 2 ENCODING/DECODING

2.1.1 Templates referred in the Code Manual as "not validated" were revisited. In 2001 and 2002, several new templates were defined at ET/DR&C level, and some also were fixed. What follows is a result of a recent survey which included answers received from NCEP, ECMWF, JMA and UKMO.

2.1.1.1 EPS related templates

- Product Definition Templates 4.9, 4.11, 4.12 and 4.13 were cross-validated between NCEP, ECMWF and JMA.
- PDT 4.10 and 4.14: no validation work was performed.
- PDT 4.3 and 4.4 were fixed in 2002 (addition of missing information describing properties of the cluster) but it is not certain that existing encoding/decoding packages have been adjusted accordingly, except at USA/NDFD.

2.1.1.2 Templates for support of non-horizontal grids

These templates were designed in 2001 to handle cross sections, time sections and Hovmöller-type

diagrams. Up to now, only NCEP (USA) has implemented these templates.

2.1.2 Proposal

The Team recommended as an editorial change to remove the preliminary note in the Manual attached to Template 4.9 since this Template is now validated. The Team urged Centres to validate PDT 4.10 and 4.14 in order to get more results/work on these templates. The Team reminded concerned Centres that PDT 4.3 and 4.4 have changed.

2.2 VALIDATION OF SPECIAL TEMPLATES FOR THE TRANSMISSION IN GRIB 2 OF CROSS-SECTIONS AND HOVMÖLLER TYPE DIAGRAMS

The Team asked that at least a second Centre implement GDT 3.1000/1100/1200 and PDT 4.1000/1001/1002/1100/1101 to enable cross-validation, and look for assessment from users who have an interest in these templates.

2.3 ADDITION OF NEW COMPRESSION SCHEMES

2.3.1 GRIB2 was designed to be extensible and is now capable of storing satellite and radar data, which are inherently images and thus may benefit from being encoded into a standard graphic format. In addition, numerical model data can also be effectively encoded with an image-encoding algorithm since, after the model gridpoint data is scaled to retain the desired precision and the minimum value is subtracted out, the resulting grid can be thought of and processed as a grayscale image.

2.3.2 Throughout the past many years, much research and development has been conducted regarding image compression and standardization of graphic formats, so it seems as though it should be possible to take advantage of these results for incorporation as new compression techniques within GRIB2. Two prominent standards are supported by the International Organization for Standardization (ISO) and the NCEP (USA) proposed to the Team methodologies by which they might be incorporated for use in GRIB2. These two standards are JPEG 2000 (http://www.jpeg.org/JPEG2000.html) and PNG (http://www.libpng.org/pub/png), and they were chosen not only because of their inclusion in ISO/IEC international standards, but also because of their demonstrated effectiveness on sample data as well as their intent to be license and royalty free. This last point is currently the subject of some further investigation, as obviously it will be necessary to adhere to any requirements that may be imposed by ISO or other scientific bodies in exchange for being allowed to make use of their work in the creation of new templates for GRIB2. The current understanding is that such requirements would likely be limited to the inclusion of footnotes and/or certain disclaimers within any such GRIB2 templates.

2.3.3 NCEP indicated that several simulations had already been run comparing the JPEG 2000 (with lossless compression) and PNG compression algorithms against the current GRIB2 packing methods. The tests were run on various output fields from the NCEP 12km ETA model, and the results showed an impressive savings of storage space when using the two new methods, albeit at the expense of additional system processing time that was, in most cases, quite significant.

2.3.4 The following two standards were considered by the Team.

2.3.4.1 JPEG 2000

The JPEG 2000 image coding system uses wavelet transforms and subsequent arithmetic coding to encode an image. The compressed image is stored in the code stream syntax described in Part 1 of the standard (ISO/IEC 15444-1:2000). The JPEG 2000 standard contains both lossless and lossy compression algorithms allowing users the option of specifying an increased compression rate in exchange for some noise in the data.

2.3.4.2 Portable Network Graphics (PNG)

The PNG encoding algorithm applies one of several invertible filters to each scanline of an image, and then subsequent compression is obtained using the zlib (http://www.gzip.org/zlib/zlib.html) deflate

algorithm. The PNG specification is currently under consideration by ISO/IEC JTC 1/SC24. PNG image compression is lossless.

2.3.5 The team agreed that the two templates listed in Annex to this paragraph be used for validation and experimental testing.

2.4 OTHER ADDITIONS OR MODIFICATIONS TO GRIB EDITION 2

2.4.1 New regulation related to scaling

2.4.1.1 Within GRIB edition 2, some entities in sections 3 (Grid Description Section) and 4 (Product Description Section) are documented in a scaled way. A typical example may be given by the value associated to a vertical level. This was defined to avoid use of decimal shifted units; and also to avoid floating-point descriptors, which may lead to ambiguities. The description of these entities is a pair of descriptors: a scaled factor (on a single octet), and a scaled value (on four octets); however, it is not indicated in the Manual how to use it precisely. There is still an ambiguity on the sign convention for this factor.

2.4.1.2 The Team therefore agreed to add a new general regulation (considered as editorial change since it only adds a clarification) as listed in Annex to this paragraph.

2.4.2 Albers equal-area projection in GRIB2

In GRIB edition 2 Manual, the Code Table 3.1 (Grid Definition Template Number) exhibits for code entry 30 (Lambert conformal) a note stating that it is "also called Albers equal-area". As mentioned by a user from USA (from the geographical community) the note referred to was clearly erroneous. Lambert conformal projection preserves angles, whilst Albers's preserves areas; such properties may not be reached at the same time, except for very simple transformations. The confusion came from the fact that these projections share the same descriptors list. The Team then agreed to:

- remove the wrong note for entry 30 in Code Table 3.1
- add a new entry 31 in Code Table 3.1, called "Albers equal-area"
- Introduce a new template 3.31
- submit these changes as listed in Annex to this paragraph for pre-operational implementation.

2.4.3 Need for a Note on use of Local Tables or Templates in GRIB Edition 2.

Following a request from Japan, the Team agreed to add a Note clarifying the use of Local Tables or Templates in GRIB Edition 2 (see Annex to this paragraph).

2.4.4 Addition of note to DRT 5.2 and 5.3

The Team agreed that to avoid misunderstanding such as raised in the GRIB2 guide for spatial differencing, a note should be added to these templates (see Annex to this paragraph).

2.5 REPORT ON EXPERIMENTAL AND OPERATIONAL EXCHANGES OF FIELDS IN GRIB2

NCEP has both a Fortran 90 and C version of an encoder/decoder. An experimental project (called National Digital Forecast Database) managed by NWS/TDL makes use of GRIB2, with a participation from NCEP.

ECMWF should start migration to GRIB2 and provide EPS probabilities on the GTS in 2003. A decoder will be available to decode these products.

JMA has separate encoder for specific generated products and decoder for limited products, and an extra package will be developed for domestic use of products of very short range forecast on precipitation. Provision of 3 and 6 months ensemble forecast products should start next autumn for national and international users. New products in field form would be considered in GRIB edition 2.

EUMETSAT is generating Cloud mask products in GRIB2. Satellite images will also be available in GRIB 2. A decoder for this type of data is available to user at request. It is still to be included in the PUMA work-station.

3. BUFR AND CREX

3.1 ADDITIONS FOR SATELLITE DATA

3.1.1 ENVISAT data

In March 2002, ENVISAT satellite was successfully launched by ESA. ENVISAT is now completing its commissioning phase. The satellite carries a number of instruments among which ASAR, MERIS, AATSR, RA-2, GOMOS, MIPAS and SCIAMACHY are of meteorological interest. ECMWF developed software to extract ENVISAT PDS data and create BUFR data containing subset information available in the original data set. At the same time some evaluation of SCIAMACHY, MIPAS, GOMOS and ASAR data has been done at ECMWF. The Team agreed to the corresponding additions in BUFR Tables as listed in Annex to this paragraph and urged centres concerned to finalize validation of these entries, in order to declare them pre-operational since the data are already available for exchange.

3.1.2 Other Satellite data

3.1.2.1 Additional entries for AIRS satellite data in BUFR

During the past couple of years, much work has been done to represent and exchange AIRS satellite data in BUFR. In order to assist in this effort, a Table B descriptor was proposed last year as "ALLOCATED ENTRIES (AWAITING VALIDATION)". Since then, and using the sequences described below (although not the actual Table D numbers), successful data exchange had taken place between centers in the U.S.A., Canada, and Europe (among others), and the usefulness of the below descriptors has been demonstrated. Therefore, the Team now requested that the descriptors as listed in Annex to this paragraph be approved for "PRE-OPERATIONAL" status.

3.1.2.2 Other additional entries for satellite data in BUFR

The Team agreed to a request by NCEP USA for new BUFR table entries for use with certain types of satellite data. Some entries (see Annex to this paragraph) are ready for "PRE-OPERATIONAL" status, while others are requested only as "ALLOCATED ENTRIES (AWAITING VALIDATION)".

3.2 UPDATED PROPOSAL FOR ENCODING SIGMETS IN BUFR

3.2.1 Following an original joint proposal presented by the representatives from Australia and ICAO for the encoding of volcanic ash SIGMET messages in BUFR, the U.S. National Weather Service's Aviation Weather Center proceeded to expand the proposal to include a methodology for the encoding of all types of SIGMET messages, including those for tropical cyclones, turbulence, icing, etc. However, one major issue still remained to be decided, and that was the issue of whether to allow for the ability to define volumes of any shape as a SIGMET target region, versus only being able to define volume regions which, when viewed from above, have sides that are always perpendicular to the ground between two 0-07-010 flight levels (i.e. base and top). In other words, it might be useful to be able to use the code figure "3" within 0-08-007 and thereby define a sequence of points describing 3-D volume. The current ICAO Annex 3 regulations do not allow for such odd-shaped objects; however, the US Aviation Weather Center has the intention to soon make such a proposal to ICAO, so it is useful to allow for this possibility now rather than to create some new descriptors and sequences that may soon become obsolete.

3.2.2 The proposal of the Team (see Annex to this paragraph) was simpler but retained the ability to define volumes of any reasonable shape as a SIGMET target region. This approach allowed for the specification of volumes defined by a sequence of horizontal sections on flight levels. The Team felt that the overall proposal was ready to be validated, and requested members of the ET/DR&C, and also the UK Met Office as a WAFS center, to assist the US Aviation Weather Center personnel in this task through the generation and exchange of various test messages encoded according to the specifications of this proposal.

3.3 NEW ORIGINATING CENTRES AND SUB-CENTRES

Following a request from USA to add a list of Sub-Centres to US NWS, NCEP, the Team agreed to define a new Common Code Table C-12 for recording Sub-Centres entries linked to originating centres (see Annex to this paragraph). This table being just a new way of presenting information will be considered as additional entries and can be included in the next supplement to the Manual (pre-operational). However, the Team raised the question of mandatory reporting and recording of Sub-Centres in the WMO Manual. The Team agreed that it should be a recommended practice and agreed to add a note to Table C-12 saying that Sub-centres should be recorded in the Manual on Codes and that entries should be given to the WMO secretariat. The Meeting recommended also the allocation of entries in Table C-11 for all non-listed NMCs, RSMCs, RTH, etc.. according to English alphabetical order.

3.4 OTHER ADDITIONS TO BUFR/CREX

3.4.1 Additions for oceanographic data

The Team approved a set of new BUFR descriptors requested by the Data Buoy Cooperation Panel (DBCP) for buoy data in BUFR and by the Ship Of Opportunity Programme (SOOP) to transmit XBT data. The proposed additions to code tables would need validation, except the new entries for Common Code tables which can be seen as pre-operational. The additions can be found in Annex to this paragraph.

3.4.2 BUFR regulations: Points which require clarification

Six proposals to amend some notes and regulations were submitted by Chris Long from UKMO. These additions were examined by the Team who approved the first one as listed in Annex to this paragraph. This change should be considered as editorial since it simply adds clarification to the existing regulation. However, for the five other amendments the Team considered they deserved further studies in relation to the current practices.

3.4.3 Identification of ship's movement in the BUFR template for SHIP data

The Team considered a proposal from Eva Cervena following a request from the Royal Netherlands Meteorological Institute (KNMI) to qualify or rename the descriptors for Direction of motion of moving observing platform and for Speed of motion of moving observing platform. KNMI intends to produce messages not only in the SHIP code, but also in BUFR. It was noted that in the SHIP code:

Ships' movement in the SHIP code is expressed by $D_s v_s$, where

 D_s = True direction of resultant displacement of the ship during the three hours preceding the time of observation,

 v_s = Ship's average speed made good during the three hours preceding the time of observation.

In the BUFR template for SHIP data, however, D_s and v_s are represented by descriptors 0 01 012 and 0 01 013, respectively:

0 01 012	Direction of motion of moving observing platform	Degree true
0 01 013	Speed of motion of moving observing platform	m s ⁻¹

The current element names of both 0 01 012 and 0 01 013 suggest "instantaneous" character of the element, which might cause misunderstanding when encoding ship data. The Team agreed to keep the existing names in Table B, but add an appropriate note in the SHIP BUFR template and a note in Table B indicating the parameter may have different meanings (see Annex to this paragraph). These additions will be considered as editorial.

3.4.4 BUFR Templates for PILOT and TEMP data with identification of radiosonde drift

The BUFR templates for PILOT and TEMP data were revisited by the Team at the request of Eva Cervena. It was agreed to Indicate by a note that the first time is the nominal time of observation. It was also agreed to indicate that the first latitude and longitude were those of launching site. Then time increment in seconds and increments of high accuracy latitude and longitude will be reported at each level. These additions will satisfy requirements of high resolution modeling (see Annex to this paragraph)

3.4.5 BUFR/CREX template for SYNOP and SYNOP MOBIL data

The BUFR/CREX template for SYNOP and SYNOP MOBIL data were revisited by the Team at the request of Eva Cervena. It was agreed to qualify the descriptor 0 20 014 as "height of top of the clouds above mean sea level", add two entries to Code Table 0 08 002 and to express the significant cloud layers using delayed replication (see Annex to this paragraph).

3.5 ADDITIONS RELATED TO A NEW EDITION OF BUFR

3.5.1 Representation of probabilities and other forecast values

The Team considered that the requirements expressed in the previous Meeting of the Expert Team in 2002 in Prague for representation of probabilities and other forecast values were still valid and remained part of a set of additions necessary in a new edition of BUFR.

3.5.2 New operators

The Team considered that the requirements expressed in the previous Meeting of the Expert Team in 2002 in Prague for new operators were still valid and remained part of a set of additions necessary in a new edition of BUFR.

3.5.3 Data category and sub-category definitions

The Team agreed to satisfy the requirement for official definition of data sub-category in BUFR. However, it was agreed that existing local sub-categories should remain available since they were used by many data processing centers. It was recommended that in the frame of new edition changes, a new two-octet field be defined to contain the official international sub-category. The new table could be structured in a manner similar to the Common Table C-12 for sub-centres. The Team wished that the Secretariat, assisted by member(s) of the Team, define an exhaustive list of known data sub-categories for submission to the Meeting next year.

3.5.4 Full date in BUFR

Following the problems encountered during the Y2K transition, the Team agreed to modify the system of reporting dates in BUFR, using the opportunity of the new edition. The proposed format for the new BUFR Edition 4 is to follow the system adopted for GRIB Edition 2 (as listed in Annex to this paragraph). The Team recommended however that a significance for the date recorded in Section 1 was a possibility (similar to what is done in GRIB Edition 2), whose real necessity and content should be studied before finalising the proposals for BUFR next edition.

3.5.5 Other addition with a new edition

The Team agreed to change the regulation which make mandatory the padding of even number of octets, to a padding to a full octet (see Annex to this paragraph). The Team also recognized the possible usefulness of a separate Master Table for satellite data to help managing the continually increasing number of related descriptors. A proposal will be coordinated by EUMETSAT for the next meeting of the ET/DR&C.

