JOINT WMO TECHNICAL PROGRESS REPORT ON THE GLOBAL DATA PROCESSING AND FORECASTING SYSTEM AND NUMERICAL WEATHER PREDICTION RESEARCH ACTIVITIES FOR 2017

Japan Meteorological Agency

1. Summary of highlights

- (1) The Global Ensemble Prediction System (GEPS) entered operation in January 2017, taking over the roles of the ensemble prediction systems for tropical cyclone (TC) forecasts, one-week forecasts, early warning information on extreme weather, and one-month forecasts. (4.2.5.2 (1))
- (2) A new non-hydrostatic model known as ASUCA was incorporated into the Meso-scale NWP system as the related forecast model in February 2017, and vertical resolution was enhanced by increasing the number of vertical layers from 48 to 76. Selected upgrades to the ASUCA dynamical core and the physics library were also incorporated into the Local NWP system in January 2017. (4.3.2.2)
- (3) Assimilation of Satellite Clear-Sky Radiance (CSR) and Soil Moisture Content (SMC) data with Variational Bias Correction (VarBC) were incorporated into the Local NWP system in January 2017. (4.3.1.2 (1))
- (4) Meteosat-8 Atmospheric Motion Vector (AMV) data were incorporated into the global NWP system in March 2017. (4.2.1.2 (1))
- (5) Meteosat-8 (CSR) data were incorporated into the global NWP system in March 2017. (4.2.1.2 (2))
- (6) New satellite radiance data from the Advanced Technology Microwave Sounder (ATMS) and the Cross-track Infrared Sounder (CrIS), both of which are on board the Suomi National Polar-orbiting Partnership (NPP) unit, and the Special Sensor Microwave Imager/Sounder (SSMIS) items on board the DMSP F-17 and F-18 satellites were incorporated into the global NWP system in March 2017. (4.2.1.2 (3))
- (7) Physical parameterization schemes, including those for cloud, convection, radiation, land surface, sea surface and methane oxidation, and the dynamical framework of the Global Spectral Model (GSM) were improved in May 2017. The background error covariance matrix of the Global Analysis system was also simultaneously updated using prediction data from the latest GSM. (4.2.2.1 (1))
- (8) The method used for GNSS Radio Occultation (RO) data assimilation was upgraded in July 2017. (4.2.1.2 (4))
- (9) ASUCA-based 3D-Var was incorporated into the Hourly Analysis system in July 2017. (4.3.4.2 (2))

2. Equipment in use

On 5 June, 2012, an upgraded version of the computer system used for numerical analysis/prediction and satellite data processing was installed at the Office of Computer Systems Operations in Kiyose, which is about 30 km northwest of JMA's Tokyo Headquarters. The office in Kiyose and JMA's Headquarters are connected via a wide-area network. The computer types used in the system are listed in Table 2-1, and further details are provided in Narita (2013).

Table 2-1 System computer types

Supercomputers (Kiyose) Hitachi: SR16000 model M1

Number of subsystem 2

Number of nodes 54 physical nodes per subsystem

432 logical nodes per subsystem

Processors 3,456 IBM POWER7 processors (32 per node)

Performance 423.5 TFlops per subsystem (980 GFLOPS per node)

Main memory 55.296 TiB per subsystem (128 GiB per node)

High-speed storage* Hitachi AMS2500 (138 TB for primary, 210 TB for secondary)

Data transfer rate 96 GiB/s (one way) (between any two nodes)

Operating system IBM AIX Version 7.1

Primary Satellite Data Processing Servers (Kiyose): Hitachi EP8000/750

Number of servers 3

Processor IBM POWER7 (3.0 GHz)

Main memory 128 GiB per server

Operating system IBM AIX Version 6.1

Secondary Satellite Data Processing Servers (Kiyose): Hitachi EP8000/750

Number of servers 6

Processor IBM POWER7 (3.0 GHz)

Main memory 128 GiB per server Operating system IBM AIX Version 6.1

Foreign Satellite Data Processing Servers (Kiyose): Hitachi HA8000/RS220AK1

Number of servers 6

Processor Intel Xeon X5670 (2.93 GHz)

Main memory 32 GiB per server

Operating system Linux

^{*} Dedicated storage for supercomputers

Division Processing Servers A (Kiyose): Hitachi BS2000

Number of servers 16

Processor Intel Xeon E5640 (2.66 GHz)

Main memory 48 GiB per server

Operating system Linux

Division Processing Servers B (Kiyose): Hitachi EP8000/520

Number of servers 2

Processor IBM Power6+ (4.7 GHz)

Main memory 32 GiB per server Operating system IBM AIX Version 6.1

Decoding Servers (Kiyose): Hitachi EP8000/750

Number of servers 2

Processor IBM Power7 (3.70 GHz)
Main memory 64 GiB per server

Operating system IBM AIX Version 6.1

Mass Storage System (Kiyose)

Shared storage** Hitachi VFP500N and AMS2500 (754 TB total, RAID 6)

Data bank storage** Hitachi VFP500N and AMS2500 (2932 TB total, RAID 6)

Backup tape storage Hitachi EP8000 and L56/3000 (1520 TB total)

** Shared by supercomputers and servers

Wide Area Network (between HQ and Kiyose)

Network bandwidth 200 Mbps (two independent 100-Mbps WANs)

3. Data and Products from GTS and other sources in use

3.1 Observation

A summary of data received through the GTS and other sources and processed at JMA is given in Table 3-1.

Table 3-1 Number of observation reports in use

SYNOP/SHIP/SYNOP MOBIL	200,000/day
BUOY	58,000/day
TEMP/PILOT	7500/day
AIREP/AMDAR	900,000/day
PROFILER	8,000/day
AMSR2	14,000,000/day
GPM/GMI	10,200,000/day

Agua/AIRS, AMSU-A	270,000/day
NOAA/AMSU-A	,
	960,000/day
Metop/AMSU-A	640,000/day
NOAA/MHS	5,800,000/day
Metop/MHS	5,800,000/day
Metop/IASI	600,000/day
Metop/ASCAT	8,000,000/day
Suomi-NPP/ATMS	3,000,000/day
Suomi-NPP/CrIS	3,000,000/day
Megha-Tropiques/SAPHIR	9,000,000/day
GOES/CSR	600,000/day
Himawari/CSR	1,200,000/day
METEOSAT/CSR	1,800,000/day
GNSS-RO	460,000/day
AMV	10,000,000/day
SSMIS	17,000,000/day
GNSS-PWV	4,200,000/day
AMeDAS	232,400/day
Radar Reflectivity	4,200/day
Radial Velocity	4,200/day

3.2 Forecast products

Grid Point Value (GPV) products of the global prediction model from ECMWF, NCEP, UKMO, BOM, ECCC, DWD, KMA and CMA are used for internal reference and monitoring. The products of ECMWF are received via the GTS, and the other products are received via the Internet.

4. Forecasting systems

4.1 System run schedule and forecast ranges

Table 4.1-1 summarizes the system run schedule and forecast ranges.

Table 4.1-1 Schedule of the analysis and forecast system

Model	Initial time (UTC)	Run schedule (UTC)	Forecast range (hours)
Global	00	0225 - 0330	84
Analysis/Forecast	06	0825 - 0930	84
	12	1425 - 1600	264
	18	2025 - 2130	84
Meso-scale	00	0055 - 0205	39
Analysis/Forecast	03	0355 - 0505	39
	06	0655 - 0805	39
	09	0955 - 1105	39
	12	1255 - 1405	39
	15	1555 - 1705	39
	18	1855 - 2005	39
	21	2155 - 2305	39
Local	00, 01,	$0035 - 0100, \ 0135 - 0200, \ 0235$	9

		1	
Analysis/Forecast	02, 03,	- 0300, 0335 - 0400, 0435 -	
	04, 05,	0500, 0535 - 0600, 0635 - 0700,	
	06, 07,	0735 - 0800, 0835 - 0900, 0935	
	08, 09,	- 1000, 1035 - 1100, 1135 -	
	10, 11,	1200, 1235 - 1300, 1335 - 1400,	
	12, 13,	1435 - 1500, 1535 - 1600, 1635	
	14, 15,	- 1700, 1735 - 1800, 1835 -	
	16, 17,	1900, 1935 - 2000, 2035 - 2100,	
	18, 19,	2135 - 2200, 2235 - 2300, 2335	
	20, 21,	-2400	
	22, 23		
Ocean Wave	00	0330 - 0350	84
Forecast	06	0930 - 0950	84
	12	1530 – 1550, 1840–1850	264
	18	2130 - 2150	84
Wave Ensemble	12	1900 – 1910	264
Forecast			
Storm Surge	00	0200 - 0225	39
Forecast	03	0500 - 0525	39
	06	0800 - 0825	39
	09	1100 - 1125	39
	12	1400 - 1425	39
	15	1700 - 1725	39
	18	2000 - 2025	39
	21	2300 - 2325	39
Asian-area Storm	00	0340 - 0355	72
Surge Forecast	06	0940 - 0955	72
	12	1540 - 1555	72
	18	2140 - 2155	72
Global Ensemble	00	0305 - 0350	264
Forecast	06	0905 - 0930	132
(Typhoon/One-week)	12	1505 - 1550	264
	18	2105 - 2130	132
Global Ensemble	00	0530 - 0600	264 - 432
Forecast (Two-week)	12	1730 - 1800	264 - 432
		(every Tuesday, Wednesday,	-
		Saturday and Sunday)	
Global Ensemble	00	0655 - 0740	432 - 816
Forecast (One-month)	12	1835 – 1940	432 - 816
	_	(every Tuesday and Wednesday)	
Seasonal Ensemble	00	1730 – 1910 (every 5 days)	(7 months)
Forecasts			(=====================================
		1	

4.2 Medium-range forecasting system (4-10 days)

4.2.1 Data assimilation, objective analysis and initialization

4.2.1.1 In operation

(1) Global Analysis (GA)

A four-dimensional variational (4D-Var) data assimilation method is employed in analysis of the

atmospheric state for the Global Spectral Model (GSM). The control variables are relative vorticity, unbalanced divergence, unbalanced temperature, unbalanced surface pressure and the natural logarithm of specific humidity. In order to improve computational efficiency, an incremental method is adopted in which the analysis increment is evaluated first at a lower horizontal resolution (TL319) and is then interpolated and added to the first-guess field at the original resolution (TL959).

The Global Analysis (GA) is performed at 00, 06, 12 and 18 UTC. An early analysis with a short cut-off time is performed to prepare initial conditions for operational forecasting, and a cycle analysis with a long cut-off time is performed to maintain the quality of the global data assimilation system.

The specifications of the atmospheric analysis schemes are listed in Table 4.2.1-1.

The global land surface analysis system has been in operation since March 2000 to provide the initial conditions of land surface parameters for the GSM. The system includes daily global snow depth analysis, described in Table 4.2.1-2, to obtain appropriate initial conditions for snow coverage and depth.

Table 4.2.1-1 GA specifications

Analysis scheme	Incremental 4D-Var
Data cut-off time	2 hours and 20 minutes for early run analysis at 00, 06, 12 and 18 UTC
	11 hours and 50 minutes for cycle run analysis at 00 and 12 UTC
	7 hours and 50 minutes for cycle run analysis at 06 and 18 UTC
First guess	6-hour forecast by the GSM
Grid form,	Reduced Gaussian grid, roughly equivalent to 0.1875°
resolution and	[1920 (tropic) – 60 (polar)] x 960
number of grids	
Vertical levels	100 forecast model levels up to 0.01 hPa + surface
Analysis variables	Wind, surface pressure, specific humidity and temperature
Observation (as of	SYNOP, METAR, SHIP, BUOY, TEMP, PILOT, Wind Profiler, AIREP,
31 December 2017)	AMDAR; atmospheric motion vectors (AMVs) from Himawari-8, GOES-
	13, 15, Meteosat-8, 10; MODIS polar AMVs from Terra and Aqua
	satellites; AVHRR polar AMVs from NOAA and Metop satellites; LEO-
	GEO AMVs; ocean surface wind from Metop-A, B/ASCAT; radiances
	from NOAA-15, 18, 19/ATOVS, Metop-A, B/ATOVS, Aqua/AMSU-A,
	DMSP-F17, 18/SSMIS, Suomi-NPP/ATMS, GCOM-W/AMSR2, GPM-
	core/GMI, Megha-Tropiques/SAPHIR, Aqua/AIRS, Metop-A,B/IASI;
	Suomi-NPP/CrIS, clear sky radiances from the water vapor channels
	(WV-CSRs) of Himawari-8, GOES-13, 15, Meteosat-8, 10; GNSS RO
	bending angle data from Metop-A, B/GRAS, COSMIC/IGOR, GRACE-A,
	B/blackjack, TerraSAR-X/IGOR, zenith total delay data from ground-
	based GNSS
Assimilation	6 hours
window	

Table 4.2.1-2 Snow depth analysis specifications

Methodology Two-dimensional Optimal Interpolation scheme
--

Domain and grids	Global, 1° × 1° equal latitude-longitude grids
First guess	Derived from previous snow depth analysis and USAF/ETAC Global
	Snow Depth climatology (Foster and Davy 1988)
Data used	SYNOP snow depth data
Frequency	Daily

(2) Typhoon bogussing in GA

For typhoon forecasts over the western North Pacific, typhoon bogus data are generated to represent typhoon structures accurately in the initial field of forecast models. These data consist of information on artificial sea-surface pressure and wind data around a typhoon. The structure is axi-asymmetric. Symmetric bogus profiles are first generated automatically based on the central pressure and 30-kt wind speed radius of typhoons. Asymmetric components are then retrieved from the first-guess fields and added to these profiles. Finally, the profiles are used as pseudo-observation data for GA.

4.2.1.2 Research performed in the field

(1) Assimilation of Meteosat-8 Atmospheric Motion Vector (AMV) data for the Indian Ocean into the global NWP system

In association with the termination of Meteosat-7 operations, Meteosat-8 AMVs have been assimilated into the JMA global NWP model since 28 March 2018. These AMV data were used in JMA's operational global NWP system until 25 December 2007 during a period of zero-degree service. The spatial coverage and accuracy for Meteosat-8 AMVs were clearly superior to those of Meteosat-7, and Observing System Experiments (OSEs) results showed overall positive impacts on analysis wind fields over the Southern Hemisphere in particular. With this background, JMA began assimilating Meteosat-8 AMV data for the area over the Indian Ocean. (K. Shimoji and K. Yamashita)

(2) Assimilation of Meteosat-8 Clear-Sky Radiance (CSR) data into the global NWP system

Clear-Sky Radiance (CSR) data from Meteosat-8 has been operationally assimilated into JMA's global NWP system since 29 March 2017. The volume of incoming CSR data for Meteosat-8 is approximately twice that of the predecessor Meteosat-7. The standard deviation of the first-guess (FG) departure of Meteosat-8 CSR data is comparable to that of Meteosat-7 CSR data. OSE involving Meteosat-8 and Meteosat-7 CSR data were conducted using related parallel-disseminated data with results indicating that the assimilation of both datareduced the standard deviations of FG departures for water vapor-sensitive satellite observations over the Indian Ocean and Africa. These results suggest common improvement of upper-tropospheric water vapor fields in the FG with the assimilation of Meteosat CSR data in the global NWP system. The OSEs showed improved humidity and geopotential height forecasts. The improvements from Meteosat-8 CSR data use were greater than those from Meteosat-7 CSR data use (I. Okabe)

(3) Assimilation of new satellite radiance data into the global NWP system

Satellite microwave radiance observation provides information on atmospheric temperature and moisture for NWP models, and exploitation of new satellite radiance data contributes to the improvement of weather forecast skill. OSEs on satellite radiance from three instruments (the Advanced Technology Microwave Sounder (ATMS) and the Cross-track Infrared Sounder (CrIS) on the Suomi National Polar-orbiting Partnership (NPP) unit and the Special Sensor Microwave Imager/Sounder (SSMIS) units on DMSP F-17 and F-18) were conducted using the global NWP system. The assimilated data were clear-sky radiance from microwave tropospheric channels (6 – 9 and 18 - 22) of ATMS, 27 selected channels of CrIS from the long-wave infrared temperaturesounding spectrum and 3 microwave humidity-sounding channels of SSMIS. The OSE results showed that the application of ATMS, CrIS and SSMIS data improves water vapor and temperature fields in the mid- and upper-troposphere, the temperature field in the upper troposphere and stratosphere, and the water vapor field in the troposphere. The detailed OSE results including quality control procedures are found in Hirahara et al. (2016), Kamekawa and Kazumori (2016), and Murakami and Kazumori (2016). Based on these findings, assimilation of radiance data from these instruments was incorporated into JMA's global NWP system in March 2017. (Y. Hirahara, N. Kamekawa and Y. Murakami)

(4) Updates on the usage of GNSS RO data in JMA's Operational Global Data Assimilation System

The Japan Meteorological Agency (JMA) has assimilated bending-angle data into its global NWP systems via the introduction of the Radio Occultation Processing Package (ROPP) (Culverwell et al. 2015). The method of usage for Radio Occultation (RO) data in operational global analysis was updated on July 25 2017. The relevant revisions have been evaluated and tested in the preprocessing of RO data for incorporation into the operational global assimilation system. The major updates are as follows:

- New bending-angle threshold in gross error checking for the tropics
- New handling of RO quality flags (16-bit in BUFR)
- Setting of a lower-altitude limit in data selection
- ROPP update from Ver. 6 to Ver. 8

The most significant of these changes is the implementation of the new bending-angle threshold in gross error checking for the tropics. The update produced a greater volume of observation data for the upper troposphere and the stratosphere, and improved analysis of temperature and wind in these layers. (H. Owada and M. Shimada)

4.2.2 Model

4.2.2.1 In operation

(1) Global Spectral Model (GSM)

The specifications of the operational Global Spectral Model (GSM1705; TL959L100) are summarized in Table 4.2.2 - 1.

JMA runs the GSM four times a day (at 00, 06 and 18 UTC with a forecast time of 84 hours and at 12 UTC with a forecast time of 264 hours).

Table 4.2.2-1 Specifications of the GSM for 11-day forecasts

Table 4.2.2-1 Specifications of	the GSM for 11-day forecasts
1. System	
Model (version)	Global Spectral Model (GSM1705)
Date of implementation	25 May 2017
2. Configuration	
Horizontal resolution	Spectral triangular 959 (TL959), reduced Gaussian grid system,
(Grid spacing)	roughly equivalent to $0.1875 \times 0.1875^{\circ}$ (20 km) in latitude and
	longitude
Vertical resolution	100 stretched sigma pressure hybrid levels (0.01 hPa)
(model top)	
Forecast length (initial time)	84 hours (00, 06, 18 UTC)
	264 hours (12 UTC)
Coupling to ocean/wave/sea ice models	
Integration time step	400 seconds
3. Initial conditions	
Data assimilation	Four-dimensional variational (4D-Var) method
4. Surface boundary condition	
Treatment of sea surface	Climatological sea surface temperature with daily analysis
	anomaly
	Climatological sea ice concentration with daily analysis anomaly
Land surface analysis	Snow depth: two-dimensional optimal interpolation scheme
	Temperature: first guess
	Soil moisture: climatology
5. Other details	
Land surface and soil	Simple Biosphere (SiB) model
Radiation	Two-stream with delta-Eddington approximation for short wave
	(hourly)
	Two-stream absorption approximation method for long wave
27	(hourly)
Numerical techniques	Spectral (spherical harmonic basis functions) in horizontal, finite
	differences in vertical
	Two-time-level, semi-Lagrangian, semi-implicit time integration
	scheme
Dlanata na hana da na lanan	Hydrostatic approximation Mellor and Yamada level-2 turbulence closure scheme
Planetary boundary layer	
Convection	Similarity theory in bulk formulae for surface layer
	Prognostic Arakawa-Schubert cumulus parameterization
Cloud Gravity wave drag	PDF-based cloud parameterization Longwave orographic drag scheme (wavelengths > 100 km) mainly
Gravity wave drag	for stratosphere (wavelengths > 100 km) mainly
	Shortwave orographic drag scheme (wavelengths approx 10 km)
	for troposphere only
	Non-orographic spectral gravity wave forcing scheme
6. Further information	1 2.000 020 grapmo opoortal gravity wave foromig beneme
Operational contact point	globalnwp@naps.kishou.go.jp
System documentation URLs	http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/nwp-top.htm
bystem documentation OILS	noop ii

center/nwp/report/2017_Japan.pdf
http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/report/2017_Japan.pdf
ł

4.2.2.2 Research performed in the field

(1) Upgrade of the GSM

JMA plans to upgrade its Global Spectral Model (GSM) in 2019 by revising its parameterization schemes (such as gravity wave, land surface processes, deep convection). Results from several preliminary experiments showed that more physically sensitive parameterization for sub-grid orography significantly improves the representation of large-scale flow around Japan as well as general circulation. (H. Yonehara et al.)

