WDS/DPFS/GDPFS-NWP_2013

ANNUAL JOINT WMO TECHNICAL PROGRESS REPORT ON THE GLOBAL DATA PROCESSING AND FORECASTING SYSTEM (GDPFS) AND NUMERICAL WEATHER PREDICTION (NWP) RESEARCH ACTIVITIES FOR 2013

ALGERIA

Office National de la Météorologie 01, Avenue Khemisti BP 153 16100 Dar El Beida Alger Algérie http:// www.meteo.dz

1. Summary of highlights

The major changes in data processing and forecasting system during the year 2013, at the National Meteorological Forecasting Centre of Algiers are as follow:

- Acquisition of an IBM brand computer

- Installation and implementation of the computer dedicated to Numerical Weather Prediction
- Implementation of ALADIN model (cycle 38) on the computer (12 km Horizontal resolution)
- Implementation of ALADIN/dust

- Implementation of AROME model (03 km horizontal resolution)

2. Equipment in use

- Two commutation systems of messages and processing (Messir) working on hot stand-by mode, dedicated to :
 - Exchange of data and products in TCP/IP and ftp modes
 - Aeronautical and satellite products with two SADIS systems and four MSG systems.
 - IBM computer with a pick power of 10 Tf
- More than thirty working stations dedicated to the forecasters.

3. Data and Products from GTS in use

- Synop + ship : 8416 messages
- TEMP + TEMP/ship + Pilot : 977 messages
- Satob : 1635 messages
- GRIB Météo France : 1738
- GRIB KWBC : 2400
- GRIB EGRR : 9726
- GRIB ECMWF : 1828
- Aeronautical charts T4 (Wafs Exeter and KWBC)
- T4 received via Eumetsat and SADIS

4. Forecasting system

The forecasting system at the national meteorological centre of Algiers is based on the following models: Arpège as a GFS and ALADIN/Algérie and AROME/Algérie as a LAM with an horizontal resolution of respectively 12 km and 03 km. Other models as the ones of: ECMWF, KWBC, UKMO, Eta/Greece and some EPS fields and Epsgrams and the Extreme Forecast Index (EFI) from ECMWF are also under use.

4.1 System run schedule and forecast ranges

The Limited Area Models ALADIN/Algérie, AROME/Algérie and WRF are used in operational way. The tree models are launched twice a day (00 and 12 UTC). ALADIN/Algérie model is coupled with Arpège/IFS, and

is integrated until 48 hours. AROME/Algérie model is coupled with ALADIN/Algérie and is integrated until 48 hours. A daily update of the two models is done on the intranet web site.

4.2 Medium range forecasting system (4-10 days)

The models which are used to elaborate the medium range forecasts are: Arpège and ECMWF. Other models as GFS (NCEP) are also used.

4.2.1 Data assimilation, objective analysis and initialization

4.2.1.1 in operation

Not available yet

4.2.1.2 Research performed in this field

Observation Data Base and quality control of the observations, under development.

4.2.2 Model

4.2.2.1 in operation

- ALADIN/Algérie: 12km, 70 levels, hydrostatic, 00 to 48 hours.
- AROME/ALgérie: 03 km, 46 levels, non hydrostatic, 00 to 48 hours.
- Wrf/Algérie: 16 km, 40 levels, mainly non hydrostatic, 00 to 48 hours.

4.2.2.2 Research performed in this field

Research is performed in the improvement of the dust concentration forecasts in ALADIN, with the implementation of ALADIN/dust, and its use in operational way after validation.

4.2.3 Operationally available Numerical Weather Prediction Products

as in 4.3.3

- 4.2.4 Operational techniques for application of NWP products (MOS, PPM, KF, Expert Systems, etc..)
- 4.2.4.1 in operation
 - none
- 4.2.4.2 Research performed in this field none

4.2.5 Ensemble Prediction System (EPS)

- 4.2.5.1 in operation none
- 4.2.5.2 Research performed in this field none

4.2.5.3 Operationally available EPS Products

The ones from the great centres as ECMWF

4.3 Short-range forecasting system (0-72 hrs)

- 4.3.1 Data assimilation, objective analysis and initialization
 - 4.3.1.1 In operation none
- 4.3.1.2 Research performed in this field

Observation data base is under development.