3.6 IMPLICATIONS OF A NEW EDITION OF BUFR

The Team considered the impact that a change to a new edition in November 2005, might have on the migration process. The Team considered that few changes would be required in a BUFR decoder or encoder, and that it ought not delay migration, especially if the software houses were performing well, being confident that the updating of decoders for BUFR data should not slow or hamper the migration process.. However, the decoder will have to be re-installed and that could be a difficulty for the remote countries. The alternative could be to postpone this new edition 4 to 2007, or to implement it in part with only the new operators which could affect only the specific data types using these features. The Team agreed to debate on this issue during the coming year to reach a final decision at its next Meeting.

3.7 IMPLEMENTATION OF EXPERIMENTAL EXCHANGES OF OBSERVATIONS IN BUFR (OR CREX)

3.7.1 The Meeting was pleased to note that experimental transmission of Buoy data by Service Argos in BUFR should start during 2003. A test period was expected to last for a couple of months or more depending upon results from the tests. Meteorological centres interested to participate in the tests are invited to contact the Technical Coordinator of the DBCP, Mr. Etienne Charpentier (charpentier@jcommops.org). After the test period, operational distribution of buoy data in BUFR will start for those buoys reporting via Argos and which data are processed at the US Argos Global Processing Centre of Largo, USA (KARS), and at the French Argos Global Processing Centre of Toulouse, France (LFPW). Parallel distribution of buoy data in BUOY code will continue for an

undefined period from these centres.

3.7.2 A limited number of ships are transmitting their XBT data via Argos (less than 20 ships). As Service Argos is developing BUFR encoding capability for buoy data, such capability might be used for GTS distribution of XBT data from those ships as well. In that case, as for the buoy data, and for an undefined period, data should be distributed in both BUFR and BATHY code forms.

3.7.3 Most of the profiling floats are presently reporting via Argos. As Service Argos is developing BUFR encoding capability for buoy data, such capability might be used for GTS distribution of profiling float data as well (as early as mid-2003). In that case, as for the buoy data, and for an undefined period, data should be distributed in both BUFR and TESAC code forms. Before a coordinated approach can be proposed, decision to go to BUFR will be made by individual float operators.

3.7.4 Japan Meteorological Agency is planning to disseminate SHIP data in BUFR, and it is already disseminating wind profiler data in BUFR.

3.7.5 Météo-France will soon disseminate JASON 1 satellite data in BUFR.

3.7.6 Within the EUMETNET PWS-GTS project, CHMI (Czech Republic), KNMI (Netherlands) and SHMI (Slovakia) are disseminating AWS observations in BUFR. DWD (Germany) will start in July 2003.

3.7.7 As part of its EARS (EUMETSAT ATOVS Retransmission Service) project, EUMETSAT operates a network of local receiving stations across the North Atlantic region for data from the NOAA spacecraft. The data are processed at these stations and the level 1c ATOVS data are then encoded in BUFR at EUMETSAT's headquarters prior to insertion onto the GTS at RTH Offenbach. The timeliness of these data (less than 30 minutes from satellite over pass to RTH Offenbach) makes them very valuable for NWP centres operating with a short cut-off time. More details of EARS are available from the web site, http://www.eumetsat.de.

4. MODIFICATIONS TO TRADITIONAL ALPHANUMERIC CODES

4.1 MODIFICATIONS TO AERONAUTICAL CODES

CBS Ext. (02) approved only Amendment 72 to Annex 3, because Amendment 73 was still subject to examination by ICAO Member States. The ICAO representative had indicated that a document will be submitted at the next Meeting of the Team.

4.2 HARMONIZATION OF REGULATION FOR REPORT HEADER

A weakness in the text of some regulations had been noted by Dr John Hodkinson from UKMO. In the regulations for FM 75 CLIMAT, one can read in:

75.1 "The code name CLIMAT TEMP or CLIMAT TEMP SHIP and the group MMJJ shall appear as a prefix to individual reports."

and in:

75.2 "... Individual reports in the bulletin shall contain neither the code names nor the code group MMJJ."

The Team agreed that these regulations need clarification. It is understood that when a report is standing alone, then reg. 75.1 applies. When several reports are in a bulletin, then each report inside the bulletin does not need to have the code name and MMJJJ indicated. The same problem can be

found in other code forms: FM 71, FM 72, FM 73, FM 76, FM 81, FM 82 and FM 83. It was probably an old formulation, which had been kept through the ages, and it was not well expressed. The Team recommended to modify all the regulations xx.1, saying: "...prefix to <u>an individual report</u>." and the regulations xx.2 saying: "<u>In this case</u>, individual reports in the bulletin shall contain neither" and apply that to all the code forms concerned. It should be considered as an editorial correction.

5. FINALISING GUIDE TO GRIB EDITION 2

The Team agreed to small additions in the Guide to GRIB Edition 2 to finalize the excellent work performed by Dr Cliff Dey. (see Annex to this paragraph)

6. WORKSHOP ON USE OF XML AND DEFINITION OF METEOROLOGICAL OBJECTS IN XML

6.1 DEFINITION OF METEOROLOGICAL OBJECTS IN XML

The Team examined a proposal submitted by a Sub-group of EGOWS (European Group on Operational Worskstation Systems) on Meteorological Objects. The Team agreed that there should be a tight coupling with BUFR. It recognized that BUFR Tables would have to be updated to include these objects. The Meeting agreed to introduce progressively these objects into BUFR Tables when requirements are expressed and clearly defined. The Meeting found that the list of meteorological objects needed further revision.

6.2 ORGANISATION OF AN XML WORKSHOP

6.2.1 XML (eXtensible Markup Language) is becoming increasingly important in the exchange of data and it is desirable for WMO to develop standards for the use of XML in meteorology. The Expert Team on Data Representation and Codes did not believe that it had the necessary expertise to develop these standards and suggests that a workshop be held to start the process of developing meteorological XML standards. Participants in the workshop should be either XML specialists or meteorological experts with experience in XML. Organisations who have experience in representing or exchanging meteorological data in XML should be encouraged to send representatives.

6.2.2 Some organisations believed to have relevant XML expertise include:

- The Russian Federal service for Hydrometeorology and Environment monitoring, who have very extensive XML experience.
- The US Navy, with Observational Markup Format (OMF) and other XML initiatives, some in conjunction with other branches of the US armed services
- The WMO Expert Team on Integrated Data Management (ET/IDM)
- The European working Group on Operational Workstation Systems (EGOWS)
- The Canadian Marine Environmental Data Service (MEDS)
- The UK MetOffice
- The Meteorological Systems (formerly Regional Computing) section of the Australian Bureau of Meteorology, who have developed several XML based data formats

Active participation should also be sought from any other organisations that have relevant expertise or experience.

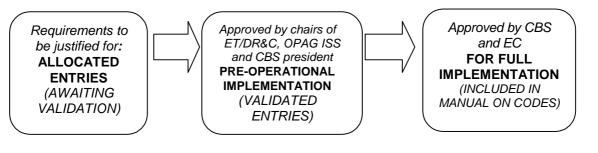
6.2.3 An agenda for such a workshop could include:

- 1. Review the current usage of XML in meteorology.
- 2. Examine existing XML standards and decide if they are suitable for use in meteorology or can be adapted to be suitable.

- 3. Suggest standards for the representation and exchange of meteorological data in XML, preferably in a language independent form.
- 4. Suggest standards for the use of XML technology to permit the automated translation of meteorological data from a language independent standard (as defined by agenda item 2) to an end user's language. Values from code and flag tables, unit names, element names and other information would be translated to the user's preferred language while retaining the XML structure of the data.

7. MANUAL ON CODES

7.1 IMPLEMENTATION OF THE PROCEDURES FOR MODIFICATIONS TO CODE TABLES


- 7.1.1 The Team took note of the difficulty with the present system of Code Tables updating and maintenance. In the WMO Web server are:
 - > The operational Tables (extract from the Manual on Codes)
 - > The Tables of pre-operational entries, notes and regulations
 - > The Table entries, notes and regulations awaiting validation.

All this information is kept in Word 97 files. The last two files contain the information sorted by application requests and not by table entry number. It is difficult to find if an entry has been already attributed or not with the present system. It is also difficult to convert these files into information that a computer program (decoder/encoder) can process. In order to overcome those difficulties, the Team recommended that the Secretariat create a Word merged file of all Table B and Table D entries, with an indicator attached to each entry: version number, or pre-operational or for validation. Another file in ASCII format for direct computer program processing will be made, based on the word file, perhaps with the help of a data processing centre. Such an ASCII file would help updating tables in BUFR packages. Both new files will be kept in the WMO server.

7.1.2 In order to facilitate the processing of requests for allocation of new table entries by the Secretariat, the Team agreed to recommend a standard format for definition of new descriptors as defined in Annex to this paragraph.

7.1.3 The Team recommended also that entries to all Common Code Tables be approved by the chairman of ET/DR&C and chairman of OPAG/ISS just by email to speed up their implementation.

IMPLEMENTATION PROCEDURES FOR ADDITIONS OF DESCRIPTORS IN BUFR/CREX TABLES A, B AND D, AND NEW GRIB TEMPLATES AND CODE TABLES -- TABLES ARE LISTED IN WMO WEB SERVER

7.2 PROPOSED MANUAL ON REPORTING PRACTICES

7.2.1. It is a fact that the Manual on Codes, Volume I.1, contains more regulations related to reporting practices than formatting rules. The Volume I.2, on the contrary defines formatting procedures, and practically no reporting regulations. The Volume I.1 links reporting practices to the alphanumeric coding format. The migration to BUFR/CREX will push producers and users (human decoders) of BUFR/CREX codes to consider Volume I.2, rather than Volume I.1. It is necessary to re-write the regulations on reporting practices, disconnecting them from the traditional alphanumeric format, and making them "universal", to fit, for instance, various national Automatic Weather Station templates which would be used to report the so-called "surface synoptic observations" in BUFR. It would make the migration to TDCF easier for the programmers of automatic platform software, for the meteorologists and the observers.

7.2.2 The Team noted that reporting requirements as well as observing practices were currently included along with the data representation formats for the traditional code forms. CBS agreed these requirements and practices should be separated from the data representation and recommends placing them in an Annex to Volume 1.2.

7.2.3. The Team agreed on that the BUFR and CREX Templates will be placed in an Attachment to Volume I.2 of the Manual, and should include links to the general reporting practices. Appropriate common Sequences may be generated as required. The question of unit and precision of reported parameters will be implicitly included in the Templates. The Team recommended this activity to be performed under the responsibility of the WMO Secretariat. A consultant might be hired for a few weeks to finalize the task. The new Annex on reporting practices and the Templates, once finalized, will have to be reviewed by appropriate Teams of CBS.

8. ACTIONS PLAN

8.1 NEXT MEETING:

It was suggested to have the next meeting in a place situated in RA II or RA V to be able organize a follow-up training event in the same manner as it was done in Arusha.

8.2 TASKS:

- ECMWF and NCEP with possible help of NWS/MDL to validate PDTs 4.10 and 4.14 (2.1.2)
- Some Centres to validate GDTs 3.1000/1100/1200 and PDTs 4.1000/1001/1100/1101, and check users feed-back (2.2).
- Some Centres to validate and experimentally test JPEG DRT 5.40000 and DT 7.40000 and PNG DRT 5.40010 and DT 7.40010 (2.3.5).
- Centres to validate ENVISAT templates (3.1.1)
- NCEP and Australian Weather Bureau to validate SIGMET in BUFR
- Centres to validate oceanographic additions (3.4.1)
- Secretariat, assisted by member(s) of the Team, to define an exhaustive list of known data subcategories (3.5.3)
- Members to study necessity of date significance for a new edition of BUFR (3.5.4)

- Proposal for a new Satellite Master Table by Simon Elliott (EUMETSAT) (3.5.5)
- Team to debate on content of new edition and its impact on migration (3.6)
- Members test buoy data from service ARGOS in BUFR (3.7.1)
- Document by ICAO at next meeting on Amendment 73 (4.1)
- Organisation of XML Workshop by Secretariat (6.2)
- Secretariat to create merged Word file with all new descriptor entries and a file for computer processing with the help of a data processing centre (7.1.1)
- Finalize reporting practices and common sequences Secretariat and consultant (7.2.3)
- Validation of BUFR templates for traditional observations including TEMP, PILOT, SYNOP, CLIMAT and updating METAR and SPECI Templates.

9. CLOSURE OF THE MEETING

The Meeting was closed by the Chairman of the ET/DR&C at 14.00 on Friday 21 February 2003.

ANNEX TO PARAGRAPH 1.1.1

ET/DR&C, Arusha, 17-21 February 2003

List of Participants

Mr Jean CLOCHARD, Chair Météo-France 42 Avenue Coriolis 31057 TOULOUSE CEDEX FRANCE Tel: (33 5) 6107 8104 Fax: (33 5) 6107 8109 Email: jean.clochard@meteo.fr

Mr Charles SANDERS Bureau of Meteorology GPO Box 1289K MELBOURNE VIC 3001 AUSTRALIA Tel: (613) 9669 4040 Fax: (613) 9669 4023 Email: c.sanders@bom.gov.au

Ms Eva CERVENA Czech Hydrometeorological Institute Na Šabatce 17 143 06 PRAGUE - KOMORANY CZECH REPUBLIC Tel: +(420 2) 4403 2215 Fax: +(420 2) 4403 2235 Email: cervena@chmi.cz

Mr Atsushi SHIMAZAKI Japan Meteorological Agency 1-3-4 Otemachi Chiyoda-ku TOKYO 100 JAPAN Tel: (813) 3218 3825 Fax: (813) 3211 8404 Email: shimazaki@met.kishou.go.jp Mr Scylla M. SILLAYO Tanzania Meteorological Agency P.O. Box 3056 DAR ES SALAAM UNITED REPUBLIC OF TANZANIA Tel: (255) 22 2 110 282 2 110 231 Fax: (22) 22 2 112 471 Email: ssillayo@hotmail.com

Mr John HENNESSY ECMWF Shinfield Park READING BERKSHIRE RG2 9AX UNITED KINGDOM Tel: (44118) 9499400 Fax: (44118) 9869450 Email: john.hennessy@ecmwf.int

Dr Simon ELLIOTT EUMETSAT Am Kavalleriesand 31 D-64295 DARMSTADT GERMANY Tel: +49 6151 807 385 Fax: +49 6151 807 304 Email: elliott@eumetsat.de

WMO SECRETARIAT Mr Joël MARTELLET World Meteorological Organization 7 bis, avenue de la Paix Case postale No. 2300 CH-1211 GENEVA 2 Switzerland Tel: +41 22 730 8313 Fax: +41 22 730 8021 E-mail: martellet_j@gateway.wmo.ch

ANNEX TO 2.3.5

JPEG 2000

The following Templates and Code tables are proposed for use with the JPEG 2000 image encoding. Note that a local table value of 40000 is used in the following examples.

Data Representation Template 5.40000: Grid point data - JPEG 2000 Code Stream Format Octet Number(s) Contents 12-15 Reference value (R) (IEEE 32-bit floating-point value) 16-17 Binary scale factor (E) 18-19 Decimal scale factor (D) 20 Number of bits required to hold the resulting scaled and referenced data values. (i.e. The depth of the grayscale image.) (see Note 2) 21 Type of original field values (see Code Table 5.1) 22 Type of Compression used. (see Code Table 5.40000) 23 Target compression ratio, M:1 (with respect to the bit-depth specified in octet 20), when octet 22 indicates Lossy Compression. Otherwise, set to missing. (see Note 3) Notes: (1) The intent of this template is to scale the grid point data to obtain desired precision, if appropriate, and then subtract out reference value from the scaled field as is done using Data Representation Template 5.0. After this, the resulting grid point field can be treated as a grayscale image and is then encoded into the JPEG 2000 code stream format. To unpack the data field, the JPEG 2000 code stream is decoded back into an image, and the original field is obtained from the image data as described in regulation 92.9.4, Note (4). (2) The JPEG 2000 standard specifies that the bit-depth must be in the range of 1 to 38 bits. (3) The compression ratio M:1 (e.g. 20:1) specifies that the encoded stream should be less than (1/M)*depth*number_of_data points bits, where depth is specified in octet 20 and number_of_data

(4) The order of the data points should remain as specified in the scanning mode flags (Flag Table 3.4) set in the appropriate Grid Definition Template, even though the JPEG 2000 standard specifies

points is specified in octets 6-9 of the Data Representation Section.

that an image is stored starting at the top left corner. Assuming that the encoding software is expecting the image data in raster order (left to right across rows for each row), users should set the image width to Ni (or Nx) and the height to Nj (or Ny) if bit 3 of the scanning mode flag equals 0 (adjacent points in i (x) order), when encoding the "image". If bit 3 of the scanning mode flags equals 1 (adjacent points in j (y) order), it may be advantageous to set the image width to Nj (or Ny) and the height to Ni (or Nx).