4.2.3 Operationally available NWP products

The model output products shown below from the GSM are disseminated through JMA's radio facsimile broadcast (JMH) service, GTS and the Global Information System Centre (GISC) Tokyo website.

Table 4.2.3-1 List of facsimile charts transmitted via the GTS and JMH

The contour lines (upper-case letters) are: D: dew-point depression ($T - T_d$); E: precipitation; H: geopotential height; J: wave height; O: vertical velocity (ω); P: sea level pressure; T: temperature; W: isotach wind speed; Z: vorticity; δ : anomaly from climatology; μ : average over time.

The other symbols are: a: wind arrows; b: observation plots; d: hatch for dewpoint depression < 3 K; g: arrows for prevailing wave direction; j: jet axis; m: wave period in digits; t: temperature in digits; x: streamlines.

The subscripts in the table indicate: srf: surface; trp: tropopause; digit (ex. 500) pressure in hPa. The superscripts indicate dissemination channels and time: G: sent to GTS; J: sent to JMH; 12: for 12 UTC only; 5: statistics for pentad sent once per five days for 00 UTC; m: statistics for the month sent monthly for 00 UTC.

Model	Area		Forecast Time [h]						
		Analysis	12	24	36	48	72	96	144
								120	168
									192
GSM	Asia	$ m HZ_{500}^{G}$		$\mathrm{HZ}_{500}^{\mathrm{GJ}}$					
				${ m T}_{ m 500}{ m D}_{ m 700}{ m G}_{ m c}$	J				
		${ m Ta}_{850}{ m O}_{700}{}^{ m G}$		${ m Ta}_{850}{ m O}_{700}{ m G}$	J				
				$ m PEa_{srf}^{GJ}$					
	East Asia	$\mathrm{HWtab}_{300}^{\mathrm{G5}}$							
		$\mathrm{HTab}_{500}\mathrm{^{GJ}}$					${ m Z}_{ m 500}{ m G}$		
		$\mathrm{HTbd}_{700}{}^{\mathrm{G}}$					$ m O_{700}^{G12}$		
		$\mathrm{HTbd}_{850}^{\mathrm{GJ}}$		$\mathrm{PE}_{\mathrm{srf}}^{\mathrm{G}}$		PE	$_{ m srf}^{ m GJ}$	$\mathrm{PE}_{\mathrm{srf}}^{\mathrm{GJ12}}$	
	Asia							$\mathrm{HZ}_{500}^{\mathrm{G}}$	
								$P_{\rm srf}T_{850}$	H12
	Asia-	$\mathrm{HWtaj}_{200}\mathrm{H}_{\mathrm{trp}}{}^{\mathrm{G}}$		$\mathrm{HWta}_{250}{}^{\mathrm{G}}$					
	Pacific	$\mathrm{HWta}_{250}\mathrm{G}$		HWta ₅₀₀ G					
	NW	$\mathrm{X}200^{\mathrm{G}}$		$\mathbf{x}_{200}^{\mathrm{G}}$		$\mathbf{x}_{200}^{\mathrm{G}}$			
	Pacific	$\mathbf{x}_{850}^{\mathrm{G}}$		$\mathbf{x}_{850}^{\mathrm{G}}$		$\mathbf{x}_{850}^{\mathrm{G}}$			
	N Hem.	$ m HT_{500}^{G12}$							
Ocean	Japan	$ m Jbgm_{srf}^{GJ}$							
Wave	NW	$ m Jbgm_{srf}^{GJ}$		$Jgm_{\rm srf}{}^J$		Jg_1	$\mathrm{n_{srf}^J}$		
	Pacific								

Table 4.2.3-2 List of GPV products (GRIB2) distributed via the GISC Website

Symbols: H: geopotential height; U: eastward wind; V: northward wind;

T: temperature; R: relative humidity; O: vertical velocity (ω); Z: vorticity; X: stream function;

Y: velocity potential; P: pressure; Ps: sea level pressure; E: rainfall; N: total cloud cover; Ch: high cloud cover; Cm: middle cloud cover; Cl: low cloud cover.

Model	GSM
Area and	Whole globe, Region II
resolution	$0.25^{\circ} \times 0.25^{\circ}$ (surface)
	$0.5^{\circ} \times 0.5^{\circ}$ (surface, isobar level)
Levels	10 hPa, 20 hPa, 30 hPa, 50 hPa, 70 hPa, 100 hPa, 150
	hPa, 200 hPa, 250 hPa, 300 hPa, 400 hPa, 500 hPa, 600
	hPa, 700 hPa, 800 hPa, 850 hPa, 900 hPa, 925 hPa, 950
	hPa, 975 hPa, 1,000 hPa, surface
Elements	Surface: U, V, T, R, Ps, P, E, N, Ch, Cm, Cl
	200 hPa: U, V, T, R, H, O, X, Y
	500 hPa: U, V, T, R, H, O, Z
	850 hPa: U, V, T, R, H, O, X, Y

	Other levels: U, V, T, R, H, O
Forecast	0-84 every 3 hours,
hours	90 – 264 every 6 hours (12 UTC)
Initial	00 UTC, 06 UTC, 12 UTC, 18 UTC
times	

Table 4.2.3-3 List of GPV products (GRIB) distributed via the GISC website and the GTS

Symbols: D: dew-point depression; E: precipitation; G: prevailing wave direction; H: geopotential height; J: wave height; M: wave period; O: vertical velocity (ω); P: sea level pressure; R: relative humidity; T: temperature; U: eastward wind; V: northward wind; X: stream function; Y: velocity potential; Z: vorticity;

The prefixes μ and σ represent the average and standard deviations of ensemble prediction results, respectively. The symbols °, *, ¶, §, ‡ and † indicate limitations on forecast hours or initial times as shown in the notes below.

Model	GSM	GSM	GSM
Destination	GTS, GISC	GTS, GISC	GTS, GISC
Area and resolution	Whole globe, $1.25^{\circ} \times 1.25^{\circ}$	$20^{\circ}\text{S} - 60^{\circ}\text{N}, 60^{\circ}\text{E} - 160^{\circ}\text{W}$ $1.25^{\circ} \times 1.25^{\circ}$	Whole globe, $2.5^{\circ} \times 2.5^{\circ}$
Levels and elements	10 hPa: H, U, V, T 20 hPa: H, U, V, T 30 hPa: H, U, V, T 50 hPa: H, U, V, T 70 hPa: H, U, V, T 100 hPa: H, U, V, T 150 hPa: H, U, V, T 200 hPa: H, U, V, T 200 hPa: H, U, V, T, X, Y 250 hPa: H, U, V, T, X, Y 250 hPa: H, U, V, T, R, O 400 hPa: H, U, V, T, R, O 500 hPa: H, U, V, T, R, O 500 hPa: H, U, V, T, R, O 700 hPa: H, U, V, T, R, O 700 hPa: H, U, V, T, R, O 850 hPa: H, U, V, T, R, O 850 hPa: H, U, V, T, R, O 1,000 hPa: H, U, V, T, R, O 1,000 hPa: H, U, V, T, R, O 1,000 hPa: H, U, V, T, R, O	10 hPa: H, U, V, T 20 hPa: H, U, V, T 30 hPa: H, U, V, T 50 hPa: H, U, V, T 70 hPa: H, U, V, T 100 hPa: H, U, V, T 150 hPa: H, U, V, T 200 hPa: H, U, V, T 200 hPa: H, U, V, T 200 hPa: H, U, V, T 300 hPa: H, U, V, T, D 400 hPa: H, U, V, T, D 500 hPa: H, U, V, T, D 500 hPa: H, U, V, T, D 500 hPa: H, U, V, T, N C 850 hPa: H, U, V, T, N, V, V, Y, V, Y, V, V, Y, V, V, V, Y, V,	10 hPa: H*, U*, V*, T* 20 hPa: H*, U*, V*, T* 30 hPa: H°, U°, V°, T° 50 hPa: H°, U°, V°, T° 70 hPa: H°, U°, V°, T° 100 hPa: H°, U°, V°, T° 150 hPa: H*, U*, V*, T* 200 hPa: H, U, V, T 250 hPa: H, U, V, T 300 hPa: H, U, V, T, D*; 400 hPa: H, U, V, T, D*; 500 hPa: H, U, V, T, D*; 500 hPa: H, U, V, T, D*; 500 hPa: H, U, V, T, D 850 hPa: H, U, V, T, D 1,000 hPa: H, U*, V*, T*, D*; Surface: P, U, V, T, D;, E†
Forecast hours	0 – 84 every 6 hours and 96 – 192 every 12 hours † Except analysis	0 – 84 every 6 hours § Additional 96 – 192 every 24 hours for 12 UTC ¶ 0 – 192 every 6 hours for 12 UTC	0 – 72 every 24 hours and 96 – 192 every 24 hours for 12 UTC ° 0 – 120 for 12 UTC † Except analysis * Analysis only
Initial times	00 UTC, 06 UTC, 12 UTC, 18 UTC	00 UTC, 06 UTC, 12 UTC, 18 UTC	00 UTC, 12 UTC ‡ 00 UTC only

Model	Global Ensemble Forecast	Ocean Wave Model
	(One-week)	
Destination	GISC	GTS, GISC
Area and	Whole globe,	$75^{\circ}\text{S} - 75^{\circ}\text{N}, 0^{\circ}\text{E} - 359.5^{\circ}\text{E}$
resolution	$2.5^{\circ} \times 2.5^{\circ}$	$0.5^{\circ} \times 0.5^{\circ}$
Levels and	250 hPa: μU, μV, σU, σV	Surface: J, M, G
elements	500 hPa: μH, σH	
	850 hPa: μU, μV, μT, σU, σV, σΤ	

	1,000 hPa: μH, σH	
	Surface: μP, σP	
Forecast	0-192 every 12 hours	0-84 every 6 hours,
hours		96 - 192 every 12 hours for 12
		UTC
Initial	00 UTC and 12 UTC	00 UTC, 06 UTC, 12 UTC, 18
times		UTC

4.2.4 Operational techniques for application of NWP products

4.2.4.1 In operation

(1) Forecast guidance

The application techniques for both the medium and short-range forecasting systems are described in 4.3.4.1 (1).

4.2.4.2 Research performed in the field

4.2.5 Ensemble Prediction System (EPS)

4.2.5.1 In operation

JMA put its new Global EPS (GEPS) into operation in January 2017. Covering both medium- and extended-range forecasting, the system supports the issuance of five-day tropical cyclone (TC) forecasts, one-week forecasts, early warning information on extreme weather, and one-month forecasts. GEPS took over the roles of three previous JMA systems (the Typhoon EPS (TEPS), the One-week EPS (WEPS) and the One-month EPS). The objectives of the integration were to utilize computational resources more effectively and to concentrate efforts into a single EPS system. TEPS and WEPS were replaced by GEPS in January 2017, and GEPS inherited the role of the One-month EPS in March 2017. The specifications of GEPS for the first 11 days of forecasts are shown in Table 4.2.5-1. The system involves the application of 1 control forecast and 26 perturbed forecasts. Initial perturbations are generated using a combination of the Local Ensemble Transform Kalman Filter approach (LETKF; Hunt et al. 2007) and the singular vector (SV) method (Buizza and Palmer 1995). The specifications of LETKF are shown in Table 4.2.5-2. Using this filtering technique, a six-hour cycle data assimilation system is implemented to generate initial perturbations representing flow-dependent uncertainty in the initial conditions. The tangentlinear and adjoint models used for SV computation are lower-resolution versions of those used in the 4D-Var data assimilation system for the GSM until May 2017. The moist total energy norm (Ehrendorfer et al. 1999) is employed for the metrics of perturbation growth. The forecast model used in the EPS is a low-resolution version of the GSM1603E (see Table 4.2.5-1). Accordingly, the dynamical framework and physical processes involved are identical to those of the high-resolution

GSM except for horizontal resolution. A stochastic physics scheme (Palmer et al. 2009) is used in GEPS in consideration of model uncertainties associated with physical parameterizations.

Unperturbed initial condition is performed by interpolating the analyzed field in global analysis (see 4.2.1.1). The sea surface temperature (SST) analysis value is used as a lower-boundary condition and prescribed using the persisting anomaly from the climatological value, which means that the anomalies shown from analysis for the initial time are fixed during time integration. The sea ice concentration analysis value is also prescribed using the persisting anomaly. A perturbation technique for SST that is designed to represent uncertainty in the prescribed SST is applied to GEPS as a surface boundary perturbation.

Table 4.2.5-1 Global EPS specifications for the first 11 days of forecasts

1. Ensemble system	
Ensemble (version)	Global EPS (GEPS)
Date of implementation	19 January 2017
2. EPS configuration	
Model (version)	Global Spectral Model (GSM1603E)
Horizontal	Spectral triangular 479 (TL479), reduced Gaussian grid system,
resolution/grid spacing	roughly equivalent to $0.375 \times 0.375^{\circ}$ (40 km) in latitude and longitude
Vertical resolution	100 stretched sigma pressure hybrid levels (0.01 hPa)
(model top)	
Forecast length (initial	11 days (00, 12 UTC)
time)	132 hours (06, 18 UTC)
Members	1 unperturbed control forecast and 26 perturbed ensemble members
Coupling to	
ocean/wave/sea ice	
models	5 00 1
Integration time step	720 seconds
Additional comments	Forecasts from initial times at 06 and 18 UTC are issued when either of
	the following conditions is satisfied at the initial times:
	· A tropical cyclone (TC) of tropical storm (TS) intensity or higher is present in the RSMC Tokyo – Typhoon Center's area of
	responsibility $(0 - 60^{\circ}\text{N}, 100^{\circ}\text{E} - 180^{\circ})$.
	· A TC is expected to reach or exceed TS intensity in the area within
	the next 24 hours.
3. Initial conditions and	130 330 23 30 30 30
perturbations	
Initial perturbation	Singular vectors (SVs) and LETKF
strategy	
Optimization time in	Among three targeted SV areas:
forecast	48 hours for Northern Hemisphere (30° – 90°N)
	24 hours for Tropics (30°S – 30°N)
	48 hours for Southern Hemisphere (90° – 30°S)
Horizontal resolution of	SVs:
perturbations	Spectral triangular 63 (TL63), reduced Gaussian grid system, roughly
	equivalent to 2.8125 × 2.8125° (270 km) in latitude and longitude
	Perturbations from LETKF:
	Spectral triangular 319 (TL319), reduced Gaussian grid system,
	roughly equivalent to 0.5625 × 0.5625° (55 km) in latitude and longitude
Initial perturbation	Global
area	
37-2-37	

Data assimilation	Four-dimensional variational (4D-Var) for Global Analysis (GA) Control
method for control	analysis based on interpolation of high-resolution GA (TL959)
analysis	
Initial conditions for	Addition of perturbations to control analysis (SV-based components in
perturbed members	+/- pairs)
Additional comments	
4. Model uncertainty	
perturbations	
_	Charles to a set on a set on a full resistant designs
1 0	Stochastic perturbation of physics tendency
perturbations	
Model dynamics	
perturbations	
Additional comments	· Identical model versions for all ensemble members
	· Above model uncertainty perturbations not applied to control
	forecasting
5. Surface boundary	
perturbations	
Sea surface	Perturbations representing climatological distribution of analysis and
temperature	forecast error of prescribed SST sampled from past realizations of
perturbations	analysis increment and forecast error of SST in the same season
Soil moisture	
perturbations	
Surface wind	
stress/roughness	
perturbations	
Other surface	
perturbations	
Additional comments	The above surface perturbations are not applied to the control forecast.
6. Other model details	
Surface boundary condition	ons
Treatment of sea	Climatological sea surface temperature with daily analysis anomaly
surface	Climatological sea ice concentration with daily analysis anomaly
Land surface analysis	Snow depth: two-dimensional optimal interpolation scheme
	Temperature: first guess
	Soil moisture: climatology
Model dynamics and phys	
Land surface and soil	Simple Biosphere (SiB) model
Radiation	Two-stream with delta-Eddington approximation for shortwave (hourly)
ivadiation	Two-stream absorption approximation method for longwave (hourly)
Numerical tashi	
Numerical techniques	Spectral (spherical harmonic basis functions) in horizontal, finite
	differences in vertical
	Two-time-level, semi-Lagrangian, semi-implicit time integration
	scheme
77	Hydrostatic approximation
Planetary boundary	Mellor and Yamada level-2 turbulence closure scheme
layer	Similarity theory in bulk formulae for surface layer
Convection	Prognostic Arakawa-Schubert cumulus parameterization
Cloud	PDF-based cloud parameterization
Gravity wave drag	Longwave orographic drag scheme (wavelengths > 100 km) mainly for
	stratosphere
	Shortwave orographic drag scheme (wavelengths approx. 10 km) for
	troposphere only
	Non-orographic spectral gravity wave forcing scheme
7. Products	<u> </u>
Method of calculation (if	
not unique)	
	Products of forecasts from initial times at 06 and 18 UTC are not
Other specifications as	
necessary	externally provided on an operational basis.

8. Further information	
Operational contact	globalnwp@naps.kishou.go.jp
System documentation	http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/nwp-top.htm
URLs	http://www.jma.go.jp/jma/jma-eng/jma-
	center/nwp/report/2017_Japan.pdf
Product list URLs	http://www.jma.go.jp/jma/jma-eng/jma-
	center/nwp/report/2017_Japan.pdf

Table 4.2.5-2 LETKF specifications

Model name (version)	Global Spectral Model (GSM1705)
Horizontal resolution	Spectral triangular 319 (TL319), reduced Gaussian grid system,
	roughly equivalent to 0.5625° ×0.5625° (55 km) in latitude and
	longitude
Vertical resolution (model top)	100 unevenly spaced hybrid levels (0.01 hPa)
Analysis time	00, 06, 12, 18 UTC
Ensemble size	50 members
Data cut-off time	2 hours and 20 minutes
First guess	Own 6-hour forecast
Analysis variables	Wind, surface pressure, specific humidity and temperature
Observation (as of 29 Mar 2017)	SYNOP, METAR, SHIP, BUOY, TEMP, PILOT, Wind Profiler, AIREP, AMDAR, Typhoon Bogus; atmospheric motion vectors (AMVs) from Himawari-8, GOES-13, 15, Meteosat-8, 10; MODIS polar AMVs from Terra and Aqua satellites; AVHRR polar AMVs from NOAA and Metop satellites; LEO-GEO AMVs; ocean surface wind from Metop-A, B/ASCAT; radiances from NOAA-15, 18, 19/ATOVS, Metop-A, B/ATOVS, Aqua/AMSU-A, Megha-Tropiques/SAPHIR, DMSP-F17, 18/SSMIS, GPM/GMI, GCOM-W/AMSR2, Suomi-NPP/ATMS; clear sky radiances from the water vapor channels (WV-CSRs) of Himawari-8, GOES-13, 15, Meteosat-8, 10; GNSS RO bending angle data from Metop-A, B/GRAS, COSMIC/IGOR, GRACE-A,B/blackjack, TerraSAR-X/IGOR, zenith total delay data from ground-based GNSS
Assimilation window	6 hours
Perturbations to model	Stochastic perturbation of physics tendency
physics	
Initialization	Hamrud et al. (2015)
Covariance inflation	Adaptive multiplicative covariance inflation
Other characteristics	A total of 50 analyses are re-centered so that their ensemble mean
	is consistent with the Global Analysis (GA).
	A total of 25 of these 50 are used to generate GEPS initial
	perturbations.

