Annual WWW Technical Progress Report on the Global Data-Processing and Forecasting System 2004

JAPAN

1. Summary of highlights

The Japan Meteorological Agency (JMA) places the highest priority on prevention/mitigation of natural disasters in the upgrade of the Global Data-Processing and Forecasting System. Implementation of a non-hydrostatic mesoscale model is one of the highlights in 2004 in this regard, which has significantly improved prediction of heavy precipitations as compared to the previous hydrostatic model. Efforts have also been concentrated on the improvement of the global spectral model (GSM) over the past few years. In 2004, model physics of GSM were improved and the assimilation of new satellite data was started. Major developments in GDPFS in 2004 are as follows:

- (1) Direct assimilation of ATOVS level-1c radiance data for the global analysis from December 2004 (see 7.2.1).
- (2) Assimilation of MODIS polar wind data in the Arctic area for the global analysis from May 2004 (see 7.2.1).
- (3) Assimilation of MODIS polar wind data in the Antarctic area for the global analysis from September 2004 (see 7.2.1).
- (4) Assimilation of QuikSCAT/SeaWinds data for the meso analysis from July 2004 (see 7.3.2.1).
- (5) Assimilation of Aqua/AMSR-E precipitation and TPW data for the meso analysis from November 2004 (see 7.3.2.1).
- (6) Assimilation of SATEM data of NOAA-17 retrieved by the Meteorological Satellite Center for the meso and regional analyses from November 2004 (see 7.3.2.1).
- (7) Assimilation of temperature reports of radiosonde observations in the global analysis in place of geopotential height reports from April 2004 (see 7.2.1).
- (8) Implementation of a new parameterization scheme accounting for marine stratocumulus in GSM in July 2004, and revision of both the cloud water/ice scheme and the land surface model on ice sheets (see 7.2.2).
- (9) Introduction of a new long-wave radiation scheme into GSM in December 2004, and revision of a parameterization of absorption in the short-wave radiation scheme for ozone, carbon dioxide and oxygen (see 7.2.2).
- (10) Incorporation of a targeted moisture diffusion scheme in RSM in April 2004 (see 7.3.1.2).
- (11) Introduction of a non-hydrostatic mesoscale model with 10-km resolution for operational mesoscale forecasts on 1 September 2004 (see 7.3.2.2).
- (12) Upgrade of the storm surge model in January 2004 to provide predictions of storm surges caused by extratropical cyclones (see 7.4.4)
- (13) Dissemination of the monthly averaged grid point value products of all ensemble members for the 210-day ensemble forecast at grid intervals of 2.5 degrees in the global area through the Tokyo Climate Center (TCC) from February 2004. (see 7.6.3)

2. Equipment in use at the Global-Data Processing and Forecasting System (GDPFS) Center in JMA

The Numerical Analysis and Prediction System (NAPS) was upgraded on 1 March 2001. Major features of the NAPS are listed in Table 2-1. JMA installed a new UNIX server (UNIX server 3) for the very short-range forecasting system on 1 March 2003.

Table 2-1Major features of NAPS

Supercomputer	HITACHI-SR8000E1/80			
Total node	80			
Total performance	768 Gflops			
Total capacity of memory	640 GB			
Data transfer rate	1.2 GB/s			
Storage disk capacity	4.8 TB			
Operating system	HI-UX/MPP			
UNIX server 1	HITACHI-3500/E540PS			
Total node	6			
Total performance	215SPECint95			
Total capacity of memory	12 GB			
Storage disk capacity	389 GB			
Operating system	HI-UX/WE2			
UNIX server 2	HITACHI-3500/E540PS			
Total node	4			
Total performance	151SPECint95			
Total capacity of memory	8 GB			
Storage disk capacity	354 GB			
Operating system	HI-UX/WE2			
UNIX server 3	HITACHI-EP8000 630 6C4			
Total node	5			
Total performance	120SPECint_rate2000			
Total capacity of memory	40 GB			
Storage disk capacity	640 GB			
Operating system	AIX 5L			
Transmitting and receiving				
Performance	4.8 SPECint95			
Total capacity of memory	512 MB			
Storage disk capacity	12 GB			

Automated tape library	STORAGETEK Powderhorn 9310			
Total storage capacity	80 TB			
Automated DVD-RAM libra	ary 1	HITACHI DT-DVDO-02		
Total storage capacity	2.5 TB			
Automated DVD-RAM library 2		HITACHI DT-DVDO-02		
Total storage capacity	3.1 TB			

3. Data and Products in use from GTS

3.1 Observations

The observation reports listed in Table 3-1 are used in the data assimilation.