4.3.2 Model

	ALADIN Model							
Horizontal resolution	12 km							
Domain	15N – 48 N ; 20 W - 20 E							
Validity	00-48 h							
	 total precipitation convective precipitation snow height MSLP 							
Available	- 10 m wind							
products	- 2 m temperature - Cl - Cm - Ch							
Output frequency: every 03 hours	 Maximum temperature minimum temperature Z+T + RH 850, 700 and 500 hPa Z + wind 300 hPa Z + wind 200 hPa RH at 2m Gust Wind at 10m Derived fields 							
	 Thickness 1000/700 hPa Thickness 1000/500 hPa PV 315 K PV 330 K θ'w 700 hPa θ'w 850 hPa K index Latent instability 1000/850 hPa, 850/700 hPa, 700/500 hPa CAPE 							
	- Vertical velocity 850 hPa - Vertical velocity 700 hPa							

4.3.1.2 In the frame of ALADIN Consortium's research programme for 2014, the effort will be done on the building a nowcasting system.

4.3.2 Model

4.3.2.1 In operation

The models which are under use at the National Forecasting Meteorological Centre of Algiers are:

1) ALADIN model

MODEL:	ALADIN/Algérie: A ire L imitée A daptation D ynamique développement IN ternational. In the frame of the ALADIN Consortium.
Basic equations	Primitive Equations system
Independent variables	Horizontal wind vector, temperature, specific humidity and surface pressure
Dependent variables	Vertical velocity and density
Numerical technique	Spectral

Horizontal	Spectral and uses bi-Fourier horizontal transforms on					
	a bi-periodic domain					
Vertical	Hybrid coordinate (s,p) from Simmons and Burridge (1981).					
Time	Semi-Lagrangian					
Integration domain	11° W to 17° E					
-	18° N to 47° N					
Horizontal and vertical resolution, time step	Horizontal : 12 km					
	Vertical: 46 levels					
	Time step: 415 s					
Orography, gravity wave drag	The orography of this model is computed from the					
	data base GTOPT30, using a variational technique					
	that strongly reduces the noise associated to Gibbs					
	waves.					
	The gravity waves drag takes into account some					
	anisotropy, blocking and mid-tropospheric effects.					
Horizontal diffusion	Implicit in spectral space and incorporating an					
	orography dependant correction					
Vertical diffusion	Scheme linked with PBL					
Planetary boundary layer	ECMWF method (Louis et al. 1981) with several					
	enhancements in the stable case.					
Treatment of sea surface, earth surface and soil	An improved version of ISBA (Interaction Soil					
	Biosphere Atmosphere) scheme is used, including an					
	explicit parametrisation of soil freezing. Six					
	prognostic variables are handled by ISBA. Soil					
	characteristics (texture, depth) are point-dependent.					
	Vegetation characteristics are point and month-					
	dependent.					
Radiation	Highly simplified scheme (inspired by Ritter and					
	Geleyn 1992) called at every time-step in every grid-					
	point.					
Convection (deep and shallow)	Mass-flux scheme (Bougeault 1985) enhanced with :					
	- The Gregory-Kershaw treatment of momentum					
	transport by cumulus					
	- A treatment of the moist adiabatic computation					
	 consistent with the previous point A downdraft parametrisation 					
	- Vertically variable entrainment and detrainment					
	rates					
	- A parametrisation of the selective effect of					
	entrainment leading to a warmer upper part of					
	the single cloud ascent					
Atmospheric moisture	Specific humidity is the variable: no storage of the					
	condensate; evaporation of the falling rain; treatment of the ice-phase					
Boundaries	Coupled with ARPEGE					
Albedo	climatology					
SST Analysis	Coupled with ARPEGE					

4.3.2.2 Research performed in this field

Researches are performed to improve the forecasted dust concentration in ETA model and coupling surface fluxes with ALADIN model.