4.2.5.2 Research performed in the field

(1) Upgrade of models for SV computation

JMA upgraded the non-linear, tangent-linear and adjoint models used for its SV computation in June 2017. The previous and current models are lower-resolution versions of those used in the 4D-Var data assimilation system for the GSM until October 2011 and May 2017, respectively. The upgrade includes changes in the dynamical framework of the models from a Eulerian formulation with a quadratic Gaussian grid system to a semi-Lagrangian formulation with a reduced Gaussian

grid system. The model's cut-off wave number in the triangular truncation of the spherical harmonics expansion, the number of layers and the top height remained the same at 63, 40 and 0.1 hPa, respectively. These upgrades reduced the resources involved in SV computation by more than 50% and supported SV calculation with greater numerical stability and little impact on the accuracy and spread of GEPS forecasts. (K. Ochi, Y. Ota, C. Matsukawa and H. Yamaguchi)

(2) Investigation of LETKF covariance inflation

New adaptive covariance inflation methods (Kotsuki et al. 2017) based on relaxation to prior spread (RTPS) and relaxation to prior perturbations (RTPP) have been tested in the LETKF used for generating the initial perturbations of the GEPS. The new methods were found to be more robust to observation network changes than the operational adaptive multiplicative inflation approach. However, testing with the pure LETKF cycle showed substantial detrimental impacts on the accuracy of analysis and forecasting from ensemble mean analysis. Further investigation revealed underdispersiveness in prior perturbations with the new methods, suggesting insufficient representation of model error. (Y. Ota)

4.2.5.3 Operationally available EPS products

See 4.2.3.

- 4.3 Short-range forecasting system (0-72 hrs)
- 4.3.1 Data assimilation, objective analysis and initialization
- 4.3.1.1 In operation

(1) Meso-scale Analysis (MA)

A 4D-Var data assimilation method has been employed since 19 March, 2002, for mesoscale analysis of atmospheric conditions (Meso-scale Analysis, or MA). The MA was replaced with a new 4D-Var called the JNoVA (Honda et al. 2005) in April 2009. The JNoVA is based on JMA's non-hydrostatic model (JMA-NHM; Saito et al. 2006), which was in operation until February 2017 as a mesoscale forecast model (the Meso-Scale Model, or MSM). It should be noted that the current operational MSM is based on ASUCA as described in 4.3.2.1, but the JMA-NHM is still implemented in MA for formulation of the first guess. The MA specifications are detailed in Table 4.3.1-1.

Table 4.3.1-1 MA specifications

4D-Var formulation | Incremental 4D-Var using a nonlinear forward model in the inner step

	with low resolution
Data cut-off time	50 minutes for analysis at 00, 03, 06, 09, 12, 15, 18 and 21 UTC
Observation (as of	SYNOP, METAR, SHIP, BUOY, TEMP, PILOT, Wind Profiler, Weather
31 December 2017)	Doppler radar (radial velocity, reflectivity), AIREP, AMDAR; AMVs from
	Himawari-8; ocean surface wind from Metop-A, B/ASCAT; radiances
	from NOAA-15, 18, 19/ATOVS, Metop-A, B/ATOVS, Aqua/AMSU-A,
	DMSP-F17, 18/SSMIS, GCOM-W/AMSR2, GPM-core/GMI; WV-CSR of
	Himawari-8; radar-raingauge analyzed precipitation; precipitation
	retrievals from DMSP-F17, 18/SSMIS, GCOM-W/AMSR2; GPM-
	core/GMI; GPM-core/DPR; GNSS RO refractivity data from Metop-A,
	B/GRAS, COSMIC/IGOR, GRACE-A, B/blackjack, TerraSAR-X/IGOR,
	TanDEM-X/IGOR; Total Precipitable Water Vapor from ground-based GNSS
Einst mass	
First guess	3-hour forecast produced by the JMA-NHM
Domain configuration	(Outer step) Lambert projection; 5 km at 60°N and 30°N, 817 × 661
configuration	Grid point (1, 1) is at the northwest corner of the domain.
	Grid point (1, 1) is at the northwest corner of the domain. Grid point (565, 445) is at 140°E, 30°N.
	(Inner step)
	Lambert projection; 15 km at 60°N and 30°N, 273 × 221
	Grid point (1, 1) is at the northwest corner of the domain.
	Grid point (189, 149) is at 140°E, 30°N.
Vertical levels	(Outer step) 48 levels up to 22 km (consistent with the forecast model
	setting)
	(Inner step) 38 levels up to 22 km
Analysis variables	Wind, potential temperature, surface pressure and pseudo-relative
	humidity
Assimilation	3 hours
window	

(2) Typhoon bogussing of the MA

The method employed is essentially as per that used for GA (see 4.2.1.1 (2)).

(3) Local Analysis (LA)

Local Analysis (LA), which was introduced in August 2012, produces initial conditions for the Local Forecast Model (LFM) at a horizontal resolution of 2 km. For the provision of initial conditions to the high-resolution forecast model targeting small-scale severe weather events, the LA is designed to allow rapid production and frequent updating of analysis at a resolution of 5 km. An analysis cycle with hourly three-dimensional variational (3D-Var) data assimilations is executed each time for the previous three-hour period to incorporate information from newly received observations in each case. High-resolution NWP's capacity to capture small-scale variations in topography is expected to help a reduction of representativeness errors in surface observation assimilation. In association, the LA also assimilates automated surface station (AMeDAS) data ahead of other operational data assimilation systems at lower resolutions to appropriately reflect the effects of local-scale environments near the surface. The analysis domain was expanded so that the Japan and its surrounding areas can be covered and the update frequency was enhanced to every hour in May 2013. A new system based on ASUCA and ASUCA-Var was implemented in the operational LA

in January 2015 (Aranami et al. 2015), replacing the previous one based on JMA-NHM and JNoVA. The specifications of the LA are detailed in Table 4.3.1-2.

Table 4.3.1-2 LA specifications

Analysis cycle	The three-hour analysis cycle repeats hourly assimilation with 3D-Var	
	and one-hour forecasts.	
Data cut-off time	30 minutes for analysis at 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11,	
	12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 and 23 UTC	
Observation (as of	SYNOP, SHIP, BUOY, AMeDAS, TEMP, PILOT, Wind Profiler, Weather	
31 December 2017)	Doppler radar (radial velocity, reflectivity), AIREP, AMDAR, AMVs from	
	Himawari-8 and Total Precipitable Water Vapor from ground-based	
	GNSS, radiances from NOAA-15, 18, 19/ATOVS, Metop-A, B/ATOVS,	
	Aqua/AMSU-A, DMSP-F17, 18/SSMIS, GCOM-W/AMSR2, GPM-	
	core/GMI; WV-CSR of Himawari-8, soil moisture from GCOM-W/AMSR2	
	and Metop-A B/ASCAT	
First guess	Initial fields produced by the latest MSM	
Domain	Lambert projection; 5 km at 60°N and 30°N, 633 × 521	
configuration	Grid point (1, 1) is at the northwest corner of the domain.	
	Grid point (449, 361) is at 140°E, 30°N	
Vertical levels	48 levels up to 22 km	
Analysis variables	Wind, potential temperature, surface pressure, pseudo-relative	
	humidity, skin temperature, ground temperature, soil moisture	

4.3.1.2 Research performed in the field

(1) Assimilation of Satellite Clear Sky Radiance (CSR) and Soil Moisture Content (SMC) data with Variational Bias Correction (VarBC) into the Local NWP system

In the Local NWP system, JMA started to assimilate CSR observation from Himawari-8 AHI, GPM GMI, GCOM-W AMSR2, Metop-A/B AMUS-A/MHS and DMSP SSMIS. In addition, the assimilation of SMC of L2-products from GCOM-W AMSR2 and Metop-A/B ASCAT was also initiated. These SMC data are assimilated after variable transformation using the cumulative distribution function (CDF) matching method, which involves fitting of the probability density function (PDF) of observation to the PDF of model variables. This pre-conditioning based on CDF matching helps to minimize the cost function because the innovation of SMC becomes Gaussian after CDF matching. However, it is known that satellite observation bias fluctuates over time. To adaptively remove this temporal bias, the VarBC method is used in local analysis. This enables the assimilation of CSR and SMC data as unbiased observation information and improves

atmospheric and surface forecast accuracy. Accordingly, assimilation of CSR and SMC data into the Local NWP system was commenced in January 2017. (Y. Ikuta)

4.3.2 Model

4.3.2.1 In operation

(1) Meso-Scale Model (MSM)

JMA has operated MSM since March 2001. Its main roles are disaster prevention and aviation forecasting. JMA-NHM was adopted as MSM in September 2004, and 15- or 33-hour forecasts have been provided every 3 hours, i.e., 8 times a day, since May 2007. The forecast domain was expanded in March 2013. The forecast range at all the initial times was extended to 39 hours in May 2013. The ASUCA forecast model was introduced in February 2017, and the number of vertical layers was increased from 48 to 76 for enhanced resolution. The specifications of MSM are listed in Table 4.3.2-1.

Table 4.3.2-1 MSM specifications

1. System			
System	Meso-scale model (forecast model: ASUCA)		
Date of implementation	1 Mar. 2001 (ASUCA: 28 Feb. 2017)		
2. Configuration			
Domain	Japan, Lambert projection, 817 × 661 grid points		
Horizontal resolution	5 km at 60 and 30°N (standard parallels)		
Number of model levels	76		
Model top	21.8 km		
Forecast length	39 hours		
Runs per day (times in UTC)	8 (00, 03, 06, 09, 12, 15, 18 and 21 UTC)		
Coupling to ocean/wave/sea ice models	None		
Integration time step	100/3 seconds (3-stage Runge-Kutta method)		
3. Initial conditions	<u> </u>		
Data assimilation method	4D-Var analysis with mixing ratios of cloud water, cloud ice, rain, snow and graupel derived from preceding forecasts in consideration of consistency with the analysis field of relative humidity		
4. Surface boundary condition	s		
Sea-surface temperature	Observed SST (fixed during time integration) and sea-ice distribution		
Land surface analysis	Climatological values of evaporability, roughness length and albedo Snow cover analysis over Japan using a land surface model		
5. Lateral boundary conditions			
Model providing lateral	GSM		
boundary conditions			
Lateral boundary condition	4 times/day		
update frequency	00 - 45-hour GSM forecasts initialized at $00/06/12/18$ UTC for $(03, 06)/(09, 12)/(15, 18)/(21, 00)$ UTC forecasts		
6. Other model details			
Soil scheme	Ground temperature prediction using an eight-layer ground model Evaporability prediction initialized using climatological values depending on location and season		
Radiation	Short wave: two-stream with delta-Eddington approximation (every 15 minutes) Long wave: two-stream absorption approximation method (every 15 minutes)		
Large scale dynamics	Finite volume method with Arakawa-C-type staggered coordinates, a horizontally explicit and vertically implicit time integration scheme, and combined third- and first-order upwind horizontal finite difference schemes in flux form with a limiter as		

	<u> </u>	
	proposed by Koren (1993) in advection treatment for monotonicity	
	Fully compressible non-hydrostatic equations	
Boundary layer	Improved Mellor-Yamada Level-3 scheme	
	Similarity theory adopted for the surface boundary layer	
Convection	Kain-Fritsch convection scheme	
Cloud/microphysics	Three-ice bulk cloud microphysics	
	Consideration of PDF-based cloud distribution in microphysics	
	Time-split treatment for rain and graupel precipitation	
	Cloud water and cloud cover diagnosed using a partial	
	condensation scheme	
Orography	Mean orography smoothed to eliminate shortest-wave components	
Horizontal diffusion	None	
Gravity wave drag	None	
7. Further information		
System documentation URLs	http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/nwp-top.htm	
	http://www.jma.go.jp/jma/jma-eng/jma-	
	center/nwp/report/2015_Japan.pdf	

(2) Local Forecast Model (LFM)

Making use of the new powerful supercomputer system installed in June 2012, operation of a forecast model called LFM with an even higher resolution was launched in August 2012 along with LA. This model has 2-km horizontal grid spacing and 58 vertical layers up to a height of approximately 20.2 km above the surface, and is designed to produce more detailed forecasts with emphasis on predicting localized and short-lived severe events. LFM is specifically intended to provide very short-range forecasts for the period of nine hours ahead and other periods, and to allow rapid and frequent forecast updates based on initial conditions with the latest observations assimilated by LA. The forecast domain was expanded so that the Japan and its surrounding areas can be covered and the update frequency was enhanced to every hour in May 2013. The ASUCA forecast model was introduced in January 2015 (Aranami et al. 2015), replacing the previous JMA-NHM model. The specifications of LFM are listed in Table 4.3.2-2.

Table 4.3.2-2 LFM specifications

14010 11012 2 21112 5 00011104110115			
1. System	1. System		
System	Local Forecast Model (forecast model: ASUCA)		
Date of implementation	30 Aug. 2012 (ASUCA: 29 Jan. 2015)		
2. Configuration			
Domain	Japan, Lambert projection, 1,531 × 1,301 grid points		
Horizontal resolution	2 km at 60 and 30°N (standard parallels)		
Number of model levels	58		
Model top	20.2 km		
Forecast length	9 hours		
Runs per day (times in UTC)	24 (00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 and 23 UTC)		
Coupling to ocean/wave/sea ice models	None		
Integration time step	50/3 seconds (3-stage Runge-Kutta method)		
3. Initial conditions			
Data assimilation method	The LA produces initial conditions via a three-hour analysis cycle based on hourly assimilation with 3D-Var and one-hour forecasts		
4. Surface boundary conditions			

Sea-surface temperature	SST (fixed during time integration) and sea-ice distribution from MSM
Land surface analysis	Climatological values of evaporability, roughness length and
	albedo
	Snow cover analysis from MSM
5. Lateral boundary conditions	
Model providing lateral	MSM
boundary conditions	
Lateral boundary condition	8 times/day
update frequency	00 – 13-hour forecasts using the latest MSM information
6. Other model details	
Soil scheme	Ground temperature prediction using an eight-layer ground model
	Evaporability prediction initialized using climatological values
	depending on location and season
Radiation	Short wave: two-stream with delta-Eddington approximation
	(every 15 minutes)
	Long wave: two-stream absorption approximation method
	(every 15 minutes)
Large-scale dynamics	Finite volume method on Arakawa-C-type staggered coordinates,
	horizontally explicit and vertically implicit time integration
	scheme, combined third- and first-order upwind horizontal finite
	difference schemes in flux form with a limiter by Koren (1993) in
	advection treatment for monotonicity
D 1 1	Fully compressible non-hydrostatic equations
Boundary layer	Improved Mellor-Yamada Level 3 scheme
G ti	Similarity theory adopted for surface boundary layer
Convection	Convective initiation
Cloud/microphysics	Three-ice bulk cloud microphysics
	Time-split treatment for rain and graupel precipitation Cloud water and cloud cover diagnosis using a partial
	condensation scheme
Orography	Mean orography smoothing to eliminate shortest-wave
Orography	components
Horizontal diffusion	None
Gravity wave drag	None
7. Further information	110110
System documentation URLs	http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/nwp-top.htm
	http://www.jma.go.jp/jma/jma-eng/jma-
	center/nwp/report/2015_Japan.pdf
	contonini propor was to _supampar

4.3.2.2 Research performed in the field

(1) ASUCA-based system upgrade

After the implementation of the ASUCA-based system into the operational LFM in January 2015 (Aranami et al. 2015), its dynamical core and the physics library (Hara et al. 2012) were upgraded toward introduction into the MSM, which was accomplished in February 2017. These improvements contribute to various forecasting enhancements, especially in summer precipitation.

• Dynamical core

An adaptive time-splitting method for vertical advection in consideration of the three-dimensional CFL condition was adopted to maintain computational stability with a longer time step and finer

vertical grid spacing.

• Physics parameterization

- The cumulus parameterization scheme based on Kain and Fritsch (1990) was overhauled and various upgrades were applied, including a revision of the trigger function and refinement of the entrainment rate based on comparison of cloud top height between the model and estimation from satellite observation.
- The cloud microphysics scheme was also upgraded. The upgrade includes a revision of particle distribution functions for snow and rain, introduction of a PDF-based cloud condensation scheme, refinement of rain evaporation, and introduction of numerics with greater stability.
- · A radiation scheme for the GSM and a boundary layer scheme for the LFM were introduced.
- · The number of ground levels used for soil temperature prediction was increased.
- · In January 2017, the dynamical core improvement, radiation scheme upgrade and soil temperature prediction described above were also incorporated into the operational LFM.

4.3.3 Operationally available NWP products

4.3.4 Operational techniques for application of NWP products

4.3.4.1 In operation

(1) Forecast guidance

Forecast guidance is utilized for the issuance of warnings, advisories, information and weather forecasts. Five operational techniques are routinely used to determine guidance from NWP model output: Kalman Filter (KF), Artificial Neural Network (ANN), Multiple Linear Regression (MLR), Logistic Regression (LR), and Diagnostic Methods (DM). These approaches are applied to grid-point values from the GSM, the MSM and the LFM in order to reduce systematic errors in NWP models and extract useful information such as probabilities and categorical/diagnostic values. The specifications of weather forecast and aviation forecast guidance are listed in Table 4.3.4-1 and 4.3.4-2, respectively.

Table 4.3.4-1 Weather forecast guidance specifications

Guidance based on the GSM is provided every 6 hours with forecast times between 3 and 84 hours every 3 hours. Guidance based on the MSM is provided every 3 hours with forecast times between 3 and 39 hours every 3 hours.

Element	Details	Type	NWP	Statistical tool
Average	3-hour cumulative	Grid (20 * 20 km	GSM,	KF
precipitation	precipitation (grid average)	for GSM, 5 * 5 km	MSM	

Maximum	1-, 3- and 24- hour	for MSM	ANN (1, 3
precipitation	cumulative precipitation		hours), MLR (24
	(maximum value within each		hours)
	grid square)		
Probability of	Probability of precipitation		KF
precipitation	totaling 1 mm or more over 6		
	hours		
Weather	Categorization (including		ANN (sunshine
	sunshine duration and		duration), DM
	precipitation type)		(precipitation
			type)
Visibility	Minimum visibility		DM
Maximum	3-, 6-, 12- and 24-hour	Grid (5 * 5 km)	DM + LR
snowfall	snowfall depths (maximum		
	value within each grid		
	square)		
Snowfall	6-, 12- and 24-hour snowfall	Point (323)	ANN
	depths		
Temperature	Maximum, minimum, time-	Point (928)	KF
	series temperature		
Wind	Maximum, time-series wind	Point (928)	KF
	speed/direction		
Humidity	Minimum humidity, time-	Point (154)	ANN
	series humidity		(minimum), KF
			(time series)
Probability of	Probability of thunderstorms	Grid (20 * 20 km)	LR
TS			

Table 4.3.4-2 Aviation forecast guidance specifications

Guidance based on the MSM is provided every 3 hours with forecast times between 1 and 39 hours every hour. Guidance based on the LFM is provided every hour with forecast times between 1 and 9 hours every hour.