(5) When the data points are not available on a rectangular grid, such as a would occur if some data points are bit-mapped out or if section 3 describes a quasi-regular grid, the data field can be treated as a one dimensional image where the height is set to 1 and the width is set to the total number of data points specified in octets 6-9.

Data Template 7.40000: Grid point data - JPEG 2000 Code Stream Format

Octet Number(s) Contents

6-nn

JPEG 2000 Code Stream as described in Part1 of the JPEG 2000 standard. (ISO/IEC 15444-1:2000)

Note:

For simplicity, image data should be packed specifying a single component (i.e. grayscale image) instead of a multi-component color image.

Code Table 5.40000: Type of Compression
Code Figure
Meaning
0
Lossless
1
Lossy
2-254
Reserved
255
Missing

Portable Network Graphics (PNG)

The following Templates are proposed for use with PNG image encoding. Note that a local table value of 40010 is used in the following examples.

Data Representation Template 5.40010: Grid point data - Portable Network Graphics (PNG) Format
Octet Number(s) Contents
12-15 Reference value (R) (IEEE 32-bit floating-point value)
16-17 Binary scale factor (E)
18-19 Decimal scale factor (D)
20 Number of bits required to hold the resulting scaled and referenced data values. (i.e. The depth of the image.) (see Note 2)
21 Type of original field values (see Code Table 5.1)

Notes:

(1) The intent of this template is to scale the grid point data to obtain desired precision, if appropriate, and then subtract out reference value from the scaled field as is done using Data Representation Template 5.0. After this, the resulting grid point field can be treated as an image and is then encoded into PNG format. To unpack the data field, the PNG stream is decoded back into an image, and the original field is obtained from the image data as described in regulation 92.9.4, Note (4).

(2) PNG does not support all bit-depths in an image, so it is necessary to define which depths can be used and how they are to be treated. For grayscale images, PNG supports depths of 1, 2, 4, 8 or 16 bits. RGB color images can have depths of 8 or 16 bits with an optional alpha sample. Valid values for octet 20 can be:

1, 2, 4, 8, or 16 - treat as grayscale image

- 24 treat as RGB color image (each component having 8 bit depth)
- 32 treat as RGB w/ alpha sample color image (each component having 8 bit depth)

(3) The order of the data points should remain as specified in the scanning mode flags (Flag Table 3.4) set in the appropriate Grid Definition Template, even though the PNG standard specifies that an image is stored starting at the top left corner and scans across each row from left to right starting with the top row. Users should set the image width to Ni (or Nx) and the height to Nj (or Ny) if bit 3 of the scanning mode flags equals 0 (adjacent points in i (x) order), when encoding the "image". If bit 3 of the scanning mode flags equals 1 (adjacent points in j (y) order), it may be advantageous to set the image width to Nj (or Ny) and the height to Nj (or Nx).

(4) When the data points are not available on a rectangular grid, such as a would occur if some data points are bit-mapped out or if section 3 describes a quasi-regular grid, the data field can be treated as a one dimensional image where the height is set to 1 and the width is set to the total number of data points specified in octets 6-9.

Data Template 7.40010: Grid point data - Portable Network Graphics (PNG) Format

Octet Number(s) Contents

6-nn PNG encoded image

Note:

If octet 20 of Data Representation Template 5.40010 specifies the data is packed into either 1, 2, 4, 8, or 16 bits, then encode the "image" as a grayscale image. If octet 20 specifies 24 bits, encode the "image" as an RGB color image with 8 bit depth for each color component, and finally if octet 20 is 32, encode the "image" as a RGB color image with an alpha sample using an 8 bit depth for each of the four components.

ANNEX TO 2.4.1.2

New regulation for scaling

92.1.12 Items in sections 3 and 4 which consist of a scale factor F and a scaled value V are related to the original value L as follows:

 $L * 10^{F} = V$

ANNEX TO 2.4.2

- remove the bracket: (also called "Albers equal-area") for entry 30 in Code Table 3.1
- add a new entry 31 in Code Table 3.1:
 31 Albers equal area
 32-39 Reserved
- Introduce a new template 3.31:

Grid Definition Template 3.31: Albers equal area

Octet Number(s)	Contents
15	Shape of the earth (see Code Table 3.2)
16	Scale factor of radius of spherical earth
17-20	Scaled value of radius of spherical earth
21	Scale factor of major axis of oblate spheroid earth
22-25	Scaled value of major axis of oblate spheroid earth
26	Scale factor of minor axis of oblate spheroid earth
27-30	Scaled value of minor axis of oblate spheroid earth
31-34	Nx - number of points along the X-axis
35-38	Ny - number of points along the Y-axis
39-42	La1 - latitude of first grid point
43-46	Lo1 - longitude of first grid point
47	Resolution and component flags (see Flag Table 3.3)
48-51	LaD - Latitude where Dx and Dy are specified
52-55	LoV - Longitude of meridian parallel to Y-axis along which latitude increases as the Y-
	coordinate increases
56-59	Dx - X-direction grid length (see Note 1)
60-63	Dy - Y-direction grid length (see Note 1)
64	Projection centre flag (see Flag Table 3.5)
65	Scanning mode (see Flag Table 3.4)
66-69	Latin 1 - first latitude from the pole at which the secant cone cuts the sphere
70-73	Latin 2 - second latitude from the pole at which the secant cone cuts the sphere
74-77	Latitude of the southern pole of projection
78-81	Longitude of the southern pole of projection

Notes:

- (1) Grid lengths are in units of 10^{-3} m, at the latitude specified by LaD.
- (2) If Latin 1 = Latin 2, then the projection is on a tangent cone.
- (3) The resolution flags (bits 3-4 of Flag Table 3.3) are not applicable
- (4) LoV is the longitude value of the meridian which is parallel to the Y-axis (or columns of the grid) along which latitude increases as the Y-coordinate increases (the orientation longitude may or may not appear on a particular grid).

ANNEX TO 2.4.3

CLARIFICATION OF USE OF TABLE VERSION NUMBERS

Specification of octet contents, Section 1 (Page I.2 - Grib Reg - 6):

Change Octet 10 from

GRIB Master tables version number (see Code table 1.1)

to

GRIB Master tables version number (see Code table 1.1 and Note 1)

And:

Change Octet 11 from

GRIB Local tables version number (see Code table 1.2)

to

GRIB local tables version number used to augment master table (see Code table 1.2 and Note 2)

Add two notes to the end of the section 1 contents:

- (1) If octet 10 contains 255 then only local tables are in use, the local table version number (Octet 11) must not be zero nor missing, and local tables may include entries from the entire range of the tables.
- (2) If Octet 11 is zero, Octet 10 must contain a valid master tables version number and only those parts of the tables not reserved for local use may be used.

Code tables used in section 1:

Code table 1.0 – GRIB master tables version number

Change:

- 255 Local table used
- to
- 255 Master tables not used. Local table entries and local templates may use the entire range of the table, not just those sections marked "Reserved for local use".

Code table 1.1 – GRIB local table version number

Change:

- 0 Local tables not used
- to
- 0 Local tables not used. Only table entries and templates from the current master table are valid.

ANNEX TO 2.4.4

SUGGESTED ADDITIONAL NOTE TO THE MANUAL ON CODES FOR DRT 5.2 and 5.3

To avoid misunderstanding such as raised in the GRIB2 guide for spatial differencing, the following note should be added for these templates:

DRT 5.2:

(15) See Data Template 7.2 and associated notes for complementary information.

DRT 5.3:

(3) See Data Template 7.3 and associated notes for complementary information.

ANNEX TO 3.1.1

ADDITIONS FOR ENVISAT DATA

a) AATSR - Advanced Along Track Scanning Radiometer is the advanced version of the ATSR system operated on ERS1 and ERS2. The main objective of the AATSR is precise measurement of sea surface temperature (SST).

Proposal for standard WMO BUFR Table B entries:

025061	SOFTWARE IDENTIFICATION AND VERSION NUMBER	CCITTIA5	0	0	96
001096	STATION ACQUISITION	CCITTIA5	0	0	160
	MEAN ACROSS TRACK PIXEL		0	0	9
	NUMBER				
012180	AVERAGED 12 MICRON BT FOR	K	2	0	16
	ALL CLEAR PIXELS AT NADIR				
012181	AVERAGED 11 MICRON BT FOR	K	2	0	16
	ALL CLEAR PIXELS AT NADIR				
012182	AVERAGED 3.7 MICRON BT	K	2	0	16
	FOR ALL CLEAR PIXELS AT				
	NADIR				
012183	AVERAGED 12 MICRON BT FOR	K	2	0	16
	ALL CLEAR PIXELS, FORWARD				
01219/	VIEW AVERAGED 11 MICRON BT	к	2	0	16
012104	FOR ALL CLEAR PIXELS,	K	2	0	ΤŪ
	FORWARD VIEW				
012185	AVERAGED 3.7 MICRON BT	К	2	0	16
012105	FOR ALL CLEAR PIXELS,		2	0	ŦŎ
	FORWARD VIEW				
012186	MEAN NADIR SEA SURFACE	K	2	0	16
	TEMPERATURE				
012187	MEAN DUAL VIEW SEA	K	2	0	16
	SURFACE TEMPERATURE				
021086	NUMBER OF PIXELS IN NADIR	NUMERIC	0	0	9
	ONLY, AVERAGE				
021087	NUMBER OF PIXELS IN DUAL	NUMERIC	0	0	9
	VIEW, AVERAGE				
033043	AST CONFIDENCE	FLAG TABLE	0	0	8

033043 FLAG TABLE AST CONFIDENCE

Bit No. Meaning

1	SEA MDS. NADIR ONLY SST RETRIEVAL USED 3.7
	MICRON CHANNEL. LAND MDS RESERVED
2	SEA MDS. DUAL VIEW SST RETRIEVAL USED 3.7 MICRON
	CHANNEL. LAND MDS RESERVED
3	NADIR VIEW CONTAINS DAY TIME DATA
4	FORWARD VIEW CONTAINS DAY TIME DATA
5-7	RESERVED
All	MISSING VALUE

Common Code Table C-5:

001007 - satellite identifier Add 60 for ENVISAT

Proposal for standard WMO BUFR Table D entries:

312045 - AATSR sea surface temperatures 312045 001007 Satellite identifier 002019 Satellite instruments 001096 Station acquisition 025061 Software identification and version number 005040 Orbit number 301011 Date 301013 Time 301021 Lat/long 007002 Height or altitude 012180 Average 12 micron BT for all clear pixels at nadir 012181 Average 11 micron BT for all clear pixels at nadir 012182 Average 3.7 micron BT for all clear pixels at nadir 012183 Average 12 micron BT for all clear pixels, forward view 012184 Average 11 micron BT for all clear pixels, forward view 012185 Average 3.7 micron BT for all clear pixels, forward view 002174 Mean across track pixel number 021086 Number of pixels in nadir only, average 012186 Mean nadir sea surface temperature 021087 Number of pixels in dual view, average 012187 Mean dual view sea surface temperature 033043 ATS confidence

b) SCIAMACHY- The Scanning Imaging Absorbtion Spectrometer for Atmospheric Cartography. The instrument provides spectra measured from light transmitted, back scattered or reflected by trace gases in the atmosphere.

Use standard entry 310020

c) MIPAS - The Michelson Interferometer for Passive Atmospheric Sounding. The instrument measures atmospheric radiation emitted by trace gases in the infrared spectral range 4.14 to 14.6 micro meters.

BUFR Table B reserved entry:

013098 INTEGRATED WATER VAPOUR KG/M**2 8 0 30 DENSITY

BUFR table D reserved entry:

310030 310022 Satellite id, product type 301011 Date 301013 Time 301021 Lat/long 304034 Lat/long, solar elevation, number of layers 310029 Layer, ozone, height, temperature and water vapour

310029 110000 031001 Delayed replication 201138 Change data width

202130	Change scale
007004	Pressure
007004	Pressure
202000	Cancel operator
201000	Cancel operator
015020	Integrated ozone density
010002	Height
012101	Temperature
013098	Integrated water vapour density

d) **GOMOS** - The Global Ozone Monitoring by Occulation of Stars Gomos measures tangential atmospheric ultraviolet, visual and infrared light.

The BUFR template is the same as for MIPAS data

e) MERIS - The Medium Resolution Imaging Spectrometer: The instrument produces multi-spectral images obtained in a downward viewing push broom imaging manner. The 15 bands acquire radiance in the visible and near infra-red bands.

BUFR table B reserved entries:

010080 VIEWING ZENITH ANGLE	DEGREE	2	-9000	15
027080 VIEWING AZIMUTH ANGLE	DEGREE TRUE	2	0	16
013093 CLOUD OPTICAL THICKNESS	NUMERIC	0	0	8
013095 TOTAL COLUMN WATER VAPOUR	KG/M**2	4	0	19

BUFR table D reserved entries:

312050	002019 001096 025061 005040 301011 301013 301021 007025 005022 010080 027080 008003 007004 013093 008003 201131 202129 007004 202000	Time Lat/long Solar zenith angle Solar azimuth Viewing zenith angle Viewing azimuth angle Vertical significance Pressure Cloud optical thickness Vertical significance Change data width Change scale Pressure Pressure Pressure Cancel operator
	201000	Cancel operator Cancel operator Total column water vapour
	010000	iotai corumi water vapour

f) ASAR - The Advanced Synthetic Aperture Radar is a high resolution imaging radar.

```
Ocean cross spectra - ( WVS )
312051
           001007 Satellite identifier
           002019 Satellite instrument type
           001096 Station acquisition
           025061 Software identification
           005040 Orbit number
           008075 Ascending/descending orbit qualifier
           301011 Date
           301013 Time
           301021 Lat/long
           001012 Direction of motion of moving observing platform
           201131 Change data width
           001013 Speed of motion of moving observing platform
           201000 Cancel operator
           010032 Satellite distance to Earth centre
           010033 Altitude (platform to ellipsoid)
           010034 Earth radius
           007002 Height
           008012 Land/sea qualifier
           025110 Image processing summary
           025111 Number of input data gaps
           025102 Number of missing lines excluding data gaps
           002104 Antenna polarisation
           025103 Number of directional bins
           025104 Number of wave-length bins
           025105 First directional bin
           025106 Directional bin step
           025107 First wave-length bin
           025108 Last wave-length bin
           002111 Radar incidence angle
           002121 Mean frequency
           002026 Cross track resolution
           002027 Along track resolution
           021130 Spectrum total energy
           021131 Spectrum maximum energy
           021132 Direction of spectrum max on higher resolution grid
           021133 Wavelength of spectrum max on higher resolution grid
           021064 Clutter noise estimate
           025014 Azimuth clutter cut-off
           021134 Range resolution of cross covariance spectrum
           107018 Replicate next 7 descriptors 18 times
           005030 Direction (spectral)
           105024 Replicate 5 descriptors 24 time
           201130 Change data width
           006030 Wave number (spectral)
           201000 Cancel operator
           021135 Real part of cross spectra
           021136 Imaginary part of cross spectra
           033044 ASAR quality
```