2) AROME/Algérie model

Geographycal domain	31 27 N – 37 40 N 02 50 W - 08 40 E
Horizontal resolution	03 km
Number of vertical levels	49
Main characteristics of dynamics and physical parametrizations	Non-hydrostatic, explicitly resolved deep convection, parametrized shallow convection
Initial conditions	Dynamical adaptation without assimilation
Lateral boundary conditions	ALADIN/ALgérie model
Forecast range	00 UTC: +48 h Outputs : every one hour

4.3.3 Operationally available NWP products

4.3.3.1 ALADIN M	odel
Horizontal resolution	12 km
Domain	15N – 48 N ; 20 W - 20 E
Validity	00-48 h
Available products	 total precipitation convective precipitation snow height MSLP 10 m wind 2 m temperature Cl Cm Ch Maximum temperature
Output frequency: every 03 hours	 minimum temperature Z+T + RH 850, 700 and 500 hPa Z + wind 300 hPa Z + wind 200 hPa RH at 2m Gust Wind at 10m Derived fields Thickness 1000/700 hPa Thickness 1000/500 hPa

 PV 315 K PV 330 K O'w 700 hPa O'w 850 hPa K index Latent instability 1000/850 hPa, 850/700 hPa, 700/500 hPa CAPE Vertical velocity 850 hPa Vertical velocity 700 hPa

03 km 31 27 N - 37 40 N - 02 50 W - 08 40 E 00-48 h
00_48 b
00-40 11
- convective precipitation
- snow height - MSLP
- 10 m wind
- 2 m temperature
- Cl
- Cm
- Ch - Maximum temperature
- minimum temperature
- RH at 2m
- Gust Wind at 10m

4.3.4 Operational techniques for application of NWP products

4.3.4.1 in operation

None

4.3.4.2 Research performed in this field Adaptation of some products as Potential Vorticity, and CAPE

4.3.5 Ensemble Prediction System

- 4.3.5.1 in operation
 - Use of the ECMWF's EPSgrams
- 4.3.5.2 Research performed in this field
 - None
- 4.3.5.3 Operationally available EPS Products
 - EPSgrams and EFI from ECMWF
- 4.4 Nowcasting and Very Short-range Forecasting Systems (0-6 hrs)
- 4.4.1 Nowcasting system
- 4.4.1.1 In operation Not yet

4.4.1.2 Research performed in this field

The Algerian Met service implemented a very high resolution model with 03 km horizontal resolution with is combined with satellite and radar pictures.

- 4.4.2 Models for Very Short-range Forecasting Systems
- 4.4.2.1 In operation

ALADIN/Algérie model with outputs frequency every three (03) hours up to 48 hours AROME/Algérie model with outputs frequency every one (01) hour up to 48 hours

4.4.2.2 Research performed in this field Combining high resolution model outputs with satellite and radar data to build a very short-range forecasting system.

4.5 Specialized numerical predictions

WAM model is under use with ALADIN/Algérie's 10 m winds as input data, and is integrated up to 48 hours

- 4.5.1 Assimilation of specific data, analysis and initialization (where applicable)
- 4.5.1.1 in operation
 - None
- 4.5.1.2 Research performed in this field Assimilation of satellite data.

4.5.2 Specific Models

- 4.5.2.1 In operation none
- 4.5.2.2 Research performed in this field none
- 4.5.3 Specific products operationally available

Implementation of ALADIN/dust to the forecast of dust concentration converted to visibility.

4.6 Extended range forecasts (ERF) (10 days to 30 days)

4.6.1 Models

- 4.6.1.1 In operation none
- 4.6.1.2 Research performed in this field none
- **4.6.2** Operationally available NWP model and EPS ERF **products** none

4.7 Long range forecasts (LRF) (30 days up to two years)

- 4.7.1 In operation none
- 4.7.2 Research performed in this field none

- 4.7.2 Operationally available EPS LRF products None
- 5. Verification of prognostic products