	D-4-:1-	Т	NIWD	C4-4:-4:141
Element	Details	Type	NWP	Statistical tool
Visibility	Minimum and mean visibility			KF
Probability of	Probability of visibility less than			KF
visibility	5,000 and 1,600 m			
Cloud	Cloud amount and height of lower			ANN
	3 layers			
Probability of	Probability of ceiling below 600 and			LR
ceiling	1,000 ft	Point		
Wind	Time-series, maximum wind	(91 airports)	MSM	KF
	speed/direction	(91 airports)		
Gust	Gust speed/direction			KF
Probability of	Probability of gusting			LR
gusts				
Weather	Categorized weather			DM
Temperature	Maximum, minimum and time-			KF
	series temperature			
Turbulence	Turbulence index	Grid (40 * 40	GSM,	LR
		km and 28	MSM,	
		layers for MSM,	LFM	
Icing	Icing index	10 * 10 km and	MSM,	DM
		45 layers for	LFM	

СВ	CB cloud amount and CB top height	LFM)	GSM, MSM, LFM	DM
Visibility	Minimum visibility		LFM	DM

(2) Hourly Analysis

JMA Hourly Analysis involves three-dimensional evaluation of temperature and wind fields with a grid spacing of 5 km to provide real-time monitoring of weather conditions. The latest MSM forecast is used as the first guess, and observational information is added through assimilation. The 3D-Var data assimilation method is adopted as the analysis technique. The hourly product is made within 30 minutes of the end of each hour, and is provided to operational forecasters and aviation users. In July 2017 a new system based on ASUCA and ASUCA-Var was implemented, replacing the original one based on JMA-NHM and JNoVA. The specifications of the Hourly Analysis schemes are almost identical except for the model configurations, as listed in Table 4.3.4-3.

Table 4.3.4-3 Hourly Analysis specifications

Analysis scheme	3D-Var
Data cut-off time	20 minutes
First guess	2, 3 or 4-hour forecast by the MSM
Domain	Lambert projection, 5 km at 60°N and 30°N, 721 × 577 grid points
configuration	Grid point (1, 1) is at the northwestern corner of the domain.
	Grid point (489, 409) is at 140°E, 30°N.
Vertical levels	48 forecast model levels
Analysis variables	Wind, temperature, surface wind and surface temperature
Observation (as of	AMeDAS, Wind Profiler, Weather Doppler radar (radial velocity),
31 December, 2017)	AIREP, AMDAR, and AMVs from Himawari-8
Post-processing	Surface filtering (followed by adjustment of the increment within the
	PBL)

4.3.4.2 Research performed in the field

(1) Forecast guidance

JMA is currently developing LFM precipitation guidance (1-hour average precipitation and 1-hour maximum precipitation) for use as input in 15-hour precipitation forecasts and issuance of disaster weather information such as Warnings/Advisories in daily forecasting work.

(2) Hourly Analysis (introduction of ASUCA-based 3D-Var)

In July 2017, JMA Hourly Analysis was updated to support 3D-Var monitoring based on ASUCA-MSM and ASUCA-Var data. As the new Hourly Analysis specifications are similar to the original ones, comparable results can be expected with identical first-guess and observation data. The

vertical grid interpolation method has also been improved, with application in 3D-Var preprocessing for conversion of first-guess data from the MSM to the 3D-Var analysis field with different vertical levels (Tables 4.3.2-1 and 4.3.4-3). These upgrades have helped to improve horizontal wind fields in the middle and upper levels, especially over high-altitude regions.

4.4 Nowcasting and Very-short-range Forecasting systems (0 – 6 hrs)

Since 1988, JMA has routinely operated a fully automated system of precipitation analysis and very short-range forecasting to monitor and forecast local severe weather conditions. In addition to these, JMA has issued Precipitation Nowcasts since June 2004, Thunder Nowcasts since May 2010 and Hazardous Wind Potential Nowcasts since May 2010. High-resolution Precipitation Nowcasts (JMA's latest nowcasting product) were introduced in August 2014.

The products are listed below.

- (1) High-resolution Precipitation Nowcasts (incorporating forecasts of 5-minute cumulative precipitation, 5-minute-interval precipitation intensity and error range estimation based on extrapolation and spatially three-dimensional forecasting covering the period up to 60 minutes ahead)
- (2) Precipitation Nowcasts (incorporating forecasts of 10-minute cumulative precipitation and 5-minute-interval precipitation intensity based on extrapolation covering the period up to 60 minutes ahead)
- (3) Thunder Nowcasts (incorporating forecasts of thunder and lightning activity based on lightning detection network system observation covering the period up to 60 minutes ahead)
- (4) Hazardous Wind Potential Nowcasts (incorporating forecasts of the probability of hazardous wind conditions such as tornadoes covering the period up to 60 minutes ahead)
- (5) Radar/Raingauge-Analyzed Precipitation (R/A)* (incorporating one-hour cumulative precipitation based on radar observation calibrated using raingauge measurements from JMA's Automated Meteorological Data Acquisition System (AMeDAS) and other available data such as those from rain gauges operated by local governments)
- (6) Very-Short-Range Forecasts of precipitation (VSRFs) (incorporating forecasts of one-hour cumulative precipitation based on extrapolation and prediction by the MSM and LFM (see 4.3.2.1) and covering the period from one to six hours ahead)

^{*}Referred to before 15 November, 2006, as Radar-AMeDAS precipitation.

4.4.1 Nowcasting system (0-1 hrs)

4.4.1.1 In operation

(1) High-resolution Precipitation Nowcasts

High-resolution precipitation nowcasts (HRPNs) provide five-minute-interval precipitation intensity and cumulative precipitation data up to an hour ahead. Initial precipitation intensity distribution is determined via three-dimensional analysis of storms using radar echo intensity, Doppler velocity, raingauge, surface and upper-air observation data.

Data on vertical atmospheric profiles are part of the input used for prediction generation. The initial values for such data are based on upper-air observation data, and are updated via comparison of cumulonimbus cloud profiles (echo top rising speed, ceiling height, lightning count and rainfall amount) between radar/radio-based observation and calculation using the Vertically One-dimensional Convective Model (VOCM). Thus, HRPNs are multi-observing-system-based nowcasting products beyond the scope of radar-based data with concentration on various observation data application technologies.

Two processes are adopted in HRPNs: (1) high-resolution three-dimensional prediction generated by extrapolating the three-dimensional distribution of water content and using VOCM data relating to notable regions of heavy rain, and (2) low-resolution three-dimensional prediction generated with a longer time step and reduced vertical calculation for areas outside high-resolution prediction regions. Data processing functions are designed for prediction using a dynamical estimation approach suitable for forecasting of rain phenomena that develop widely and rapidly based on a kinetic approach involving the extrapolation of phenomenon movement trends. Generation of data on convective cloud initiation triggered by three phenomena is also considered.

HRPN distribution data contain information on prediction uncertainty in the form of predictions regarding the magnitude of errors included in forecast rainfall. Knowledge of this uncertainty is considered useful in applications such as river water level prediction.

The specifications are summarized in Table 4.4.1-1.

HRPN are provided to local weather offices and the public to enable close monitoring of heavy-rain areas and support disaster prevention activities.

Table 4.4.1-1 High-resolution Precipitation Nowcast model specifications

Forecast process	Kinetic: non-linear motion/intensity extrapolation	
	• Dynamic: vertically one-dimensional convective model enabling	
	calculation relating to raindrop generation, precipitation and evaporation	
	• Convective Initiation: three triggers: (1) downflow caused by heavy	
	rainfall, (2) temporal variation of surface temperature and water	
	vapor, (3) intersection of arch-shaped thin echo	
Movement vector	• Precipitation system, cell and rain intensity trend motion vectors	
	estimated using cross-correlation pattern matching and discrete	

	1
	interpolation
	Dual-Doppler wind
Time step	5 minutes (low-resolution three-dimensional prediction)
	1 minute (high-resolution three-dimensional prediction)
	1 second (vertically one-dimensional convective model)
Grid form	Cylindrical equidistant projection
Resolution and	Approx. 250 m over land and coasts $00 - 30$ minutes ahead
forecast time	1 km over land and coasts 35 - 60 minutes ahead
	1 km from the coasts 00 - 60 minutes ahead
Number of grids	16,660,800 for distribution data, with up to 51,840,000 for internal
	calculation of high-resolution three-dimensional prediction
Initial	• Analyzed precipitation distribution determined from radar, raingauge
	and upper-air observation
	• Vertical atmospheric profiles based on radiosonde and cumulonimbus
	cloud features
Update interval	Every 5 minutes

(2) Precipitation Nowcasts

Precipitation Nowcasts predict 10-minute accumulated precipitation and 5-minute-interval precipitation intensity by extrapolation up to one hour ahead. Initial precipitation intensity distribution is derived from radar data obtained at 5-minute intervals, and is calibrated by raingauge observation. Using estimated movement vectors, these forecasts predict precipitation distribution on the basis of extrapolation. Calculation takes approximately three minutes. These processes are scheduled to be replaced with the smoothing applied for the output of High-resolution Precipitation Nowcasts. The specifications are summarized in Table 4.4.1-2.

Precipitation Nowcasts are provided to local weather offices and the public to help clarify precipitation transition and support disaster prevention activities.

Table 4.4.1-2 Precipitation Nowcast model specifications

Forecast process	Non-Linear motion/intensity extrapolation
	including the generation and lifecycle estimation of storm cells as well
	as orographic rainfall trend prediction
Movement vector	Precipitation system and/or cell motion estimated using the cross-
	correlation pattern matching and discrete interpolation
Time step	5 minutes
Grid form	Cylindrical equidistant projection
Resolution	Approx. 1 km
Number of grids	$2,560 \times 3,360$
Initial	Calibrated radar echo intensities
Forecast time	60 minutes ahead, updated every 5 minutes

(3) Thunder Nowcasts

Thunder Nowcasts predict thunder and lightning activity up to an hour ahead. Initial activity distribution is derived from the lightning detection network system, radar data and Himawari-8/9 multiband observation conducted at 10-minute intervals. In consideration of estimated movement

vectors, these forecasts predict activity distribution on the basis of extrapolation. Calculation takes approximately three minutes. The specifications are summarized in Table 4.4.1-3.

Thunder Nowcasts are provided to local weather offices and to the public. They are utilized to understand thundercloud transfer and to advise people to stay in or go to safe places in order to avoid lightning strikes.

Table 4.4.1-3 Thunder Nowcast model specifications

Forecast process	Extrapolation
Movement vector	As per the Precipitation Nowcast system
Grid form	Cylindrical equidistant projection
Resolution	Approx. 1 km
Number of grids	$2,560 \times 3,360$
Initial	4-level activity of thunder and lightning based on the lightning
	detection network system, radar data and Himawari-8/9 high-frequency
	multiband observation
Forecast time	60 minutes ahead, updated every 10 minutes

(4) Hazardous Wind Potential Nowcasts

Hazardous Wind Potential Nowcasts predict the probability of hazardous wind conditions such as tornadoes up to one hour ahead. Initial probability distribution is established using radar measurements including Doppler radar data obtained at 10-minute intervals and severe weather parameters calculated from Numerical Weather Prediction. Using estimated movement vectors, these forecasts predict probability distribution on the basis of extrapolation. Calculation takes approximately three minutes. The specifications are summarized in Table 4.4.1-4.

Hazardous Wind Potential Nowcasts are provided to local weather offices and the public to clarify the transition of areas with high potential for hazardous winds and call attention to related hazardous conditions.

Table 4.4.1-4 Hazardous Wind Potential Nowcast model specifications

Forecast process	Extrapolation
Movement vector	As per the Precipitation Nowcast system
Grid form	Cylindrical equidistant projection
Resolution	Approx. 10 km
Number of grids	256×336
Initial	2-level presumed hazardous wind probabilities
Forecast time	60 minutes ahead, updated every 10 minutes

4.4.1.2 Research performed in the field

(1) Improvement of Thunder Nowcasts (4.4.1.1 (3))

The use of Himawari-8/9 high-frequency multiband data indicating rapidly developing cumulus

cloud was started in July 2017 to improve the method for analysis of potential lightning areas (activity level 1).

4.4.2 Models for Very-short-range Forecasting Systems (1-6 hrs)

4.4.2.1 In operation

(1) Radar/Raingauge-Analyzed Precipitation (R/A)

Radar data and raingauge precipitation data are analyzed every 30 minutes to create Radar/Raingauge Analyzed Precipitation (R/A) information with a resolution of 1 km. This involves the collection of radar echo intensity information from 46 weather radars operated by JMA and the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) and precipitation data from more than 10,000 raingauges operated by JMA, MLIT and local governments.

Radar intensity readings are collected to create one-hour cumulative radar precipitation data, and are calibrated with one-hour cumulative raingauge precipitation data. R/A is a composite of all calibrated and cumulative radar precipitation data. The initial field for extrapolation forecasting is a composite of calibrated radar intensity data.

Dissemination of "Immediate R/A" information every 10 minutes was started in July 2017. This involves the collection of information from the same number of the weather radar and the less number of raingauges in contrast to the "Regular R/A".

(2) Very-Short-Range Forecasts of precipitation (VSRFs)

The extrapolation forecast and precipitation forecast from the MSM and the LFM (see 4.3.2.1) are merged into the Very-Short-Range Forecast of precipitation (VSRFs). The merging weight of the MSM/LFM forecast is nearly zero for a one-hour forecast, and is gradually increased with forecast time to a value determined from the relative skill of MSM/LFM forecasts. The specifications of the extrapolation model are detailed in Table 4.4.2-1.

Table 4.4.2-1 Extrapolation model specifications used in VSRFs

	Stations in the specification about in 1 2 to 2 to 2
Forecast process	Extrapolation
Physical process	Enhancement and dissipation
Movement vector	Precipitation system movement evaluated using the cross-correlation
	method
Time step	2-5 minutes
Grid form	Oblique conformal secant conical projection
Resolution	1 km
Number of grids	$1,600 \times 3,600$
Initial	Calibrated radar echo intensities
Forecast time	Up to six hours from each initial time (every 30 minutes = 48 times/day)

VSRFs products are issued about 20 minutes after radar observation to support local weather offices that issue weather warnings for heavy precipitation, and are used for forecast calculation of applied products such as the Soil Water Index and the Runoff Index.

4.4.2.2 Research performed in the field

(1) Very-Short-Range Forecasts of precipitation (VSRFs) (4.4.2.1 (2))

The method used for heavy rain forecasting was improved in June 2017.

4.5 Specialized numerical predictions

4.5.1 Assimilation of specific data, analysis and initialization (where applicable)

4.5.1.1 In operation

(1) Global Ocean Data Assimilation System

JMA's global ocean data assimilation system was upgraded in June 2015 to the MOVE/MRI.COM-G2 version (Toyoda et al. 2013) developed by its Meteorological Research Institute. Its specifications are shown in Table 4.5.1-1.

Table 4.5.1-1 Global Ocean Data Assimilation System specifications

Basic equations	Primitive equations with free surface		
Independent	Lat-lon coordinates and o-z hybrid vertical coordinates		
variables			
Dependent	Zonal and meridional velocities, temperature, salinity and se		
variables	surface height		
Analysis variables	Sea-surface and subsurface temperature and salinity		
Numerical	Finite difference both in the horizontal and in the vertical		
technique			
Grid size	1° (longitude) × 0.5° (latitude, smoothly decreasing to 0.3° toward		
	the equator) grids		
Vertical levels	52 levels with a bottom boundary layer		
Integration domain	Global oceans		
Forcing data	Heat, water and momentum fluxes calculated using data from the		
	JRA-55 Reanalysis		
Observational data	Sea-surface and subsurface temperature and salinity and sea		
	surface height		
Operational runs	Two kinds of run (final and early) with cut-off times of 33 days and 2		
	day, respectively, for ocean observation data		

Outputs of MOVE/MRI.COM-G2 are used to monitor and diagnose tropical ocean status. Some figures based on MOVE/MRI.COM-G2 output are published in JMA's *Monthly Highlights on Climate System* and provided through the Tokyo Climate Center (TCC) website

(http://ds.data.jma.go.jp/tcc/tcc/index.html). The data are also used as oceanic initial conditions for JMA's coupled ocean-atmosphere model (JMA/MRI-CGCM2).

(2) High-resolution sea surface temperature analysis for global oceans

Objective analysis is conducted to produce high-resolution data on daily sea surface temperatures (SSTs) in global oceans on a $1/4^{\circ} \times 1/4^{\circ}$ grid for ocean information services. These data are also used to provide boundary conditions for short- to medium-range NWP models and the ocean data assimilation system for the North Pacific Ocean. SST data obtained from polar-orbiting satellites (AVHRRs on the NOAA series and Metop; Windsat on Coriolis; and AMSR2 on GCOM-W) are used together with in-situ SST observation data. The analysis data are available on the NEAR-GOOS Regional Real Time Database (https://www.data.jma.go.jp/gmd/goos/data/database.html).

(3) Ocean wave analysis

A wave data assimilation system for JMA's operational wave model was put into operation in October 2012. The system is described below.

- 1) Wave data are not assimilated directly; the system refers to analysis wave heights of the JMA Objective Wave Analysis System (OWAS). The specifications are shown in Table 4.5.1-2. The key factor for rectification is the ratio of wave heights between model products and OWAS products.
- 2) In modification, windsea and swell parts are extracted and modified. Windsea spectra are modified based on the JONSWAP spectrum profile, and the peak frequency is determined in consideration of Toba's power law. For swell spectrum modification, the system rescales swell spectrum by the ratio of wave heights between model products and OWAS products. For details of the wave analysis system, refer to Kohno et al. (2012).

Table 4.5.1-2 JMA Objective Wave Analysis System (OWAS) specifications

	zunze zierz z eziazz e njeutzte tratte zazurjezh njeutzia (e trizze) njeutzia	
Analysis scheme	Optimum interpolation	
Data cut-off time	6 hours and 25 minutes for early-run analysis	
	12 hours for delayed analysis	
First guess	6-hour forecast by the GWM	
Analysis variables	Significant wave height	
Grid size	0.5° (longitude) × 0.5° (latitude)	
Integration domain	Global oceans	
Observational data	Observational data BUOY, SHIP, Nowphas, GPS wave meter, JASON3, SARAL	
Assimilation window 6 hours		

4.5.1.2 Research performed in the field

4.5.2 Specific models

4.5.2.1 In operation

(1) Environmental emergency response system

JMA acts as a Regional Specialized Meteorological Center (RSMC) for Environmental Emergency Response in WMO Regional Association (RA) II, and is responsible for the preparation and dissemination of transport model products on exposure and surface contamination involving accidentally released radioactive materials. An operational tracer transport model is run at the request of National Meteorological Services in RA II and the International Atomic Energy Agency (IAEA) to offer RSMC support for environmental emergency response.

A Lagrangian method is adopted for the transport model, and large numbers of tracers are released at certain times and locations in line with pollutant emission information provided as part of related requests. Effects on three-dimensional advection and horizontal/vertical diffusion, dry and wet deposition and radioactive decay are computed from three-hourly outputs of the high-resolution global model (TL959L100). The standard products of the RSMC involve maps on trajectories, time-integrated low-level concentrations and total deposition up to 72 hours ahead.

As part of the CTBTO-WMO Backtracking Response System, JMA is responsible for providing atmospheric backtracking products to the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) in its role as a Regional Specialized Meteorological Center. JMA developed an atmospheric backtracking transport model and built up a response system that receives e-mail notifications from CTBTO, executes backtracking calculations and provides the resulting products in line with the procedure defined in WMO no. 485. JMA began operation of the backtracking system in December 2009. Backtracking over a period up to 50 days can be provided on an operational basis.

(2) Ocean-wave forecasting models

JMA operates four numerical wave models: the Global Wave Model (GWM), the Coastal Wave Model (CWM), the Wave Ensemble System (WENS), and the Shallow-water Wave Model (SWM). The GWM, CWM and WENS are based on MRI-III, which was developed at JMA's Meteorological Research Institute (MRI), and a major update was made to the current version in May 2007. The WENS has been operational since June 2016. The specifications of the models are given in Table 4.5.2.1 (2)-1.

JMA began calculating wave components (windsea and swell) for the GWM and CWM on 20 July 2016.

The SWM is based on the WAM, which was modified at the National Institute for Land and Infrastructure Management of MLIT and put into operation under a cooperative framework with MLIT's Water and Disaster Management Bureau. The model is applied to 22 bay/limited sea. The models' specifications are given in Table 4.5.2.1 (2)-2.