New Table B descriptors

010032	SATELLITE DISTANCE TO EARTH	М	1	0	27
	CENTRE				
010033	ALTITUDE (PLATFORM TO ELLIPSOID)	М	1	0	27
010034	EARTH RADIUS	М	1	0	27
025110	IMAGE PROCESSING SUMMARY	FLAG TABLE	0	0	10
025111	NUMBER OF INPUT DATA GAPS	NUMERIC	0	0	8
025102	NUMBER OF MISSING LINES EXCLUDING	NUME	0	0	8
	DATA GAPS				
025103	NUMBER OF DIRECTIONAL BINS	NUMERIC	0	0	8
025104	NUMBER OF WAVE-LENGHT BINS	NUMERIC	0	0	8
025105	FIRST DIRECTIONAL BIN	DEGREES	3	0	19

025106	DIRECTIONAL BIN STEP	DEGREES	3	0	19
025107	FIRST WAVE-LENGHT BIN	М	3	0	29
025108	LAST WAVE-LENGHT BIN	М	3	0	29
021130	SPECTRUM TOTAL ENERGY	NUMERIC	6	0	28
021131	SPECTRUM MAX ENERGY	NUMERIC	6	0	28
021132	DIRECTION OF SPECTRUM MAX ON	DEGREES	3	0	19
	HIGHER RESOLUTION GRID				
021133	WAVE-LENGHT OF SPECTRUM MAX ON	М	3	0	29
	HIGHER RESOLUTION GRID				
021134	RANGE RESOLUTION OF CRESS	RAD/M	3	0	19
	COVARIANCE SPECTRUM				
021135	REAL PART OF CROSS SPECTRA	NUMERIC	3	-524288	20
	POLAR GRID NUMBER OF BINS				
021136	IMAGINARY PART OF CROSS SPECTRA	NUMERIC	3	-524288	20
	POLAR GRID NUMBER OF BINS				
033044	ASAR QUALITY INFORMATION	FLAG TABLE	0	0	15

Flag table 025100 IMAGE PROCESSING SUMMARY

bit	number	Meaning
-----	--------	---------

1	Raw data analysis used for raw data correction.
	Correction done using default parameters
2	Raw data analysis used for raw data correction.
	Correction done using raw data analysis results
3	Antenna elevation pattern correction applied
4	Nominal chirp replica used
5	Reconstructed chirp used
б	Slant range to ground range Conversion applied
7-9	Reserved
All 10	Missing value

Flag table 033044 ASAR QUALITY INFORMATION

bit number	Meaning
1	Input data mean outside nominal range flag
2	Input data standard deviation outside nominal range flag
3	Number of input data gaps > threshold value
4	Percentage of missing lines > threshold value
5	Doppler centroid uncertain. Confidence measure < specific value
6	Doppler ambiguity estimate uncertain. Confidence measure < specific value
7	Output data mean outside nominal range flag
8	Output data standard deviation outside nominal range flag
9	Chirp reconstruction failed or is of low quality flag
10	Data set missing
11	Invalid downlink parameters
12	Azimuth cut-off iteration count. The azimuth cut- off fit did not converge within
	minimum number of iterations
13	Azimuth cut-off fit did not converge within a minimum number of iterations
14	Phase information confidence measure. The imaginary spectral peak is less than
	a minimum threshold, or the zero lag shift is greater than a minimum threshold
All 15	Missing value

OCEAN WAVE SPECTRA

Table D sequence

312053 001007 Satellite identifier 002019 Satellite instrument type 001096 Station acquisition 025061 Software identification and version number 005040 Orbit number 008075 Ascending/descending orbit qualifier 301011 Date 301013 Time 301021 Lat/long 001012 Direction of motion of moving observing platform 201131 Change data width 001013 Speed of motion of moving observing platform 201000 Cancel operator 010032 Satellite distance to Earth centre 010033 Altitude (platform to ellipsoid) 010034 Earth radius 007002 Height or altitude 008012 Land/sea qualifier 025110 Image processing summary 025111 Number of input data gaps 025102 Number of missing lines excluding data gaps 002104 Antenna polarisation 025103 Number of directional bins 025104 Number of wave-length bins 025105 First directional bin 025106 Directional bin step 025107 First wave-length bin 025108 Last wave-length bin 011001 Wind direction 011002 Wind speed 022160 Normalized inverse wave age 025138 Average signal to noise ratio 201130 Change data width 202129 Change scale 022021 Height of waves 202000 Cancel operator 201000 Cancel operator 033048 Confidence measure for SAR inversion 033049 Confidence measure for wind retrieval 002026 Cross track resolution 002027 Along track resolution 021130 Spectrum total energy 021131 Spectrum max energy 021132 Direction of spectrum max 021133 Wave-length of spectrum max 025014 Azimuth clutter cut-off 106036 Replicate 6 descriptors 36 times 005030 Direction (spectral) 104024 Replicate 4 descriptors 24 time 201130 Change data width 006030 Wave number (spectral) 201000 Cancel operator 022161 Wave spectra 033044 ASAR quality

Table B descriptors

	NUMERIC NUMERIC	6	0 -2048	21 12
RATIO	NOMERIC	0	-2040	12
033048 CONFIDENCE MEASURE OF SAR	CODE TABLE	0	0	2
INVERSION				
033049 CONFIDENCE MEASURE OF WIND	CODE TABLE	0	0	2
RETRIEVAL				
022161 WAVE SPECTRA	M**4	4	0	27

Code table 033048 CONFIDENCE MEASURE OF SAR INVERSION

code figure	Meaning
0	inversion successful
1	inversion not successful
2	reserved
3	Missing

Code table 033049 CONFIDENCE MEASURE OF WIND RETRIEVAL

code figure	Meaning
0	external wind direction used during inversion
1	External wind direction not used during inversion
2	reserved
3	Missing

g) RA2 - Radar Altimeter-2

312052	001007	Satellite identifier
	002019	Satellite instrument type
	001096	Station acquisition
	025061	Software identification
	005040	Orbit number
	025120	Ra2 L2 processing flag
	025121	Ra2 L2 processing quality
	025124	MWR L2 processing flag
	025125	MWR L2 processing quality
	025122	Hardware configuration for RF
	025123	Hardware configuration for HPA
	301011	Date
	301013	Time
	301021	Lat/long
	007002	Height or altitude
		Instrument operations
	033047	Measurement confidence data
	010081	Altitude of COG above reference ellipsoid
	010082	Instantaneous altitude rate
	010083	Off nadir angle of the satellite from platform data
	010084	Off nadir angle of the satellite from waveform data
		Percentage of 320 MHz band processed
		Percentage of 80 MHz band processed
		Percentage of 20 MHz band processed
		Percentage of valid Ku ocean retracker measurements
		Percentage of valid S ocean retracker measurements
		Solar activity index
		Number of 18 Hz valid points for Ku band
		Ku band ocean range
	022152	STD of 18Hz Ku band ocean range

022153 Number of 18 Hz valid points for S band 022154 S band ocean range 022155 STD of 18 Hz S band ocean range 022156 Ku band significant wave height 022157 STD of 18 Hz Ku band significant wave height 022158 S band significant wave height 022159 STD 18 Hz S band significant wave height 021137 Ku band corrected ocean backscatter coefficient 021138 STD Ku band corrected ocean backscatter coefficient 021139 Ku band net instrumental correction for AGC 021140 S band corrected ocean backscatter coefficient 021141 STD S band corrected ocean backscatter coefficient 021142 S band net instrumental correction for AGC 010085 Mean sea surface height 010086 Geoid height 010087 Ocean depth/land elevation 010088 Total geocentric ocean tide height solution 1 010089 Total geocentric ocean tide height solution 2 010090 Long period tide height 010091 Tidal loading height 010092 Solid earth tide height 010093 Geocentric pole tide height 011002 wind speed 025126 Model dry tropospheric correction 025127 Inverted barometer correction 025128 Model wet tropospheric correction 025129 MWR derived wet tropospheric correction 025130 Ra2 ionospheric correction on Ku band 025131 Ionospheric correction from Doris on Ku band 025132 Ionospheric correction from model on Ku band 025133 Sea state bias correction on Ku band 025134 Ra2 ionospheric correction on S band 025135 Ionospheric correction from Doris on S band 025136 Ionospheric correction from model on S band 025137 Sea state bias correction on S band 013096 MWR water vapour content 013097 MWR liquid water content 011085 u component of model wind vector 011086 v component of model wind vector 012188 Interpolated 23.8 GHz brightness temp from MWR 012189 Interpolated 36.5 GHz brightness temp from MWR 002158 RA- 2 instrument 002159 MWR instrument 033052 S band ocean retracking quality 033053 Ku band ocean retracking quality 021143 Ku band rain attenuation 021144 Altimeter rain flag

Table B descriptors

002116 002117 002118	RA - 2 INSTRUMENT OPERATIONS PERCENTAGE OF 320 MHZ BAND PROCESSE PERCENTAGE OF 80 MHZ BAND PROCESSE PERCENTAGE OF 20 MHZ BAND PROCESSE PERCENTAGE OF VALID KU OCEAN	ED % D %	0 0 0 0	0 0 0 0	3 7 7 7 7
002157	RETRACKER MEASUREMENTS PERCENTAGE OF VALID S OCEAN RETRACKER MEASUREMENTS	00	0	0	7
002159	RA - 2 INSTRUMENT MWR INSTRUMENT ALTITUDE OF COG ABOVE REFERENCE ELLIPSOID	FLAG TABLE FLAG TABLE M		0 0 0	9 8 31
	INSTANTANEOUS ALTITUDE RATE OFF NADIR ANGLE OF THE SATELLITE FROM PLATFORM DATA	M/S DEGREE		-65536 -36000	17 17
010085	OFF NADIR ANGLE OF THE SATELLITE FROM WAVEFORM DATA MEAN SEA SURFACE HEIGHT	DEGREE M	3	-131072	17 18
010087	GEOID HEIGHT OCEAN DEPTH/LAND ELEVATION TOTAL GEOCENTRIC OCEAN TIDE HEIGHT SOLUTION 1	M M M	1	-131072 -131072 -32768	18 18 16
010089	TOTAL GEOCENTRIC OCEAN TIDE HEIGHT SOLUTION 2	М	3	-32768	16
010091 010092 010093	LONG PERIOD TIDE HEIGHT TIDAL LOADING HEIGHT SOLID EARTH TIDE HEIGHT GEOCENTRIC POLE TIDE HEIGHT U COMPONENT OF THE MODEL WIND	M M M M/S	3 3 3	-32768 -32768 -32768 -32768 -4096	16 16 16 16 13
011086	VECTOR V COMPONENT OF THE MODEL WIND	M/S	1	-4096	13
012188	VECTOR INTERPOLATED 23.8 GHZ BRIGHTNESS T	K	2	0	16
012189	FROM MWR INTERPOLATED 36.5 GHZ BRIGHTNESS T FROM MWR	К	2	0	16
013097 014055	MWR WATER VAPOUR CONTENT MWR LIQUID WATER CONTENT SOLAR ACTIVITY INDEX KU BAND CORRECTED OCEAN	KG/M**2 KG/M**2 NUMERIC DB	2 2 0 2	0 0 -32768 -32768	14 14 14 16
021138	BACKSCATTER COEFFICIENT STD KU BAND CORRECTED OCEAN	DB	2	-32768	16
021139	BACKSCATTER COEFFICIENT KU BAND NET INSTRUMENTAL	DB	2	-2048	12
021140	CORRECTION FOR ACG S BAND CORRECTED OCEAN BACKSCATTER COEFFICIENT	DB	2	-32768	16
021141	STD S BAND CORRECTED OCEAN BACKSCATTER COEFFICIENT	DB	2	-32768	16
	S BAND NET INSTRUMENTAL CORRECTION FOR ACG	DB	2	-1024	11
021144	KU BAND RAIN ATTENUATION ALTIMETER RAIN FLAG NUMBER OF 18 HZ VALID POINTS	DB 2 FLAG TABLE NUMERIC	0	3741824 0 0	-
022151	FOR KU BAND KU BAND OCEAN RANGE	М	3	0	31
	STD OF 18 HZ KU BAND OCEAN RANGE NUMBER OF 18 HZ VALID POINTS FOR S BAND	M NUMERIC	3 0	0 0	16 10
	S BAND OCEAN RANGE STD OF 18 HZ S BAND OCEAN RANGE	M M	3 3	0 0	31 16
022156	KU BAND SIGNIFICANT WAVE HEIGHT STD 18 HZ KU BAND SIGNIFICANT	M M	3	0	16 16
022158	WAVE HEIGHT S BAND SIGNIFICANT WAVE HEIGHT	М	3	0	16

022159	STD 18 HZ S BAND SIGNIFICANT WAVE HEIGHT	М	3	0	16
025120	RA2 L2 PROCESSING FLAG	CODE TABLE	0	0	2
	RA2_L2_PROCESSING QUALITY	00	0	0	7
	HARDWARE CONFIGURATION FOR RF	CODE TABLE	0	0	2
025123	HARDWARE CONFIGURATION FOR HPA	CODE TABLE	0	0	2
025124	MWR L2 PROCESSING FLAG	CODE TABLE	0	0	2
025125	MWR L2 PROCESSING QUALITY	00	0	0	7
025126	MODEL DRY TROPOSPHERIC CORRECTION	М	3	-32768	16
025127	INVERTED BAROMETER CORRECTION	М	3	-32768	16
025128	MODEL WET TROPOSPHERIC CORRECTION	М	3	-32768	16
025129	MWR DERIVED WET TROPOSPHERIC CORRECTION	М	3	-32768	16
025130	RA2 IONOSPHERIC CORRECTION ON KU	М	3	-32768	16
005101	BAND	24	3	20760	10
025131	IONOSPHERIC CORRECTION FROM DORIS ON KU BAND	М	3	-32768	16
025132	IONOSPHERIC CORRECTION FROM MODEL	М	3	-32768	16
	ON KU BAND				
025133	SEA STATE BIAS CORRECTION ON	М	3	-32768	16
	KU BAND				
025134	RA2 IONOSPHERIC CORRECTION ON S BAND	М	3	-32768	16
025135	IONOSPHERIC CORRECTION FROM DORIS	М	3	-32768	16
	ON S BAND				
025136	IONOSPHERIC CORRECTION FROM MODEL ON S BAND	М	3	-32768	16
025137	SEA STATE BIAS CORRECTION ON S	М	3	-32768	16
	BAND			_	
	S BAND OCEAN RETRACKING QUALITY		0	0	21
033053	KU BAND OCEAN RETRACKING I QUALITY	FLAG TABLE	0	0	21
033047	MEASUREMENT CONFIDENCE DATA FLAG T	ABLE	0	0	31

Code table 002180 INSTRUMENT OPERATIONS

Code figure Meaning

0	Intermediate Frequency Calibration Mode (IF CAL)
1	Built-In Test Equipment Digital (BITE DGT)
2	Built-In test Equipment Radio Frequency (BITE RF)
3	Preset tracking (PSET TRK)
4	Preset LOOP OUT
5	ACQUISITION
б	TRACKING
7	MISSING VALUE

Flag table 002158 RA - 2 INSTRUMENT

bit number	Meaning	

1	MISMATCH IN RED VEC HPA
2	MISMATCH IN RED VEC RFSS
3	PTR CALIBRATION BAND 320 MHz (Ku)
4	PTR CALIBRATION BAND 80 MHz (Ku)
5	PTR CALIBRATION BAND 20 MHz (Ku)
6	PTR CALIBRATION BAND 160 MHz (S)
7	Ku FLIGHT CALIBRATION PARAMETERS AVAILABLE
8	S FLIGHT CALIBRATION PARAMETERS AVAILABLE
All	Missing value
	PTR - Pulse target response HPA - High Power Amplifier RFSS - Radio Frequency Sub-System RED - Redundancy

Flag table 002159 MWR INSTRUMENT

bit number	Meaning
1	Temperature inconsistency
2	Data is missing
3	Redundancy channel
4	Power bus protection
5	Overvoltage/Overload protection
б	Reserved
7	Reserved
ALL	Missing

MWR - Microwave radiometer

Flag table 021144 Altimeter rain flag

bit number	Meaning
1	RAIN
all	Missing value

Code table 025120 RA2_12_processing flag

code figure Meaning

0	Percentage of DSRs free of processing errors during Level 2
1	processing is greater than the acceptable threshold Percentage of DSRs free of processing errors during Level 2
-	processing is less than the acceptable threshold
2	Reserved
3	Missing value