5.1 Verification of ALADIN/Algérie for 2013

.24H verification statistics .Model : ALADIN/ALGERIE

		May	June	July	August	Sep	Oct	Nov	Dec
		2013	2013	2013	2013	2013	2013	2013	2013
	RMSE	1.20	3.09	1.30	3.09	0.73	1.08	0.73	0.66
MSLP	BIAS	0.61	-0.50	0.71	-0.50	0.52	0.35	0.52	0.38
	MAE	0.98	2.19	0.88	2.19	0.61	0.72	0.61	0.55
	RMSE	1.84	2.58	1.74	2.58	1.33	1.52	1.33	1.31
T 2m	BIAS	0.24	0.82	0.34	0.82	0.34	0.51	0.34	0.22
	MAE	1.33	2.00	1.33	2.00	1.02	1.16	1.02	1.02
	RMSE	1.52	2.52	1.72	2.52	1.34	1.49	1.34	1.28
U 10m	BIAS	0.31	0.21	0.21	0.21	0.02	0.31	0.02	0.46
	MAE	1.39	1.93	1.29	1.93	1.03	1.13	1.03	1.02
	RMSE	1.75	2.31	1.65	2.31	0.75	1.33	0.75	0.76
V 10m	BIAS	0.51	-0.76	-0.61	-0.76	-0.08	0.01	-0.08	-0.02
	MAE	1.29	1.76	1.09	1.76	0.60	0.82	0.60	0.60
	RMSE	2.13	3.47	2.03	3.47	0.54	1.31	0.54	0.60
Temperature	BIAS	-0.39	-0.49	-0.49	-0.49	-0.01	0.20	-0.01	0.11
at 850 hPa	MAE	1.06	2.50	1.06	2.50	0.41	0.66	0.41	0.46
Geopotential	RMSE	8.32	6.24	8.32	6.24	5.85	6.62	5.85	5.39
at 850 hPa	BIAS	4.01	-6.58	4.01	-6.58	4.32	3.76	4.32	3.61
	MAE	6.02	8.60	6.02	7.50	4.89	5.22	4.89	4.56
Temperature	RMSE	1.23	2.13	1.23	2.13	0.53	0.87	0.53	0.56
at 500 hPa	BIAS	-0.41	-0.84	-0.41	-0.84	-0.08	-0.04	-0.08	-0.15
	MAE	0.79	1.59	0.79	1.59	0.40	0.54	0.40	0.43
Geopotential	RMSE	9.74	9.83	9.74	9.83	5.97	10.96	5.97	6.39
at 500 hPa	BIAS	-3.06	-7.76	-3.06	-7.76	3.21	3.93	3.21	2.39
	MAE	8.95	7.10	8.95	7.10	4.66	5.61	4.66	5.10
Component	RMSE	3.01	5.19	3.01	5.19	1.66	2.24	1.66	1.56
of wind (u)	BIAS	0.60	1.69	0.60	1.69	0.13	0.34	0.13	0.18
at 850 hPa	MAE	2.14	3.88	2.14	3.88	1.25	1.61	1.25	1.20
Component	RMSE	3.02	5.00	3.02	5.00	1.70	2.14	1.70	1.52
of wind (v)	BIAS	0.13	0.08	0.13	0.08	-0.01	-0.06	-0.01	0.08
at 850 hPa	MAE	2.06	3.73	2.06	3.73	1.26	1.53	1.26	1.15

. 48H verification statistics

. Model : ALADIN/ALGERIE

		Мау	June	July	August	Sep	Oct	Nov	Dec
		2013	2013	2013	2013	2013	2013	2013	2013
	RMSE	1.22	1.33	1.53	3.09	1.22	1.32	1.02	0.99
MSLP	BIAS	0.26	0.46	0.95	-0.18	0.28	0.36	0.62	0.49
	MAE	0.81	0.71	1.13	2.25	0.82	0.91	0.83	0.80
	RMSE	1.78	1.59	1.90	2.63	1.59	1.69	1.52	1.46
T 2m	BIAS	0.55	0.58	0.33	0.80	0.43	0.52	0.31	0.22
	MAE	1.22	1.23	1.48	2.07	1.19	1.29	1.16	1.13
	RMSE	1.57	1.47	1.89	2.58	1.57	1.67	1.51	1.43
U 10m	BIAS	0.17	0.38	0.17	0.17	0.27	0.29	0.01	0.43
	MAE	1.15	1.18	1.45	2.00	1.24	1.26	1.15	1.13
	RMSE	1.42	1.29	1.85	2.42	1.53	1.52	0.93	0.92