Table 4.5.2.1 (2)-1 Ocean-wave prediction model specifications			
Model name	Global Wave Model	Coastal Wave Model	Wave Ensemble System
Model type	Spectral model (third-generation wave model)		
Date of implementation	May 2007	May 2007	June 2016
Grid form	Equal latitude-longitude	e grid on spherical coordi	nates
Grid interval	$0.5^{\circ} \times 0.5^{\circ}$	$0.05^{\circ} \times 0.05^{\circ}$	$1.25^{\circ} \times 1.25^{\circ}$
	(55 km)	(5 km)	(140 km)
Calculation area	Global 75°N – 75°S	Coastal Sea of Japan 50°N – 20°N, 120°E – 150°E	Global 75°N – 75°S
Grids	720×301	601×601	288×121
Spectral	900 (28	5 frequencies and 36 dire	ctions)
components	Frequency: 0.0	375 – 0.3 Hz; logarith direction: 10° intervals	mically divided
Forecast cycle	4 times a day	(every 6 hours)	Once a day
Forecast length (12 UTC) (00/06/18 UTC)	264 hours 84 hours	84 hours 84 hours	264 hours
Forecast time interval	Every 3 hours	Every 3 hours	Every 6 hours
Time step	Advection term: 10 minutes Source term: 30 minutes	Advection term: 1 minute Source term: 3 minutes	Advection term: 30 minute Source term: 60 minutes
Assimilation	System	zed using the Objected using analysis wave h	·
Surface forcing	Global Spectral Model (GSM) (20 km grid) Winds inside typhoons modified using ideal gradient wind values (-72 hours) Global Ensemble Prediction System (GEPS) 27 members		
Lateral boundary	Sea ice: analysis area regarded as land	Sea ice: analysis area regarded as land GWM prediction used for boundary spectra	Sea ice: analysis area regarded as land
Shallow-water	Refraction and	Refraction and	No
effects	bottom friction	bottom friction	
Product Significant wave height, wave period and mean wave direction Wave components (windsea and two swells) also calculated			

Table 4.5.2.1 (2)-2 Shallow-water wave model specifications

Model name	Shallow-water Waye Model	
Model name	Shallow-water Wave Model	

Model type	Spectral model (third-generation wave model)		
Grid interval	1' × 1' (1.7 km)		
Spectral components	1,260		
The state of the s	,	n 0.0418 to 1.1 Hz and	d 36 directions)
Grid form		itude grid on spherica	
Areas	Domain name	Grid size	Integration domain
	Tokyo Bay	37×43	35.05°N – 35.75°N
	T. D.	0140	139.55°E – 140.15°E
	Ise Bay	61×43	34.35°N – 35.05°N
	II N. 1.	70 × 40	136.45°E – 137.45°E
	Harima-Nada	79×49	34.05°N $- 34.85$ °N 134.15 °E $- 135.45$ °E
	Osaka Bay Ariake Sea	43 × 73	32.05°N – 33.25°N
	Shiranui Sea	45 × 75	130.05°E – 130.75°E
	Off Niigata	55 × 37	37.80°N – 38.40°N
	Oli Niigata	99 × 97	138.35°E – 139.25°E
	Sendai Bay	37×43	37.75°N – 38.45°N
	Sendar Day	31 ^ 43	$140.90^{\circ}\text{E} - 141.50^{\circ}\text{E}$
	Off Tomakomai	121 × 43	42.00°N – 42.70°N
	Oli Ioliiakoiliai	121 ^ 40	141.00°E – 143.00°E
	Suo-Nada	109 × 67	33.30°N – 34.40°N
	Iyo-Nada	103 ^ 07	131.00°E – 132.80°E
	Aki-Nada		131.00 E - 132.00 E
	Hiuchi-Nada	103 × 73	33.60°N – 34.80°N
	Tituciii Ivada	100 ^ 10	132.60°E – 134.30°E
	Off Shimane	67 × 31	35.25°N – 35.75°N
		01 ~ 01	132.55°E – 133.65°E
	Ishikari Bay	49 × 43	43.10°N – 43.80°N
	Ishikari Bay	10 / 10	140.70°E – 141.50°E
	Off Ishikawa	49 × 67	36.20°N – 37.30°N
		10 ** 01	136.00°E – 136.80°E
	Off Nemuro	85 × 49	43.20°N – 44.00°N
		10	145.00°E – 146.40°E
	Off Miyazaki	31×73	31.50°N – 32.70°N
			131.30°E – 131.80°E
	Tsugaru Strait	61 × 67	40.75°N – 41.85°N
			$140.35^{\circ}\text{E} - 141.35^{\circ}\text{E}$
	Off Ibaraki	49 × 103	35.00°N – 36.70°N
	Off Boso		$140.20^{\circ}\text{E} - 141.00^{\circ}\text{E}$
	Genkai-Nada	83 × 43	33.40°N – 34.10°N,
			$129.55^{\circ}\text{E} - 130.95^{\circ}\text{E}$
Forecast cycle	4 times a day (ever UTC	ry 6 hours) at initial	times of 03, 09, 15 and 21
Forecast length	39 hours		
Forecast step			
interval			
Integration time step	Source term: 1 minute No (hindcast) Meso-Scale Model (MSM)		
Assimilation			
Surface forcing			
	Bogus gradient winds (for typhoons in the western North Pacific)		
Lateral boundary	Sea ice: analysis area regarded as land		
	CWM prediction used for boundary spectra		
Shallow-water effects	Refraction and bottom friction Significant wave height, wave period and mean wave direction		
Product			

Wave model products are adopted by various domestic users (such as governmental organizations and private weather companies) via the Japan Meteorological Business Support Center (JMBSC), whereas SWM products are only used within JMA and MLIT's Regional Development Bureaus. GWM products are available within JMA's WMO Information System for National Meteorological and Hydrological Services (NMHSs), and are also disseminated to several countries via GTS.

(3) Storm-surge models

JMA operates two storm surge models. One is used to predict storm surges in coastal areas of Japan using sea-surface wind and pressure fields inferred by the MSM. In the case of tropical cyclones (TCs), storm surges for six scenarios are predicted in consideration of TC track forecast errors. In addition to the MSM, TC bogus data corresponding to five tracks (center, faster, slower and rightmost/leftmost of the TC track forecast) are used for each scenario. Data on astronomical tides are required for the prediction of storm tides (i.e., the sum of storm surges and astronomical tides). Astronomical tides are estimated using an ocean tide model and added linearly to storm surges. The model's specifications are given in Table 4.5.2.1 (3)-1.

Table 4.5.2.1 (3)-1 Storm-surge model (Japan region) specifications

Table 4.5.2.1 (b) I btorm surge model (bapan region) specifications			
Basic equations	Two-dimensional shallow-water equations		
Numerical technique	Explicit finite difference method		
Integration domain	Coastal areas of Japan		
	$(117.4^{\circ}\text{E} - 150.0^{\circ}\text{E}, 20.0^{\circ}\text{N} - 50.0^{\circ}\text{N})$		
Grid	Adaptive Mesh Refinement (AMR) method		
	45 seconds (longitude gradually doubling to 12		
	minutes toward offshore areas) × 30 seconds		
	(latitude gradually doubling to 8 minutes toward		
	offshore areas)		
Boundary conditions	Modified radiation condition at open boundaries		
	and zero normal flows at coastal boundaries		
Forecast time	39 hours		
Forcing data	Meso-Scale Model (MSM)		
	Bogus data for TCs around Japan		
Astronomical tides	Ocean tide model (Egbert and Erofeeva 2002)		
	and data assimilation of harmonic constants at		
	tide stations using the ensemble transform		
	Kalman filter (ETKF)		

As part of JMA's contribution to the Storm Surge Watch Scheme (a WMO framework supporting member countries in the issuance of storm surge warnings), the Agency developed a storm surge model for the Asian region in 2010 in collaboration with Typhoon Committee Members who provided tidal observation and sea bathymetry data. The model uses the GSM for meteorological forcing. For TCs, in addition to the GSM and TC bogus, multi-scenario predictions are calculated for five selected scenarios from GEPS data. The resulting storm surge prediction information is provided to Typhoon Committee Members via JMA's Numerical Typhoon Prediction website. The model's specifications are given in Table 4.5.2.1 (3)-2.

Table 4.5.2.1 (3)-2 Storm-surge model (Asian region) specifications

Basic equations	Two-dimensional linear shallow-water equations
Numerical technique	Explicit finite difference method
Integration domain	Coastal areas of Asia (95.0°E – 160.0°E, 0.0°N – 46.0°N)
Grid	2 minutes × 2 minutes
Boundary conditions	Modified radiation condition at open boundaries and zero normal flows at coastal boundaries
Forecast time	72 hours
Forcing data	Global Spectral Model (GSM), Global EPS (GEPS)
	Bogus data for TCs (center)
Astronomical tides	Not included

(4) Ocean data assimilation system for the North Pacific Ocean

A 3D-Var ocean data assimilation system for the North Pacific is operated to represent ocean characteristics such as the movement of the Kuroshio current in the mid/high latitudes of the North Pacific with the specifications shown in Table 4.5.2.1 (4)-1. Data on ocean currents and several layers of subsurface water temperatures (products of this system) are available on the NEAR-GOOS Regional Real Time Database (https://www.data.jma.go.jp/gmd/goos/data/database.html).

Table 4.5.2.1 (4)-1 Specifications of the 3D-Var ocean data assimilation system for the North Pacific Ocean

Basic equations	Primitive equations with free surface
Independent variables	Lat-lon coordinates and σ -z hybrid vertical coordinates
Dependent variables	Zonal/meridional velocities, temperature, salinity and sea surface height
Analysis variables	Sea-surface/subsurface temperature and salinity
Numerical technique	Finite difference both in the horizontal and in the vertical
Grid size	(1) Western North Pacific model
	0.1° longitude × 0.1° latitude in the seas off Japan,
	decreasing to 0.166° toward the northern and eastern
	boundaries
	(2) North Pacific model
	0.5° longitude × 0.5° latitude
Vertical levels	54
Integration domain	(1) Western North Pacific model
	From 15°N to 65°N between 115°E and 160°W
	(2) North Pacific model
	From 15°S to 65°N between 100°E and 75°W
Forcing data	Heat, water and momentum fluxes from the Japanese 55-
	year Reanalysis (JRA-55) and from the control run of Global
	Ensemble Prediction System (GEPS)
Assimilation scheme	3D-Var with 5-day windows
Observational data (as of	Sea-surface and subsurface temperature/salinity, sea surface
31 December 2017)	height (Jason-3), sea ice concentration
Operational runs	10-day assimilation and 30-day prediction are implemented
	every day

(5) Sea-ice forecasting model

JMA issues information on the state of sea ice in the seas off Japan. A numerical sea-ice model has been run to predict sea ice distribution and thickness in the seas off Hokkaido (mainly in the southern part of the Sea of Okhotsk) twice a week in winter since December 1990 (see Table 4.5.2.1 (5)-1).

Table 4.5.2.1 (5)-1 Numerical sea-ice prediction model specifications

Dynamical processes	Viscous-plastic model (MMD/JMA 1993) – considering
	wind and seawater stress on sea ice, Coriolis force,
	force from the sea surface gradient and internal force
Physical processes	Heat exchange between sea ice, the atmosphere and
	seawater
Dependent variables	Concentration and thickness
Grid size and time step	12.5 km and 6 hours
Integration domain	Seas around Hokkaido
Initial time and forecast time	168 hours from 00 UTC (twice a week)
Initial condition	Concentration analysis derived from Himawari-8/9,
	NOAA and Metop satellite imagery; thickness
	estimated by hindcasting

Grid-point values of the numerical sea-ice model are disseminated to domestic users. Sea ice conditions for the coming seven days as predicted by the model are broadcast by radio facsimile (JMH) twice a week.

(6) Marine pollution transport model

JMA operates the numerical marine-pollution transport model in the event of marine-pollution accidents. Its specifications are shown in Table 4.5.2.1 (6)-1. The ocean currents used for the model's input data are derived from the results of the ocean data assimilation system for the North Pacific Ocean.

Table 4.5.2.1 (6)-1 Marine pollution transport model specifications

Area	Western North Pacific
Grid size	2-30 km (variable)
Model type	3-dimensional parcel model
Processes	Advection caused by ocean currents, sea surface winds and ocean
	waves
	Turbulent diffusion
	Chemical processes (evaporation, emulsification)

(7) Aeolian dust prediction model

JMA has operated an Aeolian dust prediction model since January 2004 to enable forecasting of Aeolian dust distribution. The model was updated to a new version based on an Earth-system model (MRI-ESM1; Yukimoto et al. 2011; Yukimoto et al. 2012) for global climate change research in November 2014, and the horizontal resolution was enhanced from TL159 to TL479 in February 2017. The model consists of an atmospheric general circulation model (AGCM) called MRI-AGCM3 and a global aerosol model known as MASINGAR mk-2, which are linked with a coupler library called Scup (Yoshimura and Yukimoto 2008). The method of dust emission flux calculation was updated to encompass the scheme of Tanaka and Chiba (2005). The model's specifications are given in Table 4.5.2.1 (7)-1.

Table 4.5.2.1 (7)-1 Aeolian dust prediction model specifications

Table 4.5.2.1 (7)-1 Aeolian dust prediction model specifications		
Basic equations	Eulerian model coupled with the Global	
	Spectral Model	
Numerical technique	3D semi-Lagrangian transport and dust	
	emission calculation from surface meteorology	
Integration domain	Global	
Grid size	TL479 (0.375°)	
Vertical levels	40 (surface – 0.4 hPa)	
Initial time and forecast time	96 hours from 12 UTC (once a day)	
Boundary conditions	Similar to those of the Global Spectral Model	
Forcing data (nudging)	Global Analysis (GA) and Global Spectral	
	Model (GSM) forecasts	
	Sea surface temperature (MGDSST)	

(8) Ultraviolet (UV) index prediction system

JMA has operated a UV index prediction system since May 2005. The UV index is calculated using a chemical transport model (CTM) that predicts the global distribution of ozone and a radiative transfer model. In October 2014, the ozone chemistry model was updated to a new version of the chemistry-climate model (MRI-CCM2; Deushi and Shibata 2011), which is part of MRI-ESM1, and its horizontal resolution was enhanced from T42 to T106 (see Table 4.5.2.1 (8)-1 for model specifications).

The radiative transfer model (Aoki et al. 2002) calculates the UV index in the area from 122°E to 149°E and from 24°N to 46°N with a grid resolution of 0.25° × 0.20°. The Look-Up Table (LUT) method is adopted in consideration of the computational cost involved. The basic parameters of LUT are the solar zenith angle and total ozone predicted using the CTM. The clear sky UV index is corrected for aerosols (climatology), distance from the sun, altitude and surface albedo (climatology). The forecast UV index is also corrected for categorized weather forecasting. The specifications of the radiative transfer model for the UV index are given in Table 4.5.2.1 (8)-2.

Table 4.5.2.1 (8)-1 Specifications of the chemical transport model in the UV index prediction system

Basic equations	Eulerian model coupled with the Global Spectral Model
Numerical technique	3D semi-Lagrangian transport and chemical reaction
Integration domain	Global

Grid size	T106 (1.125°)
Vertical levels	64 (surface – 0.01 hPa)
Initial time and forecast	48 hours from 12 UTC (once a day)
time	
Boundary conditions	Similar to those of the Global Spectral Model
Forcing data (nudging)	Global analysis (GA) and Global Spectral Model (GSM)
	forecasts
Observational data	Column ozone from OMPS/NOAA

Table 4.5.2.1 (8)-2 Specifications of the radiative transfer model in the UV index prediction system

<u> </u>			
Basic equat	ions		Radiative transfer equations for multiple scattering and
			absorption by atmospheric molecules and aerosols
Numerical t	technique		Doubling and adding method
Spectral	region	and	280 – 400 nm and 0.5 nm
resolution			

(9) Regional chemical transport model for photochemical oxidants

JMA provides prefectural governments with photochemical smog bulletins as a basis for related advisories. The bulletins are produced by numerical model prediction of tropospheric photochemical oxidant distribution and a statistical guidance derived from model outputs associated with past events.

Since March 2015, numerical model prediction of photochemical oxidants has been carried out using a regional chemical transport model with finer spatial resolution (NHM-Chem; Kajino et al. 2012) driven with meteorological fields predicted using an offline non-hydrostatic atmospheric model (JMA-NHM). The related lateral boundary conditions for chemical species are given by MRI-CCM2 as described in 4.5.2.1 (8). The specifications of the regional chemical transport model are given in Table 4.5.2.1 (9)-1.

Table 4.5.2.1 (9)-1 Specifications of the regional chemical transport model for photochemical oxidants

Model type	3-dimensional Eulerian chemical transport model
Area	East Asia
Grid size	20 km
Vertical layers	18 (surface – 10 km)
Forecast time	72 hours (initial time 12 UTC)
Emission inventories	REAS1.1, GFED3 and MEGAN2
Meteorological fields	JMA-NHM output constrained and initialized using Global Analysis (GA) and Global Spectral Model (GSM) forecasts
Observational data	Surface O ₃ concentration of Atmospheric Environmental
	Regional Observation System (AEROS)

(10) Mesoscale air pollution transport model

JMA also issues very-short-term photochemical smog bulletins on days when high oxidant concentration is expected. The bulletins provide an outlook for photochemical smog based on statistical guidance for oxidant concentration using data on weather elements and pollutant

observation data as input. In addition to this statistical guidance, a mesoscale atmospheric transport model (Takano et al. 2007) is applied to very-short-range forecasting of oxidant concentrations with a grid interval of 10 km, with MSM output used to calculate the transport of highly concentrated pollutant masses in the air. Based on the oxidant forecast from the atmospheric transport model with an initial time of 03 UTC (noon in Japan), photochemical smog bulletins show hourly potential for afternoon smog in the northern part of the Kyushu region and the Kanto region, where the Tokyo metropolitan area is located.

(11) Regional Atmospheric Transport Model (RATM) for volcanic ash

JMA introduced the Volcanic Ash Fall Forecast (VAFF) based on the Regional Atmospheric Transport Model (RATM) in March 2008 (Shimbori et al. 2009) and updated it in spring 2015 (Hasegawa et al. 2015). Three types of forecasts are sequentially provided: VAFFs (Scheduled) are issued periodically based on an assumed eruption for active volcanoes, VAFFs (Preliminary) are brief forecasts issued within 5-10 minutes of an actual eruption, and VAFFs (Detailed) are more accurate forecasts issued within 20-30 minutes of an actual eruption. The updated VAFFs provide information on expected ash/lapilli fall areas and/or amounts based on the RATM with LFM or MSM outputs. The specifications of RATM are given in Table 4.5.2.1 (11)-1.

Table 4.5.2.1 (11)-1 Specifications of RATM for volcanic ash

Model type	Lagrangian description
Number of tracer particles	100,000 (Scheduled, Preliminary)
	250,000 (Detailed)
Time step	1 minute (Preliminary)
	3 minutes (Scheduled, Detailed)
Forecast time	18 hours from the time of assumed eruption (Scheduled)
	1 hour from the time of eruption (Preliminary)
	6 hours from the time of eruption (Detailed)
Initial condition	Eruption column based on observational reports including
	eruption time and plume height, and continuance of volcanic-
	ash emissions
Meteorological field	Local Forecast Model (LFM) or Meso-Scale Model (MSM)
Processes	3D advection, horizontal and vertical diffusion, volcanic-ash
	fallout, dry deposition and washout

(12) Global Atmospheric Transport Model (GATM) for volcanic ash

Since 1997, JMA has been providing information on volcanic ash clouds to airlines, civil aviation authorities and related organizations in its role as the Volcanic Ash Advisory Centre (VAAC) Tokyo. JMA introduced the Global Atmospheric Transport Model (GATM) in December 2013 as an 18-hour prediction of areas where ash clouds are expected in the area of responsibility as a result of volcanic eruptions. The forecast is normally updated every six hours (00, 06, 12 and 18 UTC) for as long as ash clouds are identified in satellite imagery. The specifications of the GATM are given in

Table 4.5.2.1 (12)-1.