Table 3-1 Number of used observation reports

SYNOP/SHIP	51700/day
TEMP-A/PILOT-A	1700/day
TEMP-B/PILOT-B	1700/day
TEMP-C/PILOT-C	1100/day
TEMP-D/PILOT-D	1100/day
AIREP/AMDAR	141900/day
BUOY	12800/day
SATOB (SST)	4700/day
SATOB (WIND)	414100/day
SATOB (EUMETSA	T) 319200/day
SATEM-A	11000/day
SATEM-C	10700/day
TOVS	82000/day
PROFILER	900/day
DMSP/SSMI	4431400/day

3.2 GRIB products

Following model products are used for internal reference and monitoring:

GRIB KWBC, GRIB ECMF, and GRIB AMMC.

4. Data input system

Data input is fully automated with an exception of the manual input of typhoon position, size and intensity data. They are used to generate typhoon bogus data for the global, regional and typhoon analyses.

5. Quality control system

Stage 1 Decoding

All the code forms of messages are checked against the WMO international code forms. When a form

error is detected, some procedures are applied in order to extract as much information as possible.

Stage 2 Internal consistency check

Checks of climatological reasonability are performed for all types of data. The data enlisted as problematic data in the "exclusion list" are rejected. Contents of the "exclusion list" are occasionally revised based on results of non real-time quality control.

Consistency of consecutive positions is checked for reports from mobile stations such as ships, drifting buoys and aircraft. Consistency of consecutive reports and that among elements within a report are also checked for every surface station.

The vertical consistency is examined for TEMP and PILOT data using all parts of reports. The check items are:

- (1) Icing of instruments;
- (2) Temperature lapse rate;
- (3) Hydrostatic relationship;
- (4) Consistency among data at mandatory levels and those at significant levels; and
- (5) Vertical wind shear.

Bias correction is applied to TEMP data which have large persistent biases from the first guess fields. Another bias correction scheme which checks consistency between the surface pressure observation and the sea surface pressure has been introduced since August 1998.

Checks of lapse rate for SATEM data are also performed using the mean virtual temperature estimated from the thickness.

Stage 3 Quality control with reference to the first guess

Gross error and spatial consistency are evaluated against the first guess in order to remove erroneous observations. The difference (D) of the observation value from the first guess value is compared with tolerance limits C_P and C_R . C_P is an acceptable limit and C_R is a rejection limit. When D is smaller than or equal to C_P , the datum is accepted for use in the objective analysis. When D is greater than C_R , it is rejected. When D is smaller than or equal to C_R and greater than C_P , the datum is further checked by interpolating the neighboring data to the location of the datum. If the difference between the observational data and the interpolated value is not within a reasonable tolerance C_S , the datum is rejected.

These three tolerance limits vary according to the local atmospheric conditions which can be estimated by the first guess field. They are smaller if time tendency and horizontal gradient are smaller in the first guess field. The scheme is called "Dynamic QC" and is based on the idea that forecast errors would be small if the area is meteorologically calm and large if it is stormy.

Duplicate observation reports are frequently received through different communication lines. The most appropriate single report is chosen from these duplicate reports considering results of quality control.

All information on the quality of observational data obtained during the quality control procedure is archived in the Comprehensive Database for Assimilation (CDA). The CDA is used for non real-time quality control and global data monitoring activities.

6. Monitoring of the observing system

Non real-time quality monitoring of observations is carried out by comparing real-time quality control information and the first guess archived in the CDA through the following procedures:

(1) Compilation of observational data rejected in the real-time quality monitoring;

- (2) Calculation of statistics on the difference between observations and first-guess; and
- (3) Statistical comparison of satellite data with collocated radiosonde data.