DSR - Data set record

Code table 025122 Hardware configuration for RF

Code figure	Meaning
0	Hardware configuration for RF is A
1	Hardware configuration for RF is B
2	Reserved
3	Missing

RF - Radio frequency

Code table 025123 Hardware configuration for HPA

Code figure	Meaning
0	Hardware configuration for HPA is A
1	Hardware configuration for HPA is B
2	Reserved
3	Missing

Code table 025124 MWR 12 processing flag

Code figure Meaning

0	Percentage of DSRs free of processing errors during
	Level 2 processing is greater than the acceptable threshold
1	Percentage of DSRs free of processing errors during
	Level 2 processing is less than the acceptable threshold
2	Reserved
2	
3	Missing
5	

DSR - Data Set Record MWR - Microwave radiometer

Flag table 033053 Ku band ocean retracking quality

bit number Meaning

1-20 First 20 least significant bits correspond to the 20 values
 (one per data block containing 0=valid measurement,
 l=invalid)
 bit 1 applies to the 20th data block
All Missing

Flag table 033052 S band ocean retracking quality

bit number Meaning

1-20 First 20 least significant bits correspond to the 20 values
 (one per data block containing 0=valid measurement,
 l=invalid)
 bit 1 applies to the 20th data block
All Missing

Flag table 033047 Measurement confidence data

riag cable 055047	
bit number	Meaning
1	Error detected and attempts to recover made
2	Anomaly in on-board data handling (OBDH) value detected
3	Anomaly in Ultra Stable Oscillator Processing (USOP) value
-	detected
4	Errors detected by on-board computer
5	Automatic gain control (AGC) out of range
6	Rx delay fault. Rx distance out of range
7	Wave form samples fault identifier. Error
8	Reserved
9	Reserved
10	Reserved
11	Reserved
12	Brightness temperature (channel 1) out of range
13	Brightness temperature (channel 2) out of range
14	Reserved
15	Ku Ocean retracking error
16	S Ocean retracking error
17	Ku Ice 1 retracking error
18	S Ice 1 retracking error
19	Ku Ice 2 retracking error
20	S Ice 2 retracking error
21	Ku Sea Ice retracking error
22	Arithmetic fault error
23	Meteo data state. No map
24	Meteo data state. 1 map
25	Meteo data state 2 maps degraded
26	Meteo data state 2 maps nominal
27	Orbit propagator status for propagation mode, several errors
28	Orbit propagator status for propagation mode, warning detected
29	
29	Orbit propagator status for initialisation mode, several
30	errors Orbit propagator status for initialization mode, warning
50	Orbit propagator status for initialisation mode, warning detected
All 31	Missing
ATT 2T	итертия

ANNEX TO 3.1.2.1

DESCRIPTORS FOR AIRS SATELLITE DATA for "PREOPERATIONAL STATUS"

In BUFR Table B:

Log-10 of principal components normalized fit to data $0{-}25{-}052$ Numeric 4 0 15

In BUFR Table D:

	llite collocated 1C reports with 3 instruments
3-10-051	Satellite position and instrument temperatures
3-10-052	Satellite instrument type and position (AIRS)
1-01-000	Delayed replication of 1 descriptor
0-31-002	Extended delayed descriptor replication factor
3-10-053	Satellite channels and brightness temperatures with expanded
5 10 000	channel set (AIRS)
1-01-004	Replicate 1 descriptor 4 times
3-10-054	Satellite visible channels and albedos with expanded channel set
0-20-010	Cloud cover (total)
3-10-052	Satellite instrument type and position (AMSU-A)
1-01-015	Replicate 1 descriptor 15 times
3-10-053	Satellite channels and brightness temperatures with expanded channel set (AMSU-A)
3-10-052	Satellite instrument type and position (HSB)
1-01-005	Replicate 1 descriptor 5 times
3-10-053	Satellite channels and brightness temperatures with expanded
	channel set (HSB)
	llite position and instrument temperatures
0-01-007	Satellite identifier
0-05-040	Orbit number
2-01-133	Change data width
0-05-041	Scan line number
2-01-000	Cancel change data width
2-01-132	Change data width
0-25-070	Major frame count
2-01-000	Cancel change data width
2-02-126	Change scale
0-10-007	Height of station
2-02-000	Cancel change scale
0-07-025	Solar zenith angle
0-05-023	Solar azimuth
1-02-009	Replicate 2 descriptors 9 times
0-02-151	Radiometer identifier
0-12-064	Instrument temperature
0-12-004	instrument temperature

_____ 3-10-052 Satellite instrument type and position _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _____ 0-02-019 Satellite instruments 3-01-011 Year, month, day 3-01-012 Hour, minute Change scale 2-02-131 2-01-138 Change data width 0-04-006 Second 2-01-000 Cancel change data width 2-02-000 Cancel change scale 3-01-021 Latitude and longitude (high accuracy) 0-07-024 Satellite zenith angle Bearing or azimuth 0-05-021 0-05-043 Field of view number _____ 3-10-053 Satellite channels and brightness temperatures with expanded channel set _____ 2-01-134 Change data width Channel number Cancel change data width Log-10 of temperature-radiance central wave number for ATOVS 0-05-042 2-01-000 0-25-076 0-33-032 Channel quality flags for ATOVS 0-12-163 Brightness temperature (scale 2) _____ 3-10-054 Satellite visible channels and albedos with expanded channel set _____ 2 - 01 - 134Change data width 0-05-042 Channel number 2-01-000 Cancel change data width 0-25-076 Log-10 of temperature-radiance central wave number for ATOVS 0-33-032 Channel quality flags for ATOVS Change data width 2-01-131 2-02-129 Change scale Replicate 2 descriptors 2 times 1-02-002 First-order statistics 0-08-023 0-14-027 Albedo 0-08-023 First-order statistics 2-02-000 Cancel change scale 2-01-000 Cancel change data width _____ 3-10-055 Satellite radiance/channel principle components _____ 3-10-051 Satellite position and instrument temperatures 3-10-052 Satellite instrument type and position (AIRS) 1-02-020 Replicate 2 descriptors 20 times 0-25-076 Log-10 of temperature-radiance central wave number for ATOVS 0-25-052 Log-10 of principal components normalized fit to data Delayed replication of 1 descriptor 1-01-000 0-31-002 Extended delayed descriptor replication factor 0-25-050 Principal components of satellite radiance

ANNEX TO 3.1.2.2

ADDITIONAL ENTRIES FOR SATELLITE DATA

For "PRE-OPERATIONAL" status:

Within existing descriptor 0-02-163 "Height assignment method", add the following new (1) table entry:

AUTO EDITOR 0

(2) Within existing descriptor 0-01-007 "Satellite identifier", add the following new table entries:

720 TOPEX GFO (GEOSAT Follow On) 721

(3) New table entry (was previously listed under "ALLOCATED ENTRIES (AWAITING VALIDATION)", but has since been validated within processing of altimeter data):

Satellite cy	cle number			
0-05-044	Numeric	0	0	11
B-05-044	Numeric	0	4	

For "ALLOCATED ENTRIES (AWAITING VALIDATION)" status:

Satellite zenith angle			
0-07-026 Degrees	4	-900000	21
B-07-026 Degrees	4		7

ANNEX TO 3.2.2

FOR CODING SIGMET WITH VOLUME ADDITIONS (I.E. ENHANCED PROPOSAL)

Proposed Table B entries

Table Reference	Element name	BUFR			CREX			
FXY		Unit	Scale	Ref. value	Data width	Unit	Scale	Data width
0 01 037	SIGMET sequence identifier	CCITT IA5	0	0	24	Character	0	3
0 01 065	ICAO region identifier	CCITT IA5	0	0	256	Character	0	32
0 08 019	Qualifier for following centre identifier	Code table	0	0	4	Code table	0	2
0 08 079	Change in status of following product	Code table	0	0	3	Code table	0	1
0 10 064	SIGMET cruising level	Code table	0	0	3	Code table	0	1
0 20 028	Expected change in intensity	Code table	0	0	3	Code table	0	1
0 27 035	Length of phenomenon	m	-3	0	13	m	-3	4
0 28 035	Width of phenomenon	m	-3	0	13	m	-3	4

Add the following new categories to Table A within BUFR and CREX:

- 13 Forecasts
- 14 Warnings

Add the following new code table values for the descriptors to Table B within BUFR:

0 08 011

- 21 Thunderstorm
- 22 Tropical Cyclone
- 23 Mountain Wave
- 24 Duststorm
- 25 Sandstorm

0 20 008

15 Obscured (OBSC)

16 Embedded (EMBD)

0 20 024

5 Severe

Code tables for proposed new Table B descriptors:

Code	0 08 019
figure	Qualifier for following centre identifier
0	Reserved
1	ATS (Air Traffic Service) unit serving FIR (Flight Information Region)
2	FIR (Flight Information Region)
3	UIR (Upper Information Region)
4	CTA (Control Area)
5	VAAC (Volcanic Ash Advisory Centre)
6	MWO (Meteorological Watch Office) issuing SIGMET
7-14	Reserved
15	Missing value

Code	0 08 079
figure	Change in status of following product
0	Cancelled
1-6	Reserved
7	Missing value

Code	0 10 064
figure	SIGMET cruising level
0	Subsonic
1	Transonic
2	Supersonic
3-6	Reserved
7	Missing value

Code	0 20 028	
figure	Expected change in intensity	
0	No change (NC)	
1	Forecast to weaken (WKN)	
2	Forecast to intensify (INTSF)	
3-6	Reserved	
7	Missing value	

New Table D descriptors:

		(Description of a feature in 3-D or in 2-D, in the last case replication = 1)
3 01 027	1 01 000	Replicate one descriptor
	0 31 001	Replication count
	3 01 028	Description of horizontal section ¹
		(Horizontal section of a feature described as a polygon or a line or a
		point; in the last case replication = 1)
3 01 028	0 07 010	Flight Level
	1 02 000	Replicate two descriptors ²
	0 31 001	Replication count
	0 05 002	Latitude (coarse accuracy)
	0 06 002	Longitude (coarse accuracy)
		(SIGMET header)
3 16 030	1 02 002	Replication of 2 descriptors two times (Define validity period)
	3 01 011	Year, Month, Day
	3 01 012	Hour, Minute
	0 01 037	SIGMET sequence identifier
	0 10 064	SIGMET cruising level
	0 08 019	Qualifier for location identifier, 1=ATS unit serving FIR
	0 01 062	Short ICAO location identifier
	1 02 000	Replicate two descriptors
	0 31 001	Replication count
	0 08 019	Qualifier for location identifier, 2=FIR, 3=UIR, 4=CTA
	0 01 065	ICAO region identifier
	0 08 019	Qualifier for location identifier, 6=MWO
	0 01 062	Short ICAO location identifier
	0 08 019	Qualifier for location identifier, Missing=Cancel
		(CICMET, Ohe or East leastion and motion)
2 16 021	0.09.001	(SIGMET, Obs or Fcst location and motion)
3 16 031	0 08 021 3 01 011	Time Significance, 16=Analysis, 4=Forecast
	3 01 012	Year, Month, Day
	0 07 010	Hour, Minute Flight level (base)
	0 07 010	Flight level (top)
	0 27 035	Length of phenomenon
	0 28 035	Width of phenomenon
	0 08 007	Dimensional significance, 1=point, 2=area, 3=volume
	3 01 027	Description of feature
	0 19 005	Direction of motion
	0 19 006	Speed of motion
	0 19 007	Radius of feature
	0 08 007	Dimensional significance, Missing=cancel
	0 20 028	Expected change in intensity
	0 08 021	Time significance, Missing=cancel
		(SIGMET, Fcst position)
3 16 032	0 08 021	Time Significance, 4=Forecast

^{1 3-}D features should be described by a set of horizontal sections in successive ascending flight levels. 2 Polygon should be described by a sequence of contiguous points.

	2 01 011	Veer Menth Dev
	3 01 011	Year, Month, Day
	3 01 012	Hour, Minute
	0 08 007	Dimensional significance, 1=point, 2=area
	1 01 000	Replicate one descriptor
	0 31 001	Replication count
	3 01 023	Latitude, longitude
	0 08 007	Dimensional significance, Missing=cancel
	0 08 021	Time significance, Missing=cancel
		(SIGMET, Outlook)
3 16 033	0 08 021	Time Significance, 4=Forecast
	3 01 011	Year, Month, Day
	3 01 012	Hour, Minute
	1 07 000	Replicate 7 descriptors
	0 31 001	Replication count
	0 07 010	Flight level (base)
	0 07 010	Flight level (top)
	0 08 007	Dimensional significance, 1=point, 2=area, 3=volume
	3 01 027	Description of feature
	0 08 007	Dimensional significance, Missing=cancel
	0 08 021	Time significance, Missing=cancel
	0.00.021	
		(Volcanic Ash SIGMET)
3 16 034	3 16 030	SIGMET Header
3 10 034	0 08 011	Meteorological feature, 17=Volcano
	0 01 022	Name of feature
	0 08 007	Dimensional significance, 0=Point
	3 01 023	Location
	0 08 007	Dimensional significance, Missing=Cancel
	0 20 090	Special Clouds, 5=Clouds from volcanic eruptions
	3 16 031	SIGMET Obs or Fcst location and motion
	1 01 000	
		Delayed replication
	0 31 000	Short replication factor
	3 16 032	SIGMET Fcst position
	1 01 000	Delayed replication
	0 31 001	Delayed replication factor
	3 16 033	SIGMET Outlook
	0 08 011	Meteorological feature, Missing=Cancel
		(Thunderstorm SIGMET)
3 16 035	3 16 030	SIGMET Header
	0 08 011	Meteorological feature, 21=Thunderstorm
	0 20 023	Other weather phenomenon, bit 2=Squalls or all 18 bits = Missing
	0 20 021	Type of precipitation, bit 14=Hail or all 30 bits=Missing
	0 20 008	Cloud distribution 15=OBSC, 16=EMBD, 12=FRQ, 31=Missing
	3 16 031	SIGMET Obs or Fcst location and motion
	0 08 011	Meteorological feature, Missing=Cancel
	•	

		(Tropical Cyclone SIGMET)
3 16 036	3 16 030	SIGMET Header
	0 08 011	Meteorological feature, 22=Tropical Cyclone
	0 01 027	WMO storm name
	3 16 031	SIGMET Obs or Fcst location and motion
	1 01 000	Delayed replication
	0 31 000	Short replication factor
-	3 16 032	SIGMET Fcst position
	1 01 000	Delayed replication
	0 31 001	Delayed replication factor
_	3 16 033	SIGMET Outlook
-	0 08 011	Meteorological feature, Missing=Cancel
_		
-		(Turbulence SIGMET)
3 16 037	3 16 030	SIGMET header
	0 08 011	Meteorological feature, 13=Turbulence
	0 11 031	Degree of turbulence, 10=Mod, 11=Severe
	3 16 031	SIGMET Obs or Fcst location and motion
	0 08 011	Meteorological feature, Missing=Cancel
		(Icing SIGMET)
3 16 038	3 16 030	SIGMET header
	0 08 011	Meteorological feature, 15=Airframe Icing
	0 20 041	Airframe icing, 7=Severe
	0 20 021	Type of precip, bit 3=Liquid freezing precip or all 30 bits = Missing
	3 16 031	SIGMET Obs or Fcst location and motion
	0 08 011	Meteorological feature, Missing=Cancel
		(Mountain Wave SIGMET)
3 16 039	3 16 030	SIGMET header
	0 08 011	Meteorological feature, 23=Mountain Wave
	0 20 024	Intensity of phenomena, 5=Severe
	3 16 031	SIGMET Obs or Fcst location and motion
	0 08 011	Meteorological feature, Missing=Cancel
		(Duststorm SIGMET)
3 16 040	3 16 030	SIGMET header
	0 08 011	Meteorological feature, 24=Duststorm
	0 20 024	Intensity of phenomena, 3=Heavy
	3 16 031	SIGMET Obs or Fcst location and motion
	0 08 011	Meteorological feature, Missing=Cancel
0.40.044	0.40.000	(Sandstorm SIGMET)
3 16 041	3 16 030	SIGMET header
	0 08 011	Meteorological feature, 25=Sandstorm
	0 20 024	Intensity of phenomena, 3=Heavy
	3 16 031	SIGMET Obs or Fcst location and motion
	0 08 011	Meteorological feature, Missing=Cancel