Table 4.5.2.1 (12)-1 Specifications of GATM for volcanic ash

Model type	Lagrangian description
Number of tracer particles	40,000
Time step	10 minutes
Forecast coverage	18 hours from the time of satellite observation
Initial condition	Location of volcanic ash particles based on the area and maximum altitude of volcanic ash cloud observed by satellite
Meteorological field	Global Spectral Model (GSM)
Processes	3D advection, (horizontal and vertical diffusion,) volcanic-ash
	fallout, dry deposition and washout

4.5.2.2 Research performed in the field

(1) Storm surge model

A new storm surge model that solves governing equations using the finite volume method on an unstructured grid is currently being developed. The use of such a grid allows grid-size flexibility, which is expected to enable improvements in forecast accuracy and computational efficiency compared to current models. The new model will be incorporated into both storm surge prediction systems.

(2) Sea-ice forecasting model

A new ocean forecast model and a new ocean data assimilation system for the North Pacific Ocean have been developed (see 4.5.2.1 (4)). JMA introduced ocean current data produced as a result of these two developments into the sea-ice forecast model in March 2011, and is currently verifying calculated sea ice data against observation data.

(3) Aeolian dust prediction model

A data assimilation system for aerosols using satellite sensors with a local ensemble transform Kalman filter (LETKF) (Sekiyama et al. 2010, 2016; Yumimoto et al. 2016 a, 2016 b) and a two-dimensional variational (2D-Var) (Yumimoto et al. 2017) data assimilation method has been developed. Verification and improvement of the system will be carried out toward operational application.

(4) UV index prediction system

A data assimilation system for stratospheric ozone using satellite data with LETKF (Sekiyama et al. 2011; Nakamura et al. 2013) and a 2D-Var data assimilation method has been developed. Verification and improvement of the system will be carried out toward operational application.

(5) Regional chemical transport model

A nudging technique for surface ozone data assimilation has been applied to the regional chemical transport model. JMA is currently evaluating this application for the photochemical oxidant information advisory.

(6) Volcanic ash concentration forecast

Despite the importance of volcanic ash concentration forecasting in the world of aviation, no method for such prediction has yet been developed. JMA is currently evaluating a forecast method involving calculation with weight coefficients for individual particles, based on the comparison of actual results with observation data for past eruptions.

(7) Improvement of initial conditions for volcanic ash forecasts

JMA is currently developing a method to improve data on the initial distribution of volcanic ash for numerical prediction using estimation of ash cloud thickness.

(8) Time of Arrival (ToA) product experiments for environmental emergency response services

Based on discussions held at a 2015 meeting of the Expert Team on Emergency Response Activities (ET-ERA), a JMA expert took part in and organized a joint-RSMC Time of Arrival (ToA) product experiment conducted in June 2017. ToA products are designed to provide users with information on arrival times of toxic radioactive materials in the atmosphere along with specific contamination values to support environmental emergency response services. Specifications and procedures for the ToA system have not yet been established among related RSMCs. The results of the experiment will be discussed at the ET-ERA meeting planned for 2018.

(9) Ocean data assimilation system for the North Pacific Ocean

A 4D-Var ocean data assimilation system has been quasi-operational since March 2016 with the same integration domain, grid size and vertical levels as those of the 3D-Var system (Table 4.5.2.1 (4)-1). With the Global Spectral Model (GSM) used for forcing data, 10-day assimilation and 11-day prediction are implemented on a daily basis. This 4D-Var system is part of a prototype for the future operational analysis/forecasting system (MOVE/MRI.COM-JPN) being developed by JMA's Meteorological Research Institute (see 6.1.2). Its output is used as reference for the development of the next operational system.

4.5.3 Specific products operationally available

(1) Storm surge prediction products

Time series representations of predicted storm tides/astronomical tides and forecast time on predicted highest tides for the coastal area in Japan are disseminated to local meteorological observatories. This information is used as a major basis for issuing storm surge advisories and warnings. For the area of responsibility of the RSMC Tokyo - Typhoon Center, horizontal maps and time-series charts of storm surge predictions are provided to Typhoon Committee members via JMA's Numerical Typhoon Prediction website.

(2) Ocean wave forecast charts

Products from the ocean wave models shown in Table 4.2.3-1 are provided via JMA's radio facsimile broadcast (JMH) service. In addition to basic wave information such as significant wave height and wave direction, information on rough sea areas, which may be challenging for navigation, has been included in Wave Forecast Charts since March 2017. The information indicates areas of crossing waves and rough waves against currents, which make seas complex, high and chaotic.

(3) Aeolian dust products operationally available

Predicted distributions of surface concentration and the total amount of Aeolian dust in eastern Asia are provided online (http://www.jma.go.jp/en/kosafcst/index.html) once a day.

(4) UV index products operationally available

Distributions and time series representations of predicted UV index information are provided online (http://www.jma.go.jp/en/uv/index.html) twice a day.

4.6 Extended-range forecasts (ERFs) (10 - 30 days)

4.6.1 Models

4.6.1.1 In operation

As detailed in 4.2.5.1, JMA replaced the One-month EPS with the Global EPS (GEPS) in March 2017. The GEPS forecast range is extended from 11 to 18 days for initial times on Saturday and

Sunday and to 34 days for initial times on Tuesday and Wednesday. JMA's 18-day forecasts support the issuance of early warning information on extreme weather, and 34-day forecasts support one-month forecasting.

The specifications of the GEPS for forecasts longer than 11 days are shown in Table 4.6.1.1-1. The numerical prediction model applied for this system is a low-resolution version (TL479 up to 18 days and TL319 thereafter) of the GSM. The physical schemes and perturbation methods for forecasts longer than 11 days are shared with those for forecasts up to 11 days, while the prescription of sea ice and the combination of ensemble members are unique. Sea ice concentration for forecasts longer than 14 days is prescribed by adjusting the previous day's distribution so that initial sea ice extent anomalies in each hemisphere persist. In addition, because the ensemble size for each initial time is reduced from 27 to 13 for forecasts longer than 11 days due to limited computer resources, JMA adopts the Lagged Average Forecast (LAF) method composed of four 12-hour-interval forecasts for periods exceeding 11 days to ensure a significant ensemble member size and appropriate consideration of forecast uncertainty. Specifically, 50 members (13 from 12 UTC on Wednesday/Sunday, 13 from 00 UTC on Wednesday/Sunday, 13 from 12 UTC on Tuesday/Saturday and 11 from 00 UTC on Tuesday/Saturday) are used for the issuance of early warning information on extreme weather on Thursday/Monday and one-month forecasts on Thursday.

Table 4.6.1.1-1 Global EPS specifications for forecasts longer than 11 days

	if DI S specifications for forecasts longer than II days
Atmospheric model	GSM1603E
Integration domain	Global
Horizontal	Spectral triangular 479 (TL479), reduced Gaussian grid system, roughly
resolution	equivalent to $0.375 \times 0.375^{\circ}$ (40 km) in latitude and longitude for
	forecasts up to 18 days
	Spectral triangular 319 (TL319), reduced Gaussian grid system, roughly
	equivalent to $0.5625 \times 0.5625^{\circ}$ (55 km) in latitude and longitude for
	forecasts longer than 18 days
Vertical levels	100 stretched sigma pressure hybrid levels (0.01 hPa)
(model top)	
Forecast time	18 days for initial times on Saturday and Sunday
	34 days for initial times on Tuesday and Wednesday
Ensemble size	50 members (13 from 12 UTC on Wednesday/Sunday, 13 from 00 UTC
	on Wednesday/Sunday, 13 from 12 UTC on Tuesday/Saturday and 11
	from 00 UTC on Tuesday/Saturday)

4.6.1.2 Reanalysis project

In March 2013, JMA completed the second Japanese global reanalysis, known formally as JRA-55 (Kobayashi et al. 2015) and informally as JRA Go! Go! (as "go" is the Japanese word for "five"), to provide a comprehensive atmospheric dataset suitable for the study of climate change and multi-decadal variability. The data cover a period of 55 years extending back to 1958 when regular radiosonde observations became operational on a global basis. The data assimilation system for JRA-55 is based on the TL319 version of JMA's operational data assimilation system as of

December 2009, which has been extensively improved since the JRA-25 dataset was produced (Onogi et al. 2007). JRA-55 is the first global atmospheric reanalysis in which four-dimensional variational assimilation (4D-Var) was applied to the last half century including the pre-satellite era. Its production also involved the use of numerous newly available and improved past observations. The resulting reanalysis products are considerably better than those based on the JRA-25 dataset. Two major problems with JRA-25 were a lower-stratosphere cold bias, which has now been reduced, and a dry bias in the Amazon basin, which has been mitigated. The temporal consistency of temperature analysis has also been considerably improved. JMA continues the production of JRA-55 dataset on a near-real-time basis with the data assimilation system used for this dataset.

4.6.2 Operationally available NWP model and EPS ERF products

A model systematic bias was estimated as an average forecast error calculated from hindcast experiments for the years from 1981 to 2010. The bias is removed from forecast fields, and grid-point values are processed to produce several forecast materials such as ensemble means and spreads.

Gridded data products for one-month forecast are provided via the Tokyo Climate Center (TCC) website (http://ds.data.jma.go.jp/tcc/tcc/index.html). Details of these products are shown in Table 4.6.2-1, and map products provided via the TCC are shown in Table 4.6.2-2.

Table 4.6.2-1 Gridded data products (GRIB2) for one-month forecasts provided via the TCC website

	Details	Level	Area	Base time &		
		(hPa)		forecast times		
Ensemble	Sea level pressure*	-	Glob	Base time:		
mean	and its anomaly		al	00 UTC of		
value of	Rainfall amount	-	2.5°	Wednesday		
forecast	and its anomaly		×			
members	Temperature and its	Surf, 850, 700	2.5°	Forecast time:		
	anomaly			2, 3, 4,31,32		
	Relative humidity	850		days from base		
	Geopotential height	500, 100		time		
	and its anomaly	300, 100				
	Wind (u, v)	850, 200				
	Stream function and its anomaly	850, 200				
	Velocity potential and its anomaly	200				
Individual	Sea level pressure*	-		Base time:		
ensemble members	Rainfall amount	-		00 UTC of Tuesday and		
	Temperature*	Surf,		Wednesday		
		1000, 850, 700, 500, 300, 200, 100		v		

Relative humidity	1000, 850, 700, 500, 300	
Geopotential height	* 1000, 850, 700, 500, 300, 200, 100	Forecast time: 0, 1, 2,, 31, 32
Wind (u,v)	1000, 850, 700, 500, 300, 200, 100	days from base
Stream function	850, 200	time
Velocity potential	200]

^{*} Geopotential height, sea level pressure and temperature are calibrated by subtracting the systematic error from the direct model output.

Table 4.6.2-2 Map products for one-month forecasts provided via the TCC website

	Forecast time	Parameter
Ensemble mean	Averages of	Geopotential height at 500 hPa and its anomaly
	days $3 - 9$, 10	Temperature at 850 hPa and its anomaly
	-16, 17 - 30, 3	Sea level pressure and its anomaly
	- 30	Stream function at 200 hPa and its anomaly
		Stream function at 850 hPa and its anomaly
		Velocity potential at 200 hPa and its anomaly
		Precipitation and its anomaly
		Temperature at 2 m and its anomaly
		Sea surface temperature (prescribed)

4.7 Long range forecasts (LRF) (30 days up to two years)

4.7.1 Models

4.7.1.1 In operation

JMA operates its Seasonal Ensemble Prediction System (Seasonal EPS; JMA/MRI-CPS2) using an atmosphere-ocean coupled model (JMA/MRI-CGCM2) for three-month, warm/cold season and El Niño outlooks. The current system was upgraded in June 2015. The 51-member ensemble is used for the three-month forecast issued every month and for the warm/cold season forecasts issued five times a year (in February, March, April, September and October). The El Niño outlook is also issued based on the same model results.

The JMA/MRI-CGCM2 was developed by the Meteorological Research Institute and the Climate Prediction Division of JMA. Its specifications are shown in Table 4.7.1-1. Atmospheric and land surface initial conditions are taken from JRA-55 data (Kobayashi et al. 2015; 4.6.1.2), while oceanic and sea ice initial conditions are taken from MOVE/MRI-COM-G2 (4.5.1.1 (1)). The EPS adopts a combination of the LAF method and the initial perturbation method described below. Thirteen-member ensemble predictions are made every five days, and atmospheric initial perturbations for each initial date are obtained using the BGM method. Oceanic initial perturbations are obtained with MOVE/MRI.COM-G2 forced by the surface heat and momentum fluxes of atmospheric initial perturbation fields using the BGM method.

Table 4.7.1-1 Seasonal EPS specifications

Model	JMA/MRI-CGCM2								
	An atmosphere-ocean coup	oled model rather than a Tier-2 system							
Atmospheric model	Model type	GSM1011C							
	Horizontal resolution	Global TL159 reduced Gaussian grid system roughly equivalent to 1.125 × 1.125° (110 km) in latitude and longitude							
	Vertical levels (model top)	60 levels (0.1 hPa)							
Oceanic model	Model type	MRI.COM v3.2							
	Horizontal resolution	1 (longitude) \times 0.5° (latitude, smoothly decreasing to 0.3° toward the equator) grids							
	Vertical levels	52 levels with a bottom boundary layer							
Sea ice model	Model type	Dynamical sea ice model							
Coupling	Coupling interval	1 hour							
	Flux adjustment	None							
Forecast period	7 months								
Model run frequency	Once every 5 days								
Perturbation generator	Combination of the breeding of growing mode (BGM) method and the LAF method								
Initial atmospheric conditions	Near-real-time operation of	f JRA-55 (Kobayashi et al. 2015)							
Initial ocean conditions	MOVE/MRI.COM-G2 (To	yoda et al. 2013)							
Ensemble size	51 members per month								
Hindcast	Two initial dates per month	for the 36 years from 1979 to 2014							
	Ensemble size: five for each	h initial date							
	Ensemble generated via con	mbined application of BGM and LAF methods							
Timing of anomaly	Variable (around the 20th o	of the month)							
prediction for the next									
month/season									
Forecast anomaly determination method	Against climatology (30-ye	ear average for the period from 1981 to 2010)							
URL	http://ds.data.jma.go.jp/tcc/tcc/index.html								
Contact	tcc@met.kishou.go.jp								

4.7.2 Operationally available EPS LRF products

JMA provides gridded data and map products for three-month forecasts every month. Warmseason (June-July-August; JJA) forecasts are issued in February, March and April, and cold-season (December-January-February; DJF) forecasts are issued in September and October.

A model systematic bias was estimated for use as an average forecast error calculated from hindcast experiments for the 30 years from 1981 to 2010. The bias is removed from forecast fields, and grid-point values are processed to produce several forecast materials such as ensemble means and spreads.

The following model output products (Tables 4.7.2-1 and 4.7.2-2) for three-month and warm/cold-season forecasts are provided via the Tokyo Climate Center (TCC) website (http://ds.data.jma.go.jp/tcc/tcc/index.html).

Table 4.7.2-1 Gridded data products (GRIB2) for three-month and warm/cold-season forecasts provided via the TCC website

forecasts prov	rided via the TCC website			
	Details	Level	Area	Base time &
		(hPa)		forecast time
Ensemble	Sea level pressure*,	-		Base time:
mean, its	its anomaly and spread			00 UTC around the
anomaly,	Rainfall amount,	-		15th of each month
and spread	its anomaly and spread		Global	
(standard	Sea surface temperature*	-	$2.5^{\circ} \times$	
deviation)	and its anomaly		2.5°	Forecast times:
values of	Temperature*, its anomaly	Surf, 850		One- and three-
forecast	and spread			month averages for
members	Geopotential height*, its	500		targeted terms
	anomaly and spread			
	Wind (u, v), its anomaly	850, 200		
	and spread			
Individual	Sea level pressure* and its	-		Base time:
ensemble	anomaly			00 UTC on each
members	Rainfall amount and its	-		initial date of
	anomaly			prediction
	Sea surface temperature*	-		(every 5 days)
	and its anomaly			
	Temperature* and its	Surf, 850, 500, 200		Forecast times:
	anomaly			One-month averages
	Relative humidity and its	850		for targeted terms
	anomaly			
	Specific humidity and its	850		
	anomaly			
	Geopotential height* and	850, 500, 300,		
	its anomaly	200, 100		
	Wind (u,v) and its anomaly	850, 500, 200		

^{*} Geopotential height, sea level pressure, temperature and sea surface temperature are calibrated by subtracting the systematic error from the direct model output.

Table 4.7.2-2 Map products for three-month and warm/cold-season forecasts provided via the TCC website

<http://ds data ima go in/tcc/tcc/products/model/map/4mE/index html>

	~iittp·//us.uata.jiiia.go.jp/tct	c/cc/products/model/map/4mrs/mdex.ntmi/						
	Forecast time	Parameter						
Ensemble	Three-month forecast:	Geopotential height at 500 hPa, related anomaly and						
mean, its	Averages of first month,	spread						
anomaly	second month, third	Temperature at 850 hPa, its anomaly and spread						
and spread	month, and three months	Sea level pressure, its anomaly and spread						
		Stream function at 200 hPa, its anomaly and spread						
	Warm/cold season	Stream function at 850 hPa, its anomaly and spread						
	forecast:	Wind (u,v) anomaly at 850 hPa						
	Averages of three months	Velocity potential at 200 hPa, its anomaly and spread						
	(JJA or DJF)	Precipitation, its anomaly and spread						
		Temperature at 2 m, its anomaly and spread						
		Sea surface temperature and its anomaly						

Table 4.7.2-3 SST Index Time Series

http://ds.data.jma.go.jp/tcc/tcc/products/model/indices/3-mon/indices1/shisu_forecast.php

Index	Description	Coordinates
Niño.1+2	Region off coasts of Peru and Chile	$90^{\circ}W - 80^{\circ}W, 10^{\circ}S - 0^{\circ}$
Niño.3	Eastern/Central Tropical Pacific	$150^{\circ}W - 90^{\circ}W, 5^{\circ}S - 5^{\circ}N$

Niño3.4	Central Tropical Pacific	$170^{\circ}\text{W} - 120^{\circ}\text{W}, 5^{\circ}\text{S} - 5^{\circ}\text{N}$					
Niño.4	Western/Central Tropical Pacific	$160^{\circ}\text{E} - 150^{\circ}\text{W}, 5^{\circ}\text{S} - 5^{\circ}\text{N}$					
TNA	Tropical North Atlantic	55°W – 15°W, 5°N – 25°N					
TSA	Tropical South Atlantic	$30^{\circ}W - 10^{\circ}E, 20^{\circ}S - 0^{\circ}$					
TAD	Tropical Atlantic Dipole	TNA – TSA					
WTIO	Western Tropical Indian Ocean	$50^{\circ}\text{E} - 70^{\circ}\text{E}, 10^{\circ}\text{S} - 10^{\circ}\text{N}$					
SETIO	Southeastern Tropical Indian	$90^{\circ}\text{E} - 110^{\circ}\text{E}, 10^{\circ}\text{S} - 0^{\circ}$					
	Ocean						
IOD	Indian Ocean Dipole	WTIO – SETIO					

5. Verification of prognostic products

5.1 Annual verification summary

5.1.1 NWP prognostic products

Prognostic products are objectively verified against analysis and radiosonde observations according to the WMO/CBS standardized procedures for verification of deterministic NWP products as defined in the Manual on the Global Data-processing and Forecasting System.

The results of monthly verification for 2017 are presented in Tables 5.1.1-1 - 5.1.1-20. All verification scores are only for prediction from 1200 UTC initials, and are computed using procedures approved at the 16th WMO Congress in 2011.