V 10m	BIAS	-0.03	-0.11	-0.75	-0.87	-0.21	-0.01	-0.08	0.06
	MAE	1.12	1.22	1.30	1.89	1.02	1.02	0.74	0.72
	RMSE	1.58	1.55	2.18	3.53	1.54	1.55	0.78	0.88
Temperature	BIAS	0.18	0.14	-0.63	-0.59	0.12	0.14	-0.02	0.16
at 850 hPa	MAE	0.79	0.89	1.26	2.59	0.89	0.89	0.59	0.67
Geopotential	RMSE	8.46	8.56	9.91	8.15	8.58	8.56	7.98	8.06
at 850 hPa	BIAS	3.57	3.47	5.53	-4.35	3.43	3.47	5.04	4.80
	MAE	6.25	6.35	7.60	8.17	6.35	6.35	6.53	6.69
Temperature	RMSE	1.05	1.07	1.40	2.19	1.07	1.07	0.78	0.87
at 500 hPa	BIAS	-0.15	-0.13	-0.55	-0.91	-0.13	-0.13	-0.15	-0.18
	MAE	0.63	0.73	0.97	1.67	0.73	0.73	0.59	0.65
Geopotential	RMSE	5.76	5.86	4.02	6.93	3.86	5.86	7.00	8.28
at 500 hPa	BIAS	2.67	2.66	-4.01	-7.35	2.66	2.66	3.50	2.90
	MAE	8.48	8.45	8.80	7.46	8.45	8.45	6.92	8.44
Component	RMSE	2.71	2.81	3.48	5.29	2.82	2.81	2.31	2.13
of wind (u)	BIAS	0.32	0.42	0.75	1.73	0.43	0.42	0.05	0.16
at 850 hPa	MAE	2.05	2.06	2.59	4.04	2.05	2.06	1.75	1.63
Component	RMSE	2.61	2.71	3.44	5.04	2.72	2.71	2.29	2.08
of wind (v)	BIAS	-0.14	-0.05	0.14	0.05	-0.04	-0.04	-0.07	-0.07
at 850 hPa	MAE	1.89	1.99	2.48	3.81	1.97	1.99	1.72	1.58

5.2 Research performed in this field

Verification of both ALADIN and AROME models

6. Plans for the future (next 4 years)

After the installation of the supercomputer and the implementation of ALADIN and AROME models, with respectively 12 km and 03 kms horizontal resolution, in the frame of the ALADIN Consortium. The Algerian met service expects to enhance the computing power to run AROME model with 2 km or less horizontal resolution to build a nowcasting system.

6.1 Development of the GDPFS

- **6.1.1** Researchs in forecasting the dust cycle are conducted.
- **6.1.2** The Algerian Met service expects to build a nowcasting system based on very high resolution model outputs, satellite and radar data.

6.2 Planned research Activities in NWP, Nowcasting and Long-range Forecasting

Dust concentration, nowcasting system and the use of probabilistic forecasts.

6.2.1 Planned Research Activities in NWP

Improvement of dust concentration forecasts, observation data base.

6.2.2 Planned Research Activities in Nowcasting Build of nowcasting system based.

6.2.3 Planned Research Activities in Long-range Forecasting

Use of AROME model with 01 km horizontal resolution

7. References

User Guide to ECMWF forecast products, 2007 : Anders Persson, Federico Grazzini

ALADIN Newsletters: http://www.cnrm.meteo.fr/aladin/newsletters/newsletters.htm

Morand, P., and C. Priou, 1995: Guide à l'usage des utilisateurs Arpège N°18

Yessad, K., 2005: Basics about ARPEGE/IFS, ALADIN and AROME in the cycle 30 of ARPEGE