		(Cancellation of SIGMET)	
3 16 042	3 16 030	SIGMET header	
	0 08 079	Change in status of following product, 0 = Cancelled	
	1 02 002	Replication of 2 descriptors two times (Define validity period)	
	3 01 011	Year, Month, Day of the SIGMET to be cancelled	
	3 01 012	Hour, Minute of the SIGMET to be cancelled	
	0 01 037	SIGMET sequence identifier of the SIGMET to be cancelled	
	0 10 064	SIGMET cruising level of the SIGMET to be cancelled	
	0 08 079	Change in status of following product, Missing = Cancel	

ANNEX TO 3.3

Common Code Table C-12: Sub-Centres of Originating Centres (*entries in Tables C-1 and C-11*)

0	RIGINATING CENTRES	SUB-CENTRES		
Code figure	Name	Code figure	Name	
C-1			5, Section 1 of BUFR	
C-11			6, Section 1 of GRIB	
		0	No Sub-Centre	
Region IV				
00007	US NWS, NCEP	1	NCEP Reanalysis Project	
		2	NCEP Ensemble Products	
		3	NCEP Central Operations	
		4		
		5	Hydrometeorological Prediction	
			Center	
		6	Marine Prediction Center	
		7	Climate Prediction Center	
		8	Aviation Weather Center	
		9 Storm Prediction Center		
		10 Tropical Prediction Center		
		11 NWS Techniques Development		
			Laboratory	
		12 NESDIS Office of Research and		
			Applications	
		13	Federal Aviation Administration	
		14		
			Laboratory	
00161	U.S. NOAA Office of Oceanic	1	Great Lakes Environmental	
	and Atmospheric Research		Research Laboratory	
		2	Forecast Systems Laboratory	
Region VI				
00074	UK M.O., Bracknell (RSMC)	1	Shanwick Oceanic Area Control Centre	

ANNEX TO 3.4.1

ADDITIONS FOR OCEANOGRAPHIC DATA

1) Proposed new BUFR descriptors for buoy data

Tab		BUFR				CREX		
Ref	Name	Unit	Scal	Ref	Widt	Unit	Scal	Widt
			е		h		е	h
008xxx	Artificial correction of sensor height to another value	Code	0	0	3	Code	0	1
022xxx	Lagrangian drifter drogue status	Code	0	0	3	Code	0	1
008yyy	Type of equipment	Code	0	0	6	Code	0	2
025yyy	Battery voltage	V	1	0	12	V	1	4
025uuu	Operator or manufacture defined parameter	Num	1	-16384	15	Num	1	5

Type of equipment Code table 0 08 yyy

- 0 Sensor
- 1 Transmitter
- 2 Receiver
- 3 Observing platform
- 4-62 Reserved
- 63 Missing value

0 02 038 to be used instead of 0 22 yyy suggestion, will need renaming to include salinity reference, for example

0 02 038 element name

"Method of water temperature and/or salinity measurement"

0 08 xxx Artificial correction of sensor height to another value

Code figure	Meaning	
Code ligure	wearing	

- 0 Height is not corrected
- 1 Height is artificially corrected to standard level using a formula
- 2 Reserved
- 3 Missing value
- **Note**: Standard level is indicated by the descriptor of class 7, which immediately follows. Value of this class 7 descriptor is forced to missing in case height is not corrected. It is possible to indicate the real height of the sensor by preceding the descriptor by relevant class 7 descriptor.

0 22 yyy Lagrangian drifter drogue status

Code figure	Meaning
0	Drogue is detached
1	Drogue is attached
2	Drogue status unknown
3	Missing value

Proposed new template for buoy data

Proposed modifications appear in **bold and red** below

001003 - WMO region 001020 - WMO region sub-area 001005 - Buoy/platform identifier 002001 - Type of station 002036 - Buoy type 002149 - Type of data buoy 301011 - Date 301012 - Time 008021 - Time significance (value = "26" (time of last known position)) 301011 - Date 301012 - Time 008021 - Time significance (value = "missing") 301021 - Latitude and longitude (high accuracy) 027004 - Alternate latitude (high accuracy) 028004 - Alternate longitude (high accuracy) 007030 - Height of station above MSL 001051 - Platform Transmitter ID (CCITT IA5) 002148 - Data collection and/or Location system 001012 - Platform drift direction 001014 - Platform drift speed 002040 - Method of removing platform direction and speed from current 033022 - Quality of buoy satellite transmission 033023 - Quality of buoy location 033027 - Location quality class (range of radius of 66% confidence) 022063 - Total water depth 302021 - Waves 302022 - Wind waves 302023 - Swell waves 008yyy – Type of equipment (observing platform) 025yyy – Battery voltage 008yyy – Type of equipment (transmitter) 025yyy – Battery voltage 008yyy - Type of equipment (receiver) 025yyy – Battery voltage 008yyy - Type of equipment - Value Missing = cancel 002034 - Drogue type 022yyy - Lagrangian drifter drogue status 007070 - Drogue depth 002190 - Lagrangian drifter submergence 025086 - Depth correction indicator 002035 - Cable length 002168 - Hydrostatic pressure of lower end of cable 020031 - Ice deposit (thickness) 002038 - Method of water temperature and/or salinity measurement 306004 - Digitization, depth/salinity method, depths/salinities/temperatures 002030 - Method of current measurement 306005 - Time/duration of current measurement, depths/directions/speeds 007031 - Height of barometer above MSL 008yyy – Type of equipment (sensor) 012064 - Instrument temperature 302001 - Pressure and pressure change 008yyy - Type of equipment - Value Missing = cancel 007032 - Height of sensor above marine deck platform (for temp.&hum. measurement) 007033 - Height of sensor above water surface (for temp.&hum. measurement) 012101 - Dry-bulb temperature (scale 2) 012103 - Dew-point temperature (scale 2)

013003 - Relative humidity 007032 - Height of sensor above marine deck platform (for wind measurement) 007033 - Height of sensor above water surface (for wind measurement) 008xxx - Artificial correction of sensor height to another value 007033 - Height of sensor above water surface (here height of anemometer to which it is artificially corrected) 002169 - Anemometer type 002002 - Type of instrumentation for wind measurement 008021 - Time significance (value = "2" (time averaged)) 004025 - Time period in minutes 011001 - Wind direction 011002 - Wind speed 008021 - Time significance (value = "missing") 004025 - Time period in minutes 011043 - Maximum wind gust direction 011041 - Maximum wind gust speed 008xxx - Artificial correction of sensor height to another value (set to missing to reset previous value) 007033 - Height of sensor above water surface (set to missing to cancel previous value) 007032 - Height of sensor above marine deck platform (for precipitation measurement) 004024 - Time period in hours 013011 - Total precipitation 007032 - Height of sensor above marine deck platform (set to missing to cancel the previous value) 008021 - Time significance (value = "3" (accumulated)) 004024 - Time period in hours 014021 - Global radiation, integrated over period specified 008021 - Time significance (value = "missing") 025yyy - Operator or manufacturer defined parameter (#1) 025yyy – Operator or manufacturer defined parameter (#2) 025yyy – Operator or manufacturer defined parameter (#3)

2) Requirements by the Ship Of Opportunity Programme (SOOP)

Additions to BUFR tables required

Additions needed to Common code table C-3, Instrument type for water profile measurement with fall rate equation coefficients

Code figure	Code figure for	Instrument Make	Equation C	oefficients
for	BUFR		а	b
$\mathbf{I}_{\mathbf{x}}\mathbf{I}_{\mathbf{x}}\mathbf{I}_{\mathbf{x}}$	(code table 0 22 067)			
855	855	Profiling Float, NINJA, no conductivity sensor	Not applical	ble
856	856	Profiling Float, NINJA, SBE conductivity	Not applical	ble
		sensor		
857	857	Profiling Float, NINJA, FSI conductivity	Not applical	ble
		sensor		
858	858	Profiling Float, NINJA, TSK conductivity	Not applical	ble
		sensor		
900	900	Sippican T-12 XBT	9.727	-0.0000473

Additions needed to Common code table C-4, Water temperature profile recorder types

0	Code for BUFR (Code table 0 22 068)	Recorder type
70	70	CSIRO Devil-1 XBT acquisition system
71	71	CSIRO Devil-2 XBT acquisition system

ANNEX TO 3.4.2

CLARIFICATION TO BUFR REGULATION

Note (1) to Class 04 should be modified from "shall be indicated..." to: "... may be indicated ...".

ANNEX TO 3.4.3

FOR SHIP TEMPLATES

Add Note in Templates of SHIP to descriptor 0 01 012:

*Means course made good (average course over the ground) during the three hours preceding the time of observation

Add Note in Templates of SHIP to descriptor 0 01 013:

*Means speed made good (average speed over the ground) during the three hours preceding the time of observation

Add a Note in Table B to descriptors 0 01 012 and 0 01 013 indicating the parameters may have different meanings and the corresponding value may be integrated on different periods.

ANNEX TO 3.4.4

BUFR TEMPLATES FOR VERTICAL SOUNDING DATA WITH DESCRIPTION OF RADIOSONDE POSITION DURING THE ASCENT

1 BUFR templates for PILOT, PILOT SHIP, PILOT MOBIL

a) with pressure as the vertical coordinate

		Identification and instrumentation	
3 01 001	0 01 001	WMO block number	Numeric
	0 01 002	WMO station number	Numeric
0 01 011		Ship or mobile land station identifier	CCITT IA5
0 02 011		Radiosonde type	Code table
0 02 014		Tracking technique/status of system used	Code table
0 02 003		Type of measuring equipment used	Code table
0.02.000		Nominal date/time, horizontal and vertical	
		coordinates of launch site	
3 01 011	0 04 001	Year	Year
	0 04 002	Month	Month
	0 04 003	Day	Day
3 01 012	0 04 004	Hour	Hour
	0 04 005	Minute	Minute
3 01 021	0 05 001	Latitude (high accuracy)	Degree, scale 5
	0 06 001	Longitude (high accuracy)	Degree, scale 5
0 07 030		Height of station ground above mean sea level	m, scale 1
0 07 031		Height of barometer above mean sea level	m, scale 1
0 07 007		Height of release of sonde above mean sea level	m
0 33 024		Station elevation quality mark (for mobile stations)	Code table
		Date/time of the launch	
0 08 021		Time significance	Code table
		(value = 18 (launch time))	
3 01 011	0 04 001	Year	Year
	0 04 002	Month	Month
	0 04 003	Day	Day
3 01 012	0 04 004	Hour	Hour
	0 04 005	Minute	Minute
		Level data	
1 07 000		Delayed replication of 7 descriptors	
0 31 001		Delayed descriptor replication factor	Numeric
		Data from a single level	
0 04 016		Time increment in seconds (since launch time)	
0 08 001		Vertical sounding significance	Flag table
0 07 004		Pressure	Pa, scale –1
0 05 011		Latitude increment since launch site (high accuracy)	Degree, scale 5
0 06 011		Longitude increment since launch site (high accuracy)	Degree, scale 5
0 11 001		Wind direction	Degree true
0 11 002		Wind speed	m s ⁻¹ , scale 1
		Wind shear data	
0 08 001		Vertical sounding significance	Flag table
0 07 004		Pressure	Pa, scale –1
3 01 023	0 05 002	Latitude (coarse accuracy)	Degree, scale 2
1	0 06 002	Longitude (coarse accuracy)	Degree, scale 2
0 11 061		Absolute wind shear in 1 km layer below	m s ⁻¹ , scale 1

0 11 062	ŀ	Absolute wind shear in 1 km layer above	m s ⁻¹ , scale 1

b) with height as the vertical coordinate

		Identification and instrumentation	
3 01 001	0 01 001	WMO block number	Numeric
301001			
0.01.011	0 01 002		
0 01 011		Ship or mobile land station identifier	CCITT IA5
0 02 011		Radiosonde type	Code table
0 02 014		Tracking technique/status of system used	Code table
0 02 003		Type of measuring equipment used	Code table
		Nominal date/time, horizontal and vertical coordinates of launch site	
3 01 011	0 04 001	Year	Year
301011	0 04 001	Month	Month
	0 04 002		
2 01 012		Day Hour	Day Hour
3 01 012	0 04 004		
0.01.001	0 04 005	Minute	Minute
3 01 021	0 05 001	Latitude (high accuracy)	Degree, scale 5
0.07.000	0 06 001	Longitude (high accuracy)	Degree, scale 5
0 07 030		Height of station ground above mean sea level	m, scale 1
0 07 007		Height of release of sonde above mean sea level	m
0 33 024		Station elevation quality mark (for mobile stations)	Code table
		Date/time of the launch	
0 08 021		Time significance	Code table
		(value = 18 (launch time))	
3 01 011	0 04 001	Year	Year
	0 04 002	Month	Month
	0 04 003	Day	Day
3 01 012	0 04 004	Hour	Hour
	0 04 005	Minute	Minute
		Level data	
1 07 000		Delayed replication of 7 descriptors	
0 31 001		Delayed descriptor replication factor	Numeric
		Data from a single level	
0 04 016		Time increment in seconds (since launch time)	
0 08 001		Vertical sounding significance	Flag table
0 07 004		Pressure	Pa, scale –1
0 05 011		Latitude increment since launch site (high accuracy)	Degree, scale 5
0 06 011		Longitude increment since launch site (high accuracy)	Degree, scale 5
0 11 001		Wind direction	Degree true
0 11 002		Wind speed	m s ⁻¹ , scale 1
0 11 002		Wind speed	11.5, 30010 1
0 08 001		Vertical sounding significance	Flag table
0 07 009		Geopotential height	gpm
3 01 023	0 05 002	Latitude (coarse accuracy)	Degree, scale 2
0 01 020	0 06 002	Longitude (coarse accuracy)	Degree, scale 2
0 11 061	0.00.002	Absolute wind shear in 1 km layer below	m s ⁻¹ , scale 1
0 11 062		Absolute wind shear in 1 km layer above	m s ⁻¹ , scale 1
011002		Ausolule wind shear in T Kill layer above	1115, SUALE I

Notes: (1) If horizontal coordinates of the sonde are not available, latitude and longitude (coarse accuracy) of the location of launch shall be reported for 3 01 023.