Table 5.1.1-1 Root mean square errors of geopotential height at 500 hPa against analysis (m)

Northern Hemisphere (20–90°N)

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annu al
24	8.4	8.1	7.6	6.6	6.4	6.4	5.7	5.9	6.4	7.0	6.7	7.9	7.0
72	27.3	25.9	24.9	21.9	21.4	20.5	18.3	19.3	20.2	23.4	21.8	25.8	22.7
120	56.1	51.1	50.9	44.7	45.6	41.0	36.0	38.6	41.6	50.6	47.0	52.4	46.7

Table 5.1.1-2 Root mean square errors of geopotential height at 500 hPa against analysis (m)

Southern Hemisphere (20–90°S)

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annu al
24	7.3	7.8	7.9	8.1	8.6	8.5	9.3	8.8	9.0	8.2	7.8	7.1	8.2
72	22.4	26.1	25.6	28.7	32.7	29.3	33.6	31.1	31.5	28.4	26.4	22.8	28.4
120	43.1	48.6	50.8	61.0	65.6	59.8	66.8	60.3	63.4	58.4	50.5	45.2	56.7

Table 5.1.1-3 Root mean square errors of geopotential height at 500 hPa against observations (m)

North America

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annu

													al
24	12.8	13.2	12.7	10.1	10.3	9.5	8.6	9.1	9.7	11.4	11.4	13.2	11.1
72	32.3	34.7	27.6	23.2	23.4	19.6	14.9	15.9	20.2	27.2	25.4	30.1	25.2
120	57.5	61.5	52.1	42.3	44.3	35.3	28.2	28.0	36.5	51.0	47.5	66.4	47.4
ob.	89	90	90	84	86	87	87	86	87	87	88	88	
num.													

Table 5.1.1-4 Root mean square errors of geopotential height at 500 hPa against observations (m)

Europe/North Africa

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annu al
24	16.5	16.0	14.0	12.8	11.0	10.6	9.8	10.3	11.7	13.6	14.9	15.7	13.2
72	33.5	30.8	33.8	25.3	21.8	22.4	19.7	21.4	23.1	26.5	24.5	28.8	26.3
120	70.5	55.9	67.7	46.9	46.8	38.5	36.7	43.6	45.7	59.9	56.3	59.2	53.4
ob.	55	56	54	52	52	52	52	53	53	51	52	53	
num.													

Table 5.1.1-5 Root mean square errors of geopotential height at 500 hPa against observations (m)

Asia

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annu al
24	14.4	14.1	14.0	12.9	12.1	11.8	11.2	11.3	10.8	12.2	12.5	13.7	12.6
72	24.2	22.7	22.7	22.5	22.2	19.1	17.4	19.2	17.9	21.0	19.4	23.0	21.1
120	46.0	39.0	37.2	39.9	42.1	33.7	26.4	31.8	34.8	38.4	35.1	41.6	37.5
ob.	128	128	129	128	128	128	124	123	125	125	126	123	
num.													

Table 5.1.1-6 Root mean square errors of geopotential height at 500 hPa against observations (m)

Australia/New Zealand

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annu al
24	11.4	11.3	11.4	10.4	9.9	11.6	12.4	13.8	14.1	13.7	13.0	13.2	12.3
72	15.8	20.7	22.1	18.6	22.6	25.0	25.4	27.0	27.1	25.9	21.5	18.7	22.8
120	29.3	38.7	43.4	35.8	46.1	50.5	47.5	53.9	47.6	39.9	37.0	33.8	42.6
ob.	9	9	9	8	8	8	11	11	11	10	11	11	
num.													

Table 5.1.1-7 Root mean square errors of geopotential height at 500 hPa against observations (m)

Northern Hemisphere (20–90°N)

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annu al
24	14.3	14.1	13.6	12.4	11.9	11.4	10.9	11.0	11.4	12.4	12.8	14.1	12.6
72	29.7	28.8	27.2	24.5	23.7	22.0	19.1	20.1	21.5	24.9	23.7	27.7	24.6
120	57.6	52.3	51.3	44.7	46.0	39.1	33.8	37.4	40.3	50.3	46.3	55.2	46.7
ob.	392	395	394	378	380	379	376	374	376	378	379	377	
num.													

Table 5.1.1-8 Root mean square errors of geopotential height at 500 hPa against observations (m)

Southern Hemisphere (20–90°S)

							•						
Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annu

													al
24	12.0	12.7	12.4	12.6	13.0	13.8	14.9	14.8	14.7	13.5	13.8	13.2	13.5
72	18.6	22.6	23.3	24.0	26.5	26.2	28.6	27.8	29.2	24.6	23.9	21.1	24.9
120	31.4	36.3	43.1	41.5	49.1	45.6	50.8	49.1	50.7	44.2	42.0	35.6	43.7
ob.	37	37	35	34	36	37	40	39	39	39	42	40	
num.													

Table 5.1.1-9 Root mean square of vector wind errors at 250 hPa against analysis (m/s)

Northern Hemisphere (20–90°N)

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annu al
24	3.5	3.5	3.6	3.6	3.6	3.6	3.5	3.5	3.5	3.4	3.4	3.5	3.5
72	8.2	7.8	8.0	7.9	8.3	8.5	8.2	8.3	8.4	8.4	7.7	8.1	8.2
120	13.9	13.0	13.7	12.7	13.7	13.8	12.7	13.4	13.6	14.7	13.4	14.1	13.6

Table 5.1.1-10 Root mean square of vector wind errors at 250 hPa against analysis (m/s)

Southern Hemisphere (20–90°S)

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annu al
24	3.3	3.3	3.4	3.4	3.6	3.4	3.5	3.5	3.4	3.5	3.5	3.3	3.4
72	8.0	8.5	8.3	8.5	9.2	8.5	9.1	8.7	8.6	8.3	8.5	8.0	8.5
120	13.0	13.9	14.1	15.0	15.6	14.5	15.2	14.5	14.7	13.7	13.5	12.9	14.2

Table 5.1.1-11 Root mean square of vector wind errors at 250 hPa against observations (m/s)

North America

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annu al
24	6.3	6.2	5.9	6.4	6.6	5.8	5.6	5.5	5.5	5.5	5.5	5.6	5.9
72	11.0	10.9	10.3	10.8	10.7	10.1	9.0	9.1	10.0	10.7	10.1	10.6	10.3
120	16.9	16.9	16.6	15.9	16.4	15.1	12.5	12.8	15.1	16.6	16.3	19.2	16.0
ob.	88	88	87	82	84	85	85	84	85	85	86	87	
num.													

Table 5.1.1-12 Root mean square of vector wind errors at 250 hPa against observations (m/s)

Europe/North Africa

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annu al
24	4.9	5.0	5.1	4.5	4.7	5.1	5.0	5.1	5.5	4.8	5.0	5.2	5.0
72	9.1	10.2	9.8	7.9	8.6	8.8	9.3	10.0	10.3	9.5	8.5	9.3	9.3
120	17.4	17.8	17.6	13.0	15.4	14.6	14.7	16.9	17.9	16.9	16.8	17.5	16.4
ob.	57	57	55	54	54	54	54	55	55	53	54	54	
num.													

Table 5.1.1-13 Root mean square of vector wind errors at 250 hPa against observations (m/s)

Asia

						7161	ıa						
Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annu al
24	4.9	5.4	5.9	6.5	6.6	6.6	5.8	5.7	5.5	4.8	4.4	4.8	5.6
72	7.9	7.8	9.1	10.0	10.9	10.4	9.3	9.3	8.6	7.7	6.7	7.5	8.8
120	12.2	11.0	11.9	13.9	14.9	14.9	12.5	12.9	12.4	11.5	10.2	11.3	12.6
ob.	150	150	151	147	147	147	141	142	145	145	145	144	

num.

Table 5.1.1-14 Root mean square of vector wind errors at 250 hPa against observations (m/s)

Australia/New Zealand

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annu al
24	4.8	5.2	5.4	5.8	5.0	5.2	5.1	5.3	5.4	5.5	5.7	5.5	5.3
72	6.8	7.7	9.2	8.9	7.9	8.7	8.0	8.1	9.1	8.4	8.5	8.9	8.4
120	10.2	11.8	11.9	12.3	12.6	14.3	12.3	14.0	12.2	12.9	11.1	11.3	12.3
ob.	10	9	10	9	10	10	13	12	12	11	14	14	
num.													

Table 5.1.1-15 Root mean square of vector wind errors at 250 hPa against observations (m/s)

Northern Hemisphere (20-90°N)

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annu al
24	5.1	5.3	5.4	5.7	5.8	5.7	5.4	5.3	5.2	4.8	4.7	4.9	5.3
72	8.9	8.9	9.2	9.2	9.8	9.8	9.2	9.3	9.2	8.9	8.1	8.7	9.1
120	14.3	14.1	14.2	13.7	14.9	14.7	13.4	14.1	14.2	14.6	13.3	14.8	14.2
ob.	413	416	415	398	401	401	399	397	398	398	400	397	
num.													

Table 5.1.1-16 Root mean square of vector wind errors at 250 hPa against observations (m/s)

Southern Hemisphere (20–90°S)

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annu al
24	5.1	5.4	5.3	5.7	5.8	5.4	5.7	5.9	5.7	6.4	5.8	5.4	5.6
72	8.4	8.4	8.8	9.1	9.4	8.8	9.6	9.4	9.8	9.3	8.6	8.3	9.0
120	11.6	12.6	13.4	14.4	14.5	13.8	14.5	14.0	14.2	13.6	12.5	11.7	13.4
ob.	40	40	38	38	39	41	44	43	42	43	45	45	
num.													

Table 5.1.1-17 Root mean square of vector wind errors at 850 hPa against analysis (m/s)

Tropic

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annu al
24	1.5	1.4	1.5	1.4	1.5	1.5	1.5	1.5	1.5	1.5	1.4	1.5	1.5
72	2.7	2.6	2.7	2.5	2.5	2.5	2.7	2.7	2.8	2.7	2.5	2.7	2.6
120	3.4	3.2	3.4	3.2	3.1	3.1	3.4	3.4	3.6	3.4	3.1	3.5	3.3

Table 5.1.1-18 Root mean square of vector wind errors at 250 hPa against analysis (m/s)

Tropic

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annu al
24	3.1	3.1	3.0	2.9	2.9	3.1	3.2	3.2	3.1	3.1	3.0	3.2	3.1
72	5.7	5.7	5.5	5.3	5.4	5.6	5.6	5.7	5.6	5.7	5.6	5.9	5.6
120	7.6	7.4	7.3	7.0	7.2	7.2	7.1	7.1	7.2	7.4	7.3	7.7	7.3

Table 5.1.1-19 Root mean square of vector wind errors at 850 hPa against observations (m/s)

Tropic

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annu al
24	3.5	3.4	3.5	3.3	3.2	3.3	3.4	3.3	3.4	3.5	3.2	3.5	3.4
72	4.2	4.0	4.1	3.7	3.7	3.9	4.1	3.8	4.2	4.1	4.0	4.1	4.0
120	4.7	4.3	4.5	4.2	3.9	4.2	4.7	4.6	4.9	4.9	4.5	4.8	4.5
ob.	70	71	72	71	70	68	63	64	65	67	66	65	
num.													

Table 5.1.1-20 Root mean square of vector wind errors at 250 hPa against observations (m/s)

Tropic

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annu al
24	5.1	5.1	4.9	4.6	4.5	4.7	4.8	4.9	4.9	5.1	4.6	4.8	4.8
72	6.6	6.7	6.2	5.8	6.0	6.4	6.4	6.3	6.7	6.5	6.1	6.4	6.3
120	7.8	7.8	7.3	7.0	7.0	8.0	7.8	7.6	7.9	7.8	7.3	7.6	7.6
ob.	72	72	73	73	71	70	64	65	66	68	67	66	
num.													

The Global EPS is verified against analysis values in line with the Manual on GDPFS (WMO-No. 485). The Brier Skill Score (BSS) for seasonal (DJF: December-January-February; MAM: March-April-May; JJA: June-July-August; SON: September-October-November) and annual averages in 2017 (December in 2016) are shown in Tables 5.1.1-21 – 5.1.1-26. Results for the period from March 2014 to December 2016 have been corrected due to a calculation error in the verification process. The adjusted results are provided on the website of the Lead Centre for Verification of Ensemble Prediction Systems.

Table 5.1.1-21 BSS for geopotential height at 500 hPa over the Northern Hemisphere (20-90°N)

Hour	Z50	00 anon	naly +1. leviatio		ard	Z50	00 anon	naly +1. leviatio		ard	Z50	00 anon	naly +2. leviatio		ard
nour	DJF	MAM	JJA	SON	Annu al	DJF	MAM	JJA	SON	Annu al	DJF	MAM	JJA	SON	Annu al
24	0.923	0.908	0.876	0.914	0.905	0.913	0.888	0.840	0.896	0.884	0.896	0.843	0.771	0.862	0.843
72	0.792	0.762	0.715	0.781	0.762	0.774	0.710	0.659	0.750	0.723	0.737	0.649	0.557	0.690	0.658
120	0.617	0.569	0.524	0.608	0.580	0.592	0.504	0.443	0.575	0.529	0.533	0.418	0.316	0.498	0.441
168	0.424	0.375	0.339	0.413	0.388	0.395	0.314	0.246	0.364	0.330	0.328	0.245	0.106	0.293	0.243
	Z5	00 anon	naly -1. leviatio		ard	Z5	00 anon	naly -1 leviatio		ard	Z5	00 anon	naly -2.0 leviation		ard
Hour	DJF	MAM	JJA	SON	Annu al	DJF	MAM	JJA	SON	Annu al	DJF	MAM	JJA	SON	Annu al
							: :								
24	0.905	0.902	0.872	0.899	0.895	0.880	0.883	0.842	0.884	0.872	0.834	0.849	0.809	0.863	0.839
72	0.905	0.902 0.718		0.899	0.895 0.706					0.872					0.839
		0.718	0.653	0.729		0.667	0.673		0.690		0.587	0.615	0.515	0.638	

Table 5.1.1-22 BSS for temperature at 850 hPa over the Northern Hemisphere (20-90°N)

Hour	T85		aly +1. eviation		ard	Т85	50 anom	naly +1. leviatio		lard	Т8	50 anon	naly +2 leviatio		lard
nour	DJF	MAM	JJA	SON	Annu al	DJF	MAM	JJA	SON	Annu al	DJF	MAM	JJA	SON	Annu al
24	0.837	0.816	0.765	0.803	0.805	0.796	0.771	0.730	0.777	0.768	0.757	0.720	0.673	0.756	0.726
72	0.675	0.629	0.560	0.619	0.621	0.615	0.560	0.507	0.580	0.565	0.553	0.481	0.427	0.549	0.503
120	0.498	0.452	0.380	0.465	0.449	0.441	0.368	0.316	0.425	0.388	0.371	0.273	0.227	0.376	0.312
168	0.332	0.266	0.207	0.293	0.274	0.286	0.202	0.142	0.259	0.222	0.212	0.123	0.056	0.212	0.151
	T85		naly -1.0 eviation		ard	Т8	50 anon	naly -1. leviatio		ard	Т8	50 anor	naly -2. deviatio		ard
Hour	T85		•		ard Annu al	T8		•		ard Annu al	T8 DJF				ard Annua l
Hour		MAM	eviatio	n	Annu		MAM	JJA	son	Annu		MAM	leviatio JJA	n	
	DJF 0.830	MAM	JJA 0.761	SON 0.821	Annu al	DJF 0.775	MAM	JJA 0.715	SON 0.771	Annu al	DJF 0.690	MAM 0.758	JJA 0.637	SON 0.715	Annua l
24	DJF 0.830 0.659	MAM 0.833	U.761 0.540	SON 0.821 0.647	Annu al 0.811 0.624	DJF 0.775 0.580	MAM 0.794	JJA 0.715 0.477	SON 0.771 0.586	Annu al 0.764	DJF 0.690 0.462	MAM 0.758 0.553	JJA 0.637 0.390	SON 0.715	Annua 1 0.700

Table 5.1.1-23 BSS for geopotential height at 500 hPa over the Tropics ($20^{\circ}S-20^{\circ}N$)

	Z50	00 anon	naly +1. deviatio		ard	Z50	00 anon	naly +1. leviation		ard	Z50	00 anon	naly +2. leviation		ard
Hour	DJF	MAM	JJA	SON	Annu al	DJF	MAM	JJA	SON	Annu al	DJF	MAM	JJA	SON	Annu al
24	0.701	0.757	0.731	0.723	0.728	0.593	0.671	0.701	0.682	0.662	0.409	0.556	0.609	0.646	0.555
72	0.579	0.552	0.563	0.597	0.573	0.462	0.471	0.559	0.586	0.519	0.342	0.368	0.469	0.542	0.430
120	0.496	0.384	0.433	0.492	0.451	0.411	0.343	0.433	0.506	0.423	0.331	0.274	0.354	0.480	0.360
168	0.378	0.160	0.281	0.322	0.285	0.286	0.145	0.291	0.336	0.265	0.182	0.117	0.269	0.312	0.220
	Z_5	00 anon	naly -1. leviatio		ard	Z5	00 anon	naly -1. leviatio		ard	Z_5	00 anon	naly -2.0 leviation		ard
Hour	Z5 DJF		leviatio		ard Annu al	Z5 DJF				ard Annu al	Z5 DJF				Annu al
Hour		MAM	leviatio JJA	n	Annu	DJF	MAM	leviatio JJA	n	Annu		MAM	leviatio	SON	Annu
	DJF	MAM 0.757	JJA 0.725	SON 0.722	Annu al 0.733	DJF 0.681	MAM 0.756	JJA 0.732	SON 0.700	Annu al	DJF 0.656	MAM	JJA 0.736	SON 0.713	Annu al
24	DJF 0.726	MAM 0.757 0.496	JJA 0.725 0.399	SON 0.722	Annu al 0.733	DJF 0.681 0.353	MAM 0.756 0.481	JJA 0.732 0.417	SON 0.700 0.386	Annu al 0.717	DJF 0.656	MAM 0.732 0.374	JJA 0.736	SON 0.713	Annu al 0.709

Table 5.1.1-24 BSS for temperature at 850 hPa over the Tropics (20°S–20°N)

	Т8	50 anon			lard	Т8	50 anon			lard	Т8	50 anon			lard
Hour		,	leviatio	n				leviatio	n				leviatio	n	
Hour	DJF	MAM	JJA	SON	Annu al	DJF	MAM	JJA	SON	Annu al	DJF	MAM	JJA	SON	Annu al
24	0.474	0.548	0.487	0.471	0.495	0.377	0.482	0.429	0.424	0.428	0.294	0.438	0.365	0.375	0.368
72	0.181	0.251	0.225	0.192	0.212	0.011	0.207	0.189	0.176	0.146	0.144	0.177	0.156	0.151	0.085
120	0.103	0.134	0.110	0.094	0.110	0.032	0.120	0.098	0.093	0.070	0.120	0.100	0.081	0.074	0.034
168	0.087	0.066	0.031	0.030	0.053	0.013	0.074	0.035	0.037	0.040	0.014	0.069	0.034	0.022	0.028
	Т8	50 anor	nalv -1.	0 stand	ard	Т8	50 anon	nalv -1.	5 stand	ard	Т8	50 anon	nalv -2.	0 stand	ard
Hour			leviatio					<u>leviatio</u>					leviatio		
nour	DJF	MAM	JJA	SON	Annu al	DJF	MAM	JJA	SON	Annu al	DJF	MAM	JJA	SON	Annu al

24	0.622	0.626	0.536	0.605	0.597	0.590	0.604	0.474	0.549	0.554	0.546	0.571	0.392	0.488	0.499
72	0.386	0.374	0.277	0.380	0.354	0.335	0.347	0.231	0.325	0.309	0.275	0.314	0.172	0.276	0.259
120	0.274	0.251	0.128	0.265	0.229	0.220	0.245	0.095	0.211	0.193	0.158	0.219	0.050	0.164	0.148
168	0.200	0.136	0.023	0.180	0.135	0.155	0.142	0.002	0.136	0.108	0.107	0.125	0.035	0.100	0.074

Table 5.1.1-25 BSS for geopotential height at 500 hPa over the Southern Hemisphere (20–90°S)