The above statistical information is effective in estimating systematic errors of observational data and also helpful to identify stations reporting suspect observations. If a station continuously reports suspect data for a long time, the data from the station are not used in the analysis.

The quality and availability of observational data are regularly issued as a monthly report entitled "JMA/NPD Global Data Monitoring Report". The statistics presented in the report are made according to the recommended procedures for the exchange of monitoring results by the Commission for Basic Systems (CBS). The report is sent to major Global Data-Processing and Forecasting System (GDPFS) centers as well as to the WMO Secretariat.

The RSMC Tokyo has been acting as a lead center for monitoring quality of land surface observations in Region II since March 1991. The statistical characteristics of availability and quality for sea level pressure observations of land surface stations in Region II are published in the semiannual report entitled "Report on the Quality of Surface Observations in Region II".

JMA also acts as a Principal Meteorological and Oceanographic Center (PMOC) of Data Buoy Cooperation Panel (DBCP). Quality of meteorological data for every observation element reported from ocean data buoys is monitored by time sequence maps comparing the data with the first guess field of the JMA Global Data Assimilation System. Sea surface and subsurface temperatures reported from buoys are also examined against climatic values and operational oceanographic analysis by JMA. Information on the buoys transmitting inferior quality data is sent to DBCP and other PMOCs over the Internet.

7. Forecasting system

JMA operationally performs four kinds of objective atmospheric analyses for the global, regional, mesoscale, and typhoon forecast models. A three-dimensional variational (3D-VAR) scheme has been employed for the global and typhoon analyses since 26 September 2001. For the regional (mesoscale) analysis, a four-dimensional variational (4D-VAR) scheme was introduced on 19 June 2003 (19 March 2002). All analyses are made on model coordinates for surface pressure, geopotential height, vector winds, temperature and specific humidity.

Global analyses are performed at 00UTC and 12UTC. An early analysis with a short cut-off time is performed to prepare initial conditions for operational forecast, and a cycle analysis with a long cut-off time is performed to keep the quality of global data assimilation system.

The specifications of the atmospheric analysis schemes are listed in Table 7-1.

Daily global SST analysis and daily global snow depth analysis are described in Table 7-2 and Table 7-3.

Cut-off time	
(global)	2.5 hours for early run analyses at 00 and 12 UTC,
	12.5 hours for cycle run analyses at 00 and 12 UTC,
	7.33 hours for cycle run analyses at 06 and 18 UTC.
(regional)	3 hours for analyses at 00 and 12UTC,
	8.33 hours for analyses at 06 and 18 UTC,

Table 7-1 Specifications of operational objective analysis

(mesoscale)	50 minutes for analyses at 00, 06, 12 and 18 UTC
(typhoon)	2.5 hours for analyses at 00 and 12UTC,
	1.5 hours for analyses at 06 and 18 UTC.
Initial Guess	
(global)	6-hour forecast by GSM
(regional)	6-hour forecast by RSM
(mesoscale)	3-hour forecast by MSM (see 7.3.2.2)
(typhoon)	6-hour forecast by GSM
Grid form, resolution and nu	<u>umber of grids</u>
(global)	Gaussian grid, 0.5625 degree, 640x320
(regional)	Lambert projection, 20km at 60N and 30N, 325x257, grid point
	(1,1) is at north-west corner and (200, 185) is at (140E, 30N)
(mesoscale)	Lambert projection, 10km at 60N and 30N, 361x289, grid point
	(1,1) is at north-west corner and (245, 205) is at (140E, 30N)
(typhoon)	same as global analysis
Levels	
(global)	40 forecast model levels up to 0.4 hPa + surface
(regional)	40 forecast model levels up to 10 hPa + surface
(mesoscale)	40 forecast model levels up to 10 hPa + surface
(typhoon)	same as global analysis

Analysis variables

Wind, surface pressure, specific humidity and temperature

(Temperature is analyzed but not used as the initial condition for the regional and meso-scale model.)

Data Used

SYNOP, SHIP, BUOY, TEMP, PILOT, Wind Profiler, AIREP, SATEM, ATOVS, SATOB, BUFR (winds), MODIS polar winds, SeeWinds, TMI, SSM/I and Australian PAOB.

Typhoon Bogussing,

For typhoons forecasts over the western North Pacific