2.2 BUFR templates for TEMP, TEMP DROP, TEMP SHIP, TEMP MOBIL

		Identification and instrumentation	
3 01 001	0 01 001	Identification and instrumentation WMO block number	Numeric
301001	0 01 001	WMO station number	Numeric
0.01.011	0 01 002		
0 01 011		Ship or mobile land station identifier	CCITT IA5 CCITT IA5
0 01 006		Aircraft identifier (for dropsondes)	
0 02 011		Radiosonde type	Code table
0 02 013		Solar and infrared radiation correction	Code table
0 02 014		Tracking technique/status of system used	Code table
0 02 003		Type of measuring equipment used	Code table
		Nominal date/time, horizontal and vertical	
3 01 011	0.04.001	coordinates of launch site Year	Voor
301011	0 04 001		Year
	0 04 002	Month	Month
0.01.010	0 04 003	Day	Day
3 01 012	0 04 004	Hour	Hour
0.04.004	0 04 005	Minute	Minute
3 01 021	0 05 001	Latitude (high accuracy)	Degree, scale 5
	0 06 001	Longitude (high accuracy)	Degree, scale 5
0 07 030		Height of station ground above mean sea level	m, scale 1
0 07 031		Height of barometer above mean sea level	m, scale 1
0 07 007		Height of release of sonde above mean sea level	m
0 33 024		Station elevation quality mark (for mobile stations)	Code table
		Sea water temperature	
0 22 043		Sea/water temperature (for ship stations)	K, scale 2
		Cloud data	
0 08 002		Vertical significance	Code table
0 20 011		Cloud amount (of low or middle clouds N _h)	Code table
0 20 013		Height of base of cloud (h)	m, scale –1
0 20 012		Cloud type (low clouds CL)	Code table
0 20 012		Cloud type (middle clouds C _M)	Code table
0 20 012		Cloud type (high clouds C _H)	Code table
		Date/time of the launch	
0 08 021		Time significance	Code table
		(value = 18 (radiosonde launch time))	
3 01 011	0 04 001	Year	Year
	0 04 002	Month	Month
	0 04 003	Day	Day
3 01 012	0 04 004	Hour	Hour
	0 04 005	Minute	Minute
		Level data	
1 10 000		Delayed replication of 10 descriptors	
0 31 001		Delayed descriptor replication factor	Numeric
		Data from a single level	
0 04 016		Time increment (since the launch time)	Seconds
0 08 001		Vertical sounding significance	Flag table
0 07 004		Pressure	Pa, scale –1
0 10 009		Geopotential height	gpm
0 05 011		Latitude increment since launch site (high accuracy)	Degree, scale 5
0 06 011		Longitude increment since launch site (high accuracy)	Degree, scale 5
0 12 101		Temperature/dry-bulb temperature (scale 2)	K, scale 2
0 12 101		Dew-point temperature (scale 2)	K, scale 2
012103		Dew-point temperature (scale 2)	11, SUAIE Z

0 11 001		Wind direction	Degree true
0 11 002		Wind speed	m s ⁻¹ , scale 1
		Wind shear data	
0 08 001		Vertical sounding significance	Flag table
0 07 004		Pressure	Pa, scale –1
3 01 023	0 05 002	Latitude (coarse accuracy)	Degree, scale 2
	0 06 002	Longitude (coarse accuracy)	Degree, scale 2
0 11 061		Absolute wind shear in 1 km layer below	m s ⁻¹ , scale 1
0 11 062		Absolute wind shear in 1 km layer above	m s ⁻¹ , scale 1

Notes: (1) If horizontal coordinates of the sonde are not available, latitude and longitude (high accuracy) of the location of launch shall be reported for 3 01 023.

ANNEX TO 3.4.5

ADDITION TO CODE TABLES

Vertical significance 0 08 002 Only adding two entries to 0 08 002

- 10 Cloud layer with base below and top above the station
- 11 Cloud layer with base and top below station level

To clarify the meaning o existing 0 08 002 entries

- 1 First non-Cb significant layer
- 2 Second non-Cb significant layer
- 3 Third non-Cb significant layer

Validation of BUFR template for SYNOP (and SYNOP MOBIL)

To modify the name of 0 20 014 to read (in Template):

Height of top of the clouds above mean sea level.

Example of BUR template expressing the significant cloud layers using delayed replication

		Surface station identification, time, horizontal a	nd	Unit. scale	
		vertical coordinates			
3 01 001	0 01 001	WMO block number II		Numeric, 0	
	0 01 002	WMO station number iii		Numeric, 0	
0 01 015		Station or site name		CCITT IA5, 0	
0 01 011		Mobile land station identifier DD CCITT IA5, 0			
0 01 003		= missing for fixed land stations		Cada tabla 0	
0 01 003		WMO region number Type of station		Code table, 0 Code table, 0	
3 01 011	0 04 001	Year		Year, 0	
301011	0 04 001	Month		Month, 0	
	0 04 002	Day YY		Day, 0	
3 01 012	0 04 003	Hour GG		Hour, 0	
501012	0 04 004			Minute, 0	
3 01 021	0 04 003	Minute gg Latitude (high accuracy)		Degree, 5	
301021	0 06 001	Longitude (high accuracy)		Degree, 5	
0 07 030	0 00 001	Height of station ground above msl		m, 1	
0 07 030		Height of barometer above msl		m, 1	
0 33 024			m	Code table, 0	
0 00 024		= missing for fixed land stations	m		
		Pressure data			
3 02 001	0 10 004	Pressure P _o P _o P _o F	ິ	Pa, –1	
	0 10 051	Pressure reduced to mean sea level PPPI		Pa, –1	
	0 10 061		pp	Pa, –1	
			PP	, .	
	0 10 063	Characteristic of pressure tendency	а	Code table, 0	
0 07 004		Pressure (standard level)	a 3	Pa, –1	
		005 050 700 bDo			
		= 925, 850, 700,hPa			
0 10 009		= missing for lowland stations Geopotential height of the standard level hh	h	gpm, 0	
0 10 003		= missing for lowland stations		gpiii, u	
		Temperature and humidity data			
0 07 032		Height of sensor above local ground		m, 2	
5 51 002		(for temperature measurement)		, –	
0 12 101		Temperature/dry-bulb temperature (sc. 2) s_nTT	Г	K, 2	
0 12 103		Dew-point temperature (sc. 2) $s_n T_d T_d T$		K, 2	
0 13 003		Relative humidity	u	%, 0	
		Visibility data		, -	
0 07 032		Height of sensor above local ground		m, 2	
		(for visibility measurement)		,	
0 20 001		Horizontal visibility VV	/	m, –1	
		Precipitation past 24 hours			
0 07 032		Height of sensor above local ground		m, 2	
		(for precipitation measurement)			
0 13 023		Total precipitation past 24 hours RRRF	2	kg m ⁻² , 1	
		trace = - 0.1 (gr. 7RRR	R)		

BUFR template for SYNOP and SYNOP MOBIL data

0 07 032		Height of sensor above local ground		m, 2
0 07 002		(set to missing to cancel the previous value)		111, Z
		Cloud data		
3 02 004	0 20 010		N	%, 0
0 02 004	020010	If N = 9, /, then 0 20 010 = missing.		70, 0
	0 08 002	Vertical significance		Code table, 0
	0 00 002	if only C_L are observed, 0 08 002 = 7 (low cloud),		
		if only C_M are observed, 0 08 002 = 8 (middle cloud),	4)	
		if only C_H are observed, 0 08 002 = 9 (high cloud),	•),	
		if N = 9, then 0.08 002 = 5,		
		if $N = 0$ or /, then 0 08 002 = missing;		
		else 0.08002 = 0		
	0 20 011		N h	Code table, 0
	020011	If N = 0, then 0 20 011 = 0,	∎n	
		if N = 9, then 0 20 011 = 9,		
		if $N = /$, then 0 20 011 = missing.		
	0 20 013		h	m, –1
	020013	If N = 0 or /, then 0 20 013 = missing.		111, -1
		If clouds with bases below and tops above station		
		level are reported, 0 20 013 = missing or has		
		a negative value.		
	0 20 012		CL	Code table, 0
	020012	$0\ 20\ 012 = C_{\rm L} + 30,$	ΟL	
		if N = 0, then 0 20 012 = 30,		
		if N = 9 or /, then $0.20012 = 62$.		
	0 20 012		См	Code table, 0
	020012	$0\ 20\ 012 = C_{\rm M} + 20,$	M	
		if $N = 0$, then 0 20 012 = 20,		
		if $N = 9$ or / or $C_M = /$, then 0 20 012 = 61.		
	0 20 012		<u>с</u> н	Code table, 0
	0 20 012	$0\ 20\ 012 = C_{\rm H} + 10,$	-H	
		if N = 0, then 0 20 012 = 10,		
		if N = 9 or / or $C_H = /$, then 0 20 012 = 60.		
1 01 000		Delayed replication of 1 descriptor		
0 31 001		Delayed descriptor replication factor		Numeric, 0
0 31 001		If sky clear (N = 0), then $0.31\ 0.01 = 0$		
		(no significant cloud layer data)		
3 02 005	0 08 002	Vertical significance		Code table, 0
0 02 000	0 00 002	In any Cb layer, $0.08\ 002 = 4$, else:		
		in the first replication:		
		if $N = 9$, then 0 08 002 = 5,		
		if $N = /$, then 0 08 002 = missing,		
		else 0 08 002 = 1;		
		in the other replications $0.08\ 0.02 = 2, 3, 4$.		
	0 20 011		Ns	Code table, 0
	5 _ 0 0 1 1	In the first replication:	• •S	
		If $N = /$, then 0 20 011 = missing,		
		else 0 20 011 = N_s ;		
		in the other replications 0 20 011 = N_s .		
	0 20 012		С	Code table, 0
	020012	if N = 9, /, then 0 20 012 = missing,	5	
	1	else 0 20 012 = \mathbf{C} .		
	0 20 013		h	m1
	020013		_s h _s	m, -1
		If clouds with bases below and tops above station		
	1	level are reported, 0 20 013 = missing or has		
	l	a negative value.		

	Clouds with bases below station level			
	(SYNOP, Section 4)			
1 05 000	Delayed replication of 5 descriptors			
0 31 001				
	Numeric, 0			
	observed, then $0.31\ 001 = 0$			
0 08 002	Vertical significance = 10 or 11	Code table, 0		
0 20 011	Cloud amount N'	Code table, 0		
0 20 012	Cloud type C'	Code table, 0		
0 20 014	Height of top of cloud above mean sea level H'H'	m, -1, 4		
0 20 017	Cloud top description C _t	Code table, 0		
	State of ground, snow depth, ground minimum	,		
	temperature			
0 20 062	State of ground (with or without snow) E or E'	Code table, 0		
	If $E = \langle 0,, 0 \rangle$, then $0 \ 20 \ 062 = E$,			
	if E' = <0, , 9>, then 0 20 062 = E' + 10,			
	if state of ground is not reported, 0 20 062 = missing.			
0 13 013	Total snow depth sss	m, 2		
	no snow cover = 0			
	less than $0.005 \text{ m} = -0.01$ (sss = 997)			
	not continuous $= -0.02$ (sss $= 998$)			
	If snow depth not reported, 0 13 013 = missing.			
0 12 113	Ground minimum temperature, sc.2, s _n T _g T _g	K, 2		
	past 12 hours			
	Present and past weather			
0 20 003	Present weather ww	Code table, 0		
0 04 024	Time period	Hour, 0		
	At 00, 06, 12, 18 UTC = - 6 .			
	At 03, 09,15, 21 UTC = - 3.			
0 20 004	Past weather (1) W_1	Code table, 0		
		Coue lable, 0		
	Past weather (2) W_2	Code table, 0		
	Past weather (2) W ₂			
0 20 005				
0 20 005	Past weather (2) W2 Evaporation measurement Time period in hours Time period in hours = - 24	Code table, 0 Hour, 0		
0 20 005	Past weather (2) W2 Evaporation measurement Time period in hours Time period in hours = - 24 Type of instrument for evaporation or i _E	Code table, 0		
0 20 005 0 04 024 0 02 004	Past weather (2)W2Evaporation measurementTime period in hours= - 24Type of instrument for evaporation or crop type for evapotranspirationiE	Code table, 0 Hour, 0 Code table, 0		
0 20 005 0 04 024 0 02 004	Past weather (2) W2 Evaporation measurement Image: Second sec	Code table, 0 Hour, 0		
0 20 005 0 04 024 0 02 004 0 13 033	Past weather (2) W2 Evaporation measurement Image: Superior of the second s	Code table, 0 Hour, 0 Code table, 0 kg m ⁻² , 1		
0 20 005 0 04 024 0 02 004 0 13 033 0 04 024	Past weather (2) W2 Evaporation measurement Evaporation measurement Time period in hours = - 24 Type of instrument for evaporation or crop type for evapotranspiration iE Evaporation /evapotranspiration EEE Sunshine data Time period in hours = - 24	Code table, 0 Hour, 0 Code table, 0		
0 20 005 0 04 024 0 02 004 0 13 033 0 04 024	Past weather (2) W2 Evaporation measurement Time period in hours Time period in hours = - 24 Type of instrument for evaporation or crop type for evapotranspiration istrument for evapotranspiration Evaporation /evapotranspiration EEE Sunshine data Time period in hours Total sunshine in minutes SSS	Code table, 0 Hour, 0 Code table, 0 kg m ⁻² , 1 Hour, 0		
0 20 005 0 04 024 0 02 004 0 13 033 0 04 024 0 14 031	Past weather (2) W2 Evaporation measurement Time period in hours = - 24 Type of instrument for evaporation or crop type for evapotranspiration iE Evaporation /evapotranspiration EEE Sunshine data Time period in hours = - 24 Total sunshine in minutes SSS Radiation data SSS	Code table, 0 Hour, 0 Code table, 0 kg m ⁻² , 1 Hour, 0 Minute, 0		
0 20 005 0 04 024 0 02 004 0 13 033 0 04 024 0 14 031 0 04 025	Past weather (2) W2 Evaporation measurement Time period in hours = - 24 Type of instrument for evaporation or crop type for evapotranspiration iE Evaporation /evapotranspiration EEE Sunshine data = - 24 Time period in hours = - 24 Total sunshine in minutes SSS Radiation data = - 60	Code table, 0 Hour, 0 Code table, 0 kg m ⁻² , 1 Hour, 0		
0 20 005 0 04 024 0 02 004 0 13 033 0 04 024 0 14 031 0 04 025	Past weather (2) W2 Evaporation measurement Time period in hours = - 24 Type of instrument for evaporation or crop type for evapotranspiration is Evaporation /evapotranspiration EEE Sunshine data Time period in hours = - 24 Total sunshine in minutes SSS Radiation data Time period in minutes sss Time period in minutes = - 60 Long-wave radiation, integrated over period specified	Code table, 0 Hour, 0 Code table, 0 kg m ⁻² , 1 Hour, 0 Minute, 0		
0 20 005 0 04 024 0 02 004 0 13 033 0 04 024 0 14 031 0 04 025 0 14 002	Past weather (2) W2 Evaporation measurement Time period in hours = - 24 Type of instrument for evaporation or crop type for evapotranspiration is a construction or crop type for evapotranspiration Evaporation /evapotranspiration EEE Sunshine data Time period in hours = - 24 Total sunshine in minutes SSS Radiation data Time period in minutes SSS Cong-wave radiation, integrated over period specified 553SS 4FFFF or 553SS 5FFFF Short-wave radiation, integrated over period specified	Code table, 0 Hour, 0 Code table, 0 kg m ⁻² , 1 Hour, 0 Minute, 0 J m ⁻² , -3		
0 20 005 0 04 024 0 02 004 0 13 033 0 04 024 0 14 031 0 04 025 0 14 002 0 14 004	Past weather (2) W2 Evaporation measurement Time period in hours = - 24 Type of instrument for evaporation or crop type for evapotranspiration istriction Evaporation /evapotranspiration EEE Sunshine data Time period in hours = - 24 Total sunshine in minutes SSS Radiation data Time period in minutes SSS Image: Radiation data = - 60 Long-wave radiation, integrated over period specified 553SS 4FFFF Short-wave radiation, integrated over period specified 553SS 6FFFF	Code table, 0 Hour, 0 Code table, 0 kg m ⁻² , 1 Hour, 0 Minute, 0 Minute, 0		
0 20 005 0 04 024 0 02 004 0 13 033 0 04 024 0 14 031 0 04 025 0 14 002	Past weather (2) W2 Evaporation measurement Time period in hours = - 24 Type of instrument for evaporation or crop type for evapotranspiration is Evaporation /evapotranspiration EEE Sunshine data Time period in hours = - 24 Total sunshine in minutes SSS Radiation data Time period in minutes SSS Radiation data = - 60 Long-wave radiation, integrated over period specified 553SS 4FFFF Short-wave radiation, integrated over period specified 553SS 6FFFF Net radiation, integrated over period specified 553SS 6FFFF	Code table, 0 Hour, 0 Code table, 0 kg m ⁻² , 1 Hour, 0 Minute, 0 J m ⁻² , -3 J m ⁻² , -3		
0 20 005 0 04 024 0 02 004 0 13 033 0 04 024 0 14 031 0 04 025 0 14 002 0 14 004 0 14 016	Past weather (2) W2 Evaporation measurement Time period in hours = - 24 Type of instrument for evaporation or crop type for evapotranspiration istriction Evaporation /evapotranspiration EEE Sunshine data Time period in hours Time period in hours = - 24 Total sunshine in minutes SSS Radiation data SSS Time period in minutes = - 60 Long-wave radiation, integrated over period specified 553SS 4FFFF or 553SS 5FFFF Short-wave radiation, integrated over period specified 553SS 6FFFF Net radiation, integrated over period specified 553SS 0FFFF or 553SS 1FFFF	Code table, 0 Hour, 0 Code table, 0 kg m ⁻² , 1 Hour, 0 Minute, 0 J m ⁻² , -3 J m ⁻² , -3 J m ⁻² , -4		
0 20 005 0 04 024 0 02 004 0 13 033 0 04 024 0 14 031 0 04 025 0 14 002 0 14 004	Past weather (2) W2 Evaporation measurement Time period in hours = - 24 Type of instrument for evaporation or crop type for evapotranspiration is a construction or crop type for evapotranspiration Evaporation /evapotranspiration EEE Sunshine data Time period in hours = - 24 Total sunshine in minutes SSS Radiation data SSS Time period in minutes = - 60 Long-wave radiation, integrated over period specified 553SS 4FFFF or 553SS 5FFFF Short-wave radiation, integrated over period specified 553SS 0FFFF Net radiation, integrated over period specified 553SS 1FFFF Global solar radiation (high accuracy), integrated over Start over	Code table, 0 Hour, 0 Code table, 0 kg m ⁻² , 1 Hour, 0 Minute, 0 J m ⁻² , -3 J m ⁻² , -3 J m ⁻² , -3		
0 20 005 0 04 024 0 02 004 0 13 033 0 04 024 0 14 031 0 04 025 0 14 002 0 14 004 0 14 016 0 14 028	Past weather (2) W_2 Evaporation measurementTime period in hours= - 24Type of instrument for evaporation or crop type for evapotranspiration i_E Evaporation /evapotranspirationEEESunshine dataTime period in hours= - 24Total sunshine in minutesSSSRadiation dataTime period in minutesSSSRadiation data553SS 4FFFF or 553SS 5FFFFShort-wave radiation, integrated over period specified 553SS 0FFFFS53SS 1FFFFNet radiation, integrated over period specified 553SS 0FFFF or 553SS 1FFFFGlobal solar radiation (high accuracy), integrated over period specified 553SS 2FFFF	Code table, 0 Hour, 0 Code table, 0 kg m ⁻² , 1 Hour, 0 Minute, 0 J m ⁻² , -3 J m ⁻² , -3 J m ⁻² , -4 J m ⁻² , -2		
0 20 005 0 04 024 0 02 004 0 13 033 0 04 024 0 14 031 0 04 025 0 14 002 0 14 004 0 14 016	Past weather (2) W_2 Evaporation measurementTime period in hours= - 24Type of instrument for evaporation or crop type for evapotranspiration i_E Evaporation /evapotranspirationEEESunshine dataTime period in hours= - 24Total sunshine in minutesSSSRadiation dataSSSTime period in minutes= - 60Long-wave radiation, integrated over period specified $553SS 4FFFF$ or $553SS 5FFFF$ Short-wave radiation, integrated over period specified $553SS 0FFFF$ Net radiation, integrated over period specified $553SS 2FFFF$ Global solar radiation (high accuracy), integrated over period specified $553SS 2FFFF$ Diffuse solar radiation(high accuracy), integrated over	Code table, 0 Hour, 0 Code table, 0 kg m ⁻² , 1 Hour, 0 Minute, 0 J m ⁻² , -3 J m ⁻² , -3 J m ⁻² , -4 J m ⁻² , -2		
0 20 005 0 04 024 0 02 004 0 13 033 0 04 024 0 14 031 0 04 025 0 14 002 0 14 004 0 14 016 0 14 028 0 14 029	Past weather (2) W2 Evaporation measurement Time period in hours = - 24 Type of instrument for evaporation or crop type for evapotranspiration istrict istready istrestrict istready istrict istrict istrict istready istric	Code table, 0 Hour, 0 Code table, 0 kg m ⁻² , 1 Hour, 0 Minute, 0 J m ⁻² , -3 J m ⁻² , -3 J m ⁻² , -2 J m ⁻² , -2		
0 20 005 0 04 024 0 02 004 0 13 033 0 04 024 0 14 031 0 04 025 0 14 002 0 14 004 0 14 016 0 14 028	Past weather (2) W_2 Evaporation measurementTime period in hours= - 24Type of instrument for evaporation or crop type for evapotranspiration i_E Evaporation /evapotranspirationEEESunshine dataTime period in hours= - 24Total sunshine in minutesSSSRadiation dataSSSTime period in minutes= - 60Long-wave radiation, integrated over period specified $553SS 4FFFF$ or $553SS 5FFFF$ Short-wave radiation, integrated over period specified $553SS 0FFFF$ Net radiation, integrated over period specified $553SS 2FFFF$ Global solar radiation (high accuracy), integrated over period specified $553SS 2FFFF$ Diffuse solar radiation(high accuracy), integrated over	Code table, 0 Hour, 0 Code table, 0 kg m ⁻² , 1 Hour, 0 Minute, 0 J m ⁻² , -3 J m ⁻² , -3 J m ⁻² , -2 J m ⁻² , -2		

0 07 032	Height of sensor above local ground	m, 2
1 00 000	(for precipitation measurement)	
1 02 002	Replicate next 2 descriptors 2 times	
0 04 024	Time period in hours t _R	Hour, 0
0 13 011	Total precipitation / total water equivalent RRR of snow no precipitation = 0 trace = - 0.1	kg m ⁻² , 1
	Extreme temperature data	
0 07 032	Height of sensor above local ground (for temperature measurement)	m, 2
0 04 024	Time period in hours	Hour, 0
0 04 024	Time period in hours (see Note 1) (= 0, if the period ends at the time of observation)	Hour, 0
0 12 111	Maximum temperature at height and over period specified s _n T _x T _x T _x	K D
0.04.004		K, 2
0 04 024	Time period in hours	Hour, 0
0 12 112	Minimum temperature at height and over period specified specified specified	K, 2
	Wind data	
0 07 032	Height of sensor above local ground (for wind measurement)	m, 2
0 02 002	Type for instrumentation for wind measurement iw	Flag table, 0
0 08 021	Time significance = 2 (time averaged)	Code table, 0
0 04 025	Time period = -10 (or number of minutes after a significant change of wind, if any)	Minute, 0
0 11 001	Wind direction dd If dd = 00 (calm) or dd = 99 (variable), 0 11 001 = 0.	Degree true, 0
0 11 002	Wind speed ff	m s⁻¹, 1
0 08 021	Time significance (set to missing to cancel the previous value)	Code table, 0
1 03 002	Replicate next 3 descriptors 2 times	
0 04 025	Time period	Minute, 0
0 11 043	Maximum wind gust direction	Degree true, 0
0 11 041	Maximum wind gust speed e.g. $f_m f_m$ and $f_x f_x$ (gr. 910 $f_m f_m$ and gr. 911 $f_x f_x$)	m s ⁻¹ , 1

Notes:

1) Within RA-IV, the maximum temperature at 1200 UTC is reported for the previous calendar day (i.e. the ending time of the period is not equal to the nominal time of the report). To construct the required time range, descriptor 004024 has to be included two times. If the period ends at the nominal time of the report, value of the second 004024 shall be set to 0.

ANNEX TO 3.5.4

Proposed modified Section 1 for BUFR Edition 4 for full date inclusion:

13-14	Year (4 digits)	
15	Month	
16	Day	Most typical for the BUFR message content
17	Hour	
18	Minute	
19	Second	
20-	Reserved for local use b	y ADP centres

ANNEX TO 3.5.5

Modify regulation 94.1.3 to say:

94.1.3 Each section included in the code form shall always contain an integer multiple of 8 bits (octet). This rule shall be applied by appending bits set to zero to the section where necessary.

ANNEX TO 5

MODIFICATIONS TO THE LAYER 3 OF THE GRIB2 GUIDE

Text to be replaced at page 74 (after formula giving the pressure at a given sigma level)

The hybrid coordinate system has been introduced in numerical models to have both sigma-type levels near the earth and pressure levels at the top of the atmosphere. The above formula is generalized as follows:

 $P_h = a_h \bullet P_{sfc} + b_h$

Hybrid vertical coordinate values, when present, are encoded as the pair of numbers a_h and b_h in IEEE 32-bit floating point format. Each pair ...(remaining text unchanged)

NOTE: also change "a • σ " and "b • P" references in following expanded example (p. 75) to (a₁, b₁) ... (a₁₀, b₁₀).

Complex packing

Note pages **80 and 85** within the Guide: text to be inserted as a substitute to Cliff remarks at these pages (**end of 3.3.1.1** and <u>end of 3.3.2.1</u>).

As pointed out in the GRIB2 Manual, complex packing for grid-point is intended to reduce data section size as compared to simple packing. This is achieved at the expense of extra descriptors per group. In order to keep the volume of these descriptors as low as possible, group widths and lengths have their minimum value subtracted. As a complement, lengths may be scaled using the length increment feature.

This may be used in conjunction with splitting algorithm to determine groups of data. Efficient algorithms with a good quality/price ratio are based on the determination of groups starting from a basic length, say B, and possible extensions of either B or a shorter (incremental) length I. For example, B and I could be 15 and 3, respectively.

In such a case, all groups (but the last one) will have a minimum length of B and length increments multiple of I (assuming B is a multiple of I, which is easy to choose). So B would be stored in octets 38-41, I in octet 42, and the effective length of last groups (reference for group lengths not removed) in octets 43-46.

Finally, the number of bits N_{L} necessary to store the scaled group lengths (the Kn values in Note 14 of the Manual) will be stored in octet 47. Note that as soon as I is bigger than 1, N_{L} is reduced relative to using an increment of 1, leading to save space in Data Section.

The Kn values are stored in Data Section for all NG groups. The encoded value of Kn for n= NG is not relevant for decoding, and a zero value may be used.

Spatial differencing

Note page 84 of the Guide. All modifications to be done on this page:

Change start of first sentence of first paragraph as follows:

"For first order spatial differencing, a field of scaled values f (integers) is replaced by...."

In second paragraph, change 3rd sentence as follows:

"The overall minimum of the difference values will usually be negative therefore the Note (4) of Data Template 7.3 about the sign bit applies."

ANNEX TO 7.1.2

In order to facilitate the processing of requests for allocation of new table entries by the Secretariat, the Team agreed to a standard format for definition of new descriptors when passing the information in document or email.

The format should be:

In Word table format as (possible in Attached file, ftp, etc..):

	TAF	BLE			B	UFR			CREX	
R F	EFER X	RENCE Y	TABLE ELEMENT NAME	UNIT	SCALE	REF. VALUE	DATA WIDTH (Bits)	UNIT	SCALE	DATA WIDTH (Characters)
0	01	001	WMO block number	Numeric	0	0	7	Numeric	0	2
0	01	002	WMO station number	Numeric	0	0	10	Numeric	0	3

Or in ASCII as (column separated by space, but inside name with dash):

0 01 001 WMO-Block-number Numeric 0 0 7 Numeric 0 2

or as (column separated by commas, but inside name with space):

0,01,001,WMO Block number, Numeric,0,0,7,Numeric,0,2

ANNEX LIS	T OF ACRONYMS
ACARS	AirCraft Addressing and Reporting System
ADS	Astrophysics Data System (USA)
AFWA	Air Force Weather Agency
AIRS	Advanced Infra-Red Sounder
AMDAR	Aircraft Meteorological Data Relay
AMSU	Advanced Microwave Sounding Unit
ANSI API	American National Standards Institute Application Program Interface
AWIPS	Advanced Weather Interactive Processing System
AWS	Automatic Weather Station
ATSR	Along Tack Scanning Radiometer
BUFR	Binary Universal Form for data Representation
CBS	Commission for Basic Systems
CBS-Ext.(98)	Extraordinary session of CBS held in 1998
CCI CIMO	Commission for Climatology (WMO) Commission for Instruments and Methods of Observations
COST	European Co-Operation in the field of Scientific and Technical research
CREX	Character Representation form for data EXchange
DBCP	Drifting Buoy Cooperation Panel
DBMS	Data Base Management System
DCP	Data Collection Platform
DIF	Directory Interchange Format
DPFS DRT	Data Processing and Forecasting Systems Data Representation Template
DT	Data Template
DWD	Deutscher Wetter Dienst
EANPG	European Air Navigation Planning Group
EARS	EUMETSAT ATOVS Retransmission Service
EC	Executive Council of the WMO
ECMWF	European Centre for Medium-range Weather Forecast
EGOWS EPS	European Group on Operational Worskstation Systems Ensemble Prediction System
ESA	European Space Agency
ET	Expert Team
ET/EDF	Expert Team on Evolution of Data Formats
ET/DR&C	Expert Team on Data Representation and Codes
EUMETNET	European Meteorological Networks
EUMETSAT	EUropean organisation for the exploitation of METeorological SATellites
FNMOC FORTRAN	Fleet Numerical Meteorology and Oceanography Centre FORmula TRANslation
FTP	File Transfer Protocol
GDPS	Global Data Processing System
GDT	Grid Definition Template
GIF	Graphic Interchange Format
GIS	Geographic Information System
GOS	Global Observing System
GRIB 1	Processed data in the form of GRId-point values expressed in Binary form - GRIB Edition 1
GRIB 2	General Regularly distributed Information in Binary form - GRIB Edition 2
GTS	Global Telecommunications System
HTML	Hyper Text Markup Language
ICAO	International Civil Aviation Organisation
ICT	Implementation/Coordination Team (of CBS)
ICT/DRC	Implementation/Coordination Team on Data Representation and Codes
ID IEC	Identifier International Electrotechnical Commission
IEEE	Institution of Electrical and Electronics Engineers
IOC	International Oceanographic Commission
ISO	International Standards Organization
JCOMM	Joint WMO/IOC Technical Commission for Oceanography and Marine Meteorology
JMA	Japan Meteorological Agency

JPEG LINUX MS/DOS	Joint Photographic Experts Group format <i>Not an acronym – name of an operating system</i> /Disk Operating System
MSG	METEOSAT Second Generation
MSS	Message Switching System
MTDCF	Migration to Table Driven Code Forms
MTN	Main Telecommunications Network (of the GTS)
NASA	National Aeronautics and Space Administration
NCDC	National Climatic Data Centre (USA)
NCEP	National Centre for Environment Prediction (USA)
NESDIS	National Environmental Satellite Data and Information Service
NMC	National Meteorological Centre
NMHS	National Meteorological or Hydrological Service
NMS	National Meteorological Service
NWP	Numerical Weather Prediction
NWS	National Weather Service
OMF	weather Observation Markup Format
OPAG	Open Programme Area Group (of CBS)
OPAG-ISS	Open Programme Area Group on Information Systems and Services
PDT	Product Definition Template
PNG	Portable Network Graphic
RA	Regional Association (WMO)
RASS	Radio Acoustic Sounding System
RDBC	Regional Data Bank Centre
RSMC	Regional Specialised Meteorological Centre
RTH	Regional Telecommunication Hub
SGDR&C	Sub-Group on Data Representation and Codes (CBS)
SGML	Standard Generalized Markup Language
SI	System International
SOOP	Ship Of Opportunity Programme
SST	Sea Surface Temperature
TCP	Tropical Cyclone Programme
TCP/IP	Transport Control Protocol/Internet Protocol
TDL	Techniques Development Laboratory
TIFF	Tagged Image File Format
UKMO	United Kingdom Meteorological Office
UNIX	Not an acronym – name of an operating system
UTC	Universal Time Coordinate
VOS	Voluntary Observing Ship
WAFC	World Area Forecasting Centre (ICAO)
WAFS	World Area Forecasting System
WGDM	Working Group on Data Management (CBS)
WGS WMO	Working Group on Standards
	World Meteorological Organization World Weather Watch
WWW W3C	World Wide Web Consortium
XBT	
	eXpendable Bathy Thermograph
XCTD	eXpendable Conductivity Temperature Depth sensor
XML	eXtensible Markup Language