	Z50	00 anon	naly +1. leviatio		ard	Z50	00 anon	naly +1. leviation		ard	Z50	00 anon	naly +2. leviation		ard
Hour	DJF	MAM	JJA	SON	Annu al	DJF	MAM	JJA	SON	Annu al	DJF	MAM	JJA	SON	Annu al
24	0.879	0.921	0.929	0.921	0.913	0.856	0.904	0.910	0.911	0.895	0.820	0.874	0.874	0.878	0.861
72	0.713	0.764	0.791	0.774	0.761	0.682	0.729	0.751	0.746	0.727	0.598	0.664	0.646	0.661	0.642
120	0.515	0.573	0.592	0.583	0.566	0.468	0.509	0.520	0.533	0.508	0.354	0.395	0.383	0.422	0.388
168	0.326	0.367	0.396	0.379	0.367	0.261	0.302	0.328	0.321	0.303	0.154	0.197	0.200	0.221	0.193
	Z_5	00 anon	naly -1.		ard	Z_5	00 anon	naly -1. leviatio		ard	Z_5	00 anon	naly -2.0 leviation		ard
Hour	Z5 DJF		. •		ard Annu al	Z5 DJF		-		ard Annu al	Z5 DJF		. •		ard Annu al
Hour		C	leviatio	n	Annu	DJF	Ċ	leviatio	n	Annu		Ċ	leviatio	n	Annu
	DJF	MAM	leviatio JJA	son	Annu al	DJF 0.872	MAM	JJA	SON 0.894	Annu al	DJF	MAM	JJA 0.854	SON	Annu al
24	DJF 0.886	MAM 0.900	JJA 0.905	SON 0.911	Annu al 0.900	DJF 0.872	MAM 0.881	JJA 0.887	SON 0.894 0.701	Annu al 0.883	DJF 0.856	MAM 0.866	JJA 0.854 0.574	SON 0.882	Annu al 0.864

Table 5.1.1-26 BSS for temperature at 850 hPa over the Southern Hemisphere (20–90 $^{\circ}$ S)

Hour	T850 anomaly +1.0 standard deviation					T850 anomaly +1.5 standard deviation					T850 anomaly +2.0 standard deviation				
	DJF	MAM	JJA	SON	Annu al	DJF	MAM	JJA	SON	Annu al	DJF	MAM	JJA	SON	Annu al
24	0.799	0.830	0.826	0.835	0.823	0.755	0.801	0.783	0.814	0.788	0.726	0.748	0.743	0.800	0.754
72	0.593	0.632	0.631	0.643	0.625	0.512	0.574	0.564	0.612	0.565	0.440	0.486	0.504	0.584	0.503
120	0.418	0.435	0.438	0.462	0.439	0.319	0.360	0.367	0.428	0.368	0.232	0.277	0.304	0.390	0.300
168	0.262	0.252	0.271	0.291	0.269	0.167	0.183	0.220	0.261	0.208	0.086	0.118	0.180	0.229	0.153
	T850 anomaly -1.0 standard deviation					T850 anomaly -1.5 standard deviation					T850 anomaly -2.0 standard deviation				
	Т8				ard	Т8				ard	Т8		-		ard
Hour	DJF				ard Annu al	DJF				ard Annu al	DJF		-		Annu al
Hour 24		MAM	leviatio	son	Annu	DJF	C	leviatio	son	Annu al	DJF	MAM	leviatio JJA	n	Annu
	DJF 0.814	MAM	JJA 0.836	SON 0.837	Annu al 0.829	DJF 0.780	MAM	JJA 0.802	son	Annu al 0.795	DJF	MAM 0.722	JJA 0.718	SON 0.759	Annu al
24	DJF 0.814	MAM 0.830	JJA 0.836	SON 0.837 0.650	Annu al 0.829 0.636	DJF 0.780 0.575	MAM 0.792	JJA 0.802 0.590	SON 0.805 0.615	Annu al 0.795 0.591	DJF 0.753 0.564	MAM 0.722 0.492	JJA 0.718 0.470	SON 0.759 0.567	Annu al 0.738

5.2 Research performed in the field

6. Plans for the future (next 4 years)

6.1 Development of the GDPFS

6.1.1 Major changes expected in the next year

- (1) The ninth-generation supercomputer system used for numerical analysis/prediction and satellite data processing will be upgraded to the tenth-generation system.
- (2) The GSM forecast range will be extended from 84 to 132 hours at 00, 06 and 18 UTC initials.
- (3) Meteosat-11, GOES-16 AMV and CSR data will be incorporated into the global NWP system.
- (4) CSR data collected from Himawari-8 bands 9 and 10 over land surfaces will be incorporated into the global NWP system.
- (5) CSR data from Meteosat-8 and -11 channel 6 will be incorporated into the global NWP system. The thinning method will also be simultaneously improved.
- (6) The model run frequency of the Wave Ensemble System (WENS) will be increased from once a day at 12 UTC to twice a day at 00 and 12 UTC in June 2018.
- (7) The frequency of Global EPS forecasts from 264 to 432 hours will be increased from four days a week to every day.

6.1.2 Major changes expected in the next four years

- (1) The physical processes of the global NWP system will be upgraded.
- (2) A hybrid data assimilation method involving the use of 4D-Var and a LETKF will be incorporated into analysis of atmospheric conditions for the GSM.
- (3) The vertical layers of the global NWP system and GEPS will be enhanced.
- (4) GSM horizontal resolution will be improved.
- (5) The forecast model adopted in the GEPS will be replaced with the latest operational GSM.
- (6) The number of GEPS members will be increased.
- (7) The forecast range will be extended for MSM runs initiated at 00 and 12 UTC.
- (8) The range of LFM forecasts will be extended.
- (9) A SiB will be incorporated into the MSM.
- (10) An urban canopy will be incorporated into the SiB of the MSM.
- (11) A new framework for a data assimilation system (ASUCA-Var) will be incorporated into the Meso-scale NWP system.
- (12) LFM vertical resolution will be enhanced.
- (13) The horizontal and vertical resolutions of Hourly Analysis will be enhanced, and the number of related daily operations will be increased.
- (14) Correlation among satellite channels will be incorporated into the global NWP system.
- (15) All-sky satellite microwave radiance data will be assimilated into the global NWP system.
- (16) GNSS-RO bending-angle data from TanDEM-X/IGOR will be assimilated into the global NWP system
- (17) The satellite data used in the global NWP system (e.g., Suomi-NPP/ATMS, Suomi-NPP/CrIS, Metop-A, B/IASI, Aqua/AIRS) will be assimilated into the Meso and Local NWP systems.

- (18) More satellite data, including ScatSat-1/OSCAT, FY-3B/MWHS, FY-3C/MWHS2 and Suomi-NPP/VIIRS-AMV, will be assimilated into the Global, Meso and Local NWP systems.
- (19) Meso-scale EPS will enter into operation.
- (20) The 2D-Var data assimilation system will be adopted in stratospheric ozone analysis.
- (21) The 2D-Var data assimilation system will be adopted in aerosol (Aeolian dust) analysis.
- (22) The horizontal resolution of the regional chemical transport model will be enhanced from 20 km to 5 km.
- (23) The grid resolution of the Global Wave Model (GWM) will be enhanced from 55 to 25 km.
- (24) A new wave model with a 1-minute grid resolution for coastal sea areas of Japan will be put into operation.
- (25) The grid resolution of the Wave Ensemble System (WENS) will be enhanced from 140 to 55 km and the shallow-water effect will be incorporated.
- (26) A new coastal ocean analysis/forecasting system (MOVE/MRI.COM-JPN) with a high-resolution (2 km) forecast model covering the whole of the Japan coast and a 4D-Var assimilation system covering the North Pacific will be put into operation.
- (27) A tide prediction model will be incorporated into in the storm surge model for the Asian region to predict astronomical tides and total water levels.
- (28) The forecast period for both storm surge models will be extended from 39 to 51 hours for the Japan region and from 72 to 132 hours for the Asian region.
- (29) A new storm surge model involving the use of an unstructured grid will be incorporated, and grid resolution will be enhanced in both storm surge models.
- (30) Storm surge EPSs will be incorporated into both storm surge models based on Global EPS and Meso-scale EPS results for atmospheric forcing.

6.2 Planned research Activities in NWP, Nowcasting, Long-range Forecasting and Specialized Numerical Predictions

6.2.1 Planned Research Activities in NWP

6.2.2 Planned Research Activities in Nowcasting

(1) Use of dual polarized radar data for R/A, VSRF, Thunder Nowcasts and Hazardous Wind Potential Nowcasts

6.2.3 Planned Research Activities in Long-range Forecasting

6.2.4 Planned Research Activities in Specialized Numerical Predictions

(1) Time-of-arrival products for nuclear environmental emergency response

In line with a development plan set by the CBS expert team on Emergency Response Activities
(ET-ERA), JMA is currently researching time-of-arrival products. These exhibited the highest

- demand in a 2016 Regional Association II (Asia) user request survey.
- (2) Probability forecasts for volcanic ash
 - JMA is currently exploring methods to meet the needs of probability forecasts for volcanic ash as described in the International Airways Volcano Watch (IAVW) roadmap.

7. References

- Aoki, Te., Ta. Aoki, M. Fukabori and T. Takao, 2002: Characteristics of UV-B Irradiance at Syowa Station, Antarctica: Analyses of the Measurements and Comparison with Numerical Simulations. *J. Meteor. Soc. Japan.*, **80**, 161–170.
- Aranami, K., T. Hara, Y. Ikuta, K. Kawano, K. Matsubayashi, H. Kusabiraki, T. Ito, T. Egawa, K. Yamashita, Y. Ota, Y. Ishikawa, T. Fujita, and J. Ishida, 2015: A new operational regional model for convection-permitting numerical weather prediction at JMA. *CAS/JSC WGNE Res. Activ. Atmos. Oceanic Modell.*, 45, 5.05-5.06.
- Buizza, R. and Palmer, T. N., 1995: The singular-vector structure of the atmospheric global circulation. *J. Atmos. Sci.*, **52**, 1434–1456.
- Deushi, M., and K. Shibata, 2011: Development of an MRI Chemistry-Climate Model ver. 2 for the study of tropospheric and stratospheric chemistry, *Papers in Meteorology and Geophysics*, **62**, 1 46
- Egbert, G. and S. Erofeeva, 2002: Efficient Inverse Modeling of Barotropic Ocean Tides. *J. Atmos. Oceanic Technol.*, **19**, 183–204.
- Ehrendorfer, M., R. M. Errico and K. D. Raeder, 1999: Singular-Vector Perturbation Growth in a Primitive Equation Model with Moist Physics. *J. Atmos. Sci.*, **56**, 1627–1648.
- Foster, D. J. and R. D. Davy, 1988: *Global Snow Depth Climatology.* USAF-ETAC/TN-88/006. Scott Air Force Base, Illinois, p. 48.
- Hasegawa, Y., A. Sugai, Yo. Hayashi, Yu. Hayashi, S. Saito and T. Shimbori, 2015: Improvements of volcanic ash fall forecasts issued by the Japan Meteorological Agency. *J. Appl. Volcanol.*, 4: 2.
- Hamrud, M., M. Bonavita, and L. Isaksen, 2015: EnKF and hybrid gain ensemble data assimilation. Part I: EnKF implementation. *Mon. Wea. Rev.*, **143**, 4847–4864.
- Hara, T., K. Kawano, K. Aranami, Y. Kitamura, M. Sakamoto, H. Kusabiraki, C. Muroi, and J. Ishida, 2012: Development of the Physics Library and its application to ASUCA. CAS/JSC WGNE Res. Activ. Atmos. Oceanic Modell., 42, 5.05–5.06.
- Holmlund, K., 1998: The utilization of statistical properties of satellite-derived atmospheric motion vectors to derive quality indicators. *Wea. Forecasting*, **13**, 1093 1104.
- Honda, Y., M. Nishijima, K. Koizumi, Y. Ohta, K. Tamiya, T. Kawabata and T. Tsuyuki, 2005: A preoperational variational data assimilation system for a non-hydrostatic model at the Japan Meteorological Agency: Formulation and preliminary results. *Quart. J. Roy. Meteor. Soc.*, 131, 3465-3475.
- Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. *Physica D*, **230**, 112–126.
- Kain, J. S. and J. M. Fritsch, 1990: A One-Dimensional Entraining/Detraining Plume Model and

- Its Application in Convective Parameterization. J. Atmos. Sci., 47, 2784–2802.
- Kajino, M., Y. Inomata, K. Sato, H. Ueda, Z. Han, J. An, G. Katata, M. Deushi, T. Maki, N. Oshima, J. Kurokawa, T. Ohara, A. Takami, S. Hatakayama, 2012: Development of an aerosol chemical transport model RAQM2 and prediction of Northeast Asian aerosol mass, size, chemistry, and the mixing type. Atmos. Chem. Phys., 12, 11833-11856.
- Kamekawa, N. and M. Kazumori, 2017: Assimilation of Suomi NPP/CrIS radiance data into JMA's global NWP system. *CAS/JSC WGNE Res. Activ. Atmos. Oceanic Modell.*, **47**, 1.17-1.18.
- Kobayashi, S., Y. Ota, Y. Harada, A. Ebita, M. Moriya, H. Onoda, K. Onogi, H. Kamahori, C. Kobayashi, H. Endo, K. Miyaoka and K. Takahashi, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. *J. Meteor. Soc. Japan*, **93**, 5-48.
- Kohno, N., D. Miura, and K. Yoshita, 2012: The Development of JMA Wave Data Assimilation System. Proceeding of 12th International Workshop on Wave Hindcasting and Forecasting & 3rd Coastal Hazard Symposium, H2.
 - (http://www.waveworkshop.org/12thWaves/papers/full_paper_Kohno_et_al.pdf)
- Koren, B., 1993: A Robust Upwind Discretization Method For Advection, Diffusion And Source Terms. CWI Technical Report NM-R 9308, 1-22.
- Kotsuki, S., Y. Ota, and T. Miyoshi, 2017: Adaptive covariance relaxation methods for ensemble data assimilation: experiments in the real atmosphere. *Quart. J. Roy. Meteor. Soc.*, **143**, 2001–2015.
- Murakami, Y. and M. Kazumori, 2017: Assimilation of SSMIS humidity sounding channels into JMA's global NWP system. *CAS/JSC WGNE Res. Activ. Atmos. Oceanic Modell.*, **47**, 1.19-1.20.
- Nakamura, T., H. Akiyoshi, M. Deushi, K. Miyazaki, C. Kobayashi, K. Shibata, and T. Iwasaki, 2013: A multimodel comparison of stratospheric ozone data assimilation based on an ensemble Kalman filter approach, *J. Geophys. Res. Atmos.*, 118, 3848-3868, doi:10.1002/jgrd.50338
- Narita, M., 2013: Computer System, In Outline of the Operational Numerical Weather Prediction at the Japan Meteorological Agency. Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting Systems (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan, 1 7. (http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2013-nwp/index.htm)
- Onogi, K., J. Tsutsui, H. Koide, M. Sakamoto, S. Kobayashi, H. Hatsushika, T. Matsumoto, N. Yamazaki, H. Kamahori, K. Takahashi, S. Kadokura, K. Wada, K. Kato, R. Oyama, T. Ose, N. Mannoji, and R. Taira, 2007: The JRA-25 reanalysis. *J. Meteor. Soc. Japan*, **85**, 369-432.
- Palmer, T. N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. J. Shutts, M. Steinheimer, and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. *ECMWF Technical Memoranda*, **598**, 42pp.
- Saito, K., T. Fujita, Y. Yamada, J. Ishida, Y. Kumagai, K. Aranami, S. Ohmori, R. Nagasawa, S. Kumagai, C. Muroi, T. Kato, H. Eito and Y. Yamazaki, 2006: The operational JMA Nonhydrostatic Mesoscale Model. Mon. Wea. Rev., 134, 1266-1298.
- Sekiyama, T. T., Tanaka, T. Y., Shimizu, A., and Miyoshi, T., 2010: Data assimilation of CALIPSO

- aerosol observations, Atmos. Chem. Phys., 10, 39-49.
- Sekiyama, T. T., M. Deushi, and T. Miyoshi, 2011: Operation-Oriented Ensemble Data Assimilation of Total Column Ozone, *SOLA*, 7, 041-044, doi:10.2151/sola.2011-011.
- Sekiyama, T. T., K. Yumimoto, T. Y. Tanaka, T. Nagao, M. Kikuchi, and H. Murakami, 2016: Data Assimilation of Himawari-8 Aerosol Observations: Asian Dust Forecast in June 2015, *SOLA*, 12, 86–90.
- Shimbori, T., Y. Aikawa and N. Seino, 2009: Operational implementation of the tephra fall forecast with the JMA mesoscale tracer transport model. *CAS/JSC WGNE Res. Activ. Atmos. Oceanic Modell.*, **39**, 5.29–5.30.
- Takano, I., Y. Aikawa and S. Gotoh, 2007: Improvement of photochemical oxidant information by applying transport model to oxidant forecast. CAS/JSC. WGNE. Res. Activ. Atmos. Oceanic Modell., 37, 5.35–5.36.
- Tanaka, T. Y. and Chiba, M., 2005: Global simulation of dust aerosol with a chemical transport model, MASINGAR. *J. Meteor. Soc. Japan*, 83A, 255–278.
- Toyoda, T., Y. Fujii, T. Yasuda, N. Usui, T. Iwao, T., Kuragano and M. Kamachi, 2013: Improved analysis of seasonal-interannual fields using a global ocean data assimilation system. *Theoretical and Applied Mechanics Japan*, **61**, 31-48
- Yamashita, K. 2014: Observing system experiments of MTSAT-1R rapid scan AMV using JMA operational NWP system from 2011 to 2013. *Proc. 12th Int. Winds Workshop*, Copenhagen, Denmark, EUMETSAT.
- Yamashita, K., 2016: Assimilation of Himawari-8 atmospheric motion vectors into JMA's operational global, mesoscale and local NWP systems. *CAS/JSC WGNE Res. Activ. Atmos. Oceanic Modell.*, **46**, 1.33-1.34.
- Yoshimura, H. and S. Yukimoto, 2008: Development of a Simple Coupler (Scup) for Earth System Modeling, *Papers in Meteorology and Geophysics*, **59**, 19-29.
- Yukimoto, S., H. Yoshimura, M. Hosaka, T. Sakami, H. Tsujino, M. Hirabara, T. Y. Tanaka, M. Deushi, A. Obata, H. Nakano, Y. Adachi, E. Shindo, S. Yabu, T. Ose, and A. Kitoh, 2011:
 Meteorological Research Institute-Earth System Model Version 1 (MRI-ESM1) Model Description -, Technical Reports of the Meteorological Research Institute, 64, ISSN 0386-4049, Meteorological Research Institute, Japan.
- Yukimoto, S., Y. Adachi, M. Hosaka, T. Sakami, H. Yoshimura, M. Hirabara, T. Y. Tanaka, E. Shindo, H. Tsujino, M. Deushi, R. Mizuta, S. Yabu, A. Obata, H. Nakano, T. Koshiro, T. Ose, and A. Kitoh, 2012: A New Global Climate Model of the Meteorological Research Institute: MRI-CGCM3—Model Description and Basic Performance—. J. Meteor. Soc. Japan, 90A, 23-64, doi:10.2151/jmsj.2012-A02.
- Yumimoto, K., H. Murakami, T. Y. Tanaka, T. T. Sekiyama, A. Ogi, and T. Maki, 2015: Forecasting of Asian dust storm that occurred on May 10–13, 2011, using an ensemble-based data assimilation system, *Particuology*, **28**, 121-130, doi:10.1016/j.partic.2015.09.001.
- Yumimoto, K., T. M. Nagao, M. Kikuchi, T. T. Sekiyama, H. Murakami, T. Y. Tanaka, A. Ogi, H. Irie, P. Khatri, H. Okumura, K. Arai, I. Morino, O. Uchino, and T. Maki, 2016b: Aerosol data

assimilation using data from Himawari-8, a next-generation geostationary meteorological satellite, *Geophys. Res. Lett.*, **43**, 5886-5894, doi:10.1002/2016GL069298.

Yumimoto, K., T. Y. Tanaka, N. Oshima, and T. Maki, 2017: JRAero: the Japanese Reanalysis for Aerosol v1.0, *Geosci. Model Dev.*, **10**, 3225-3253, https://doi.org/10.5194/gmd-10-3225-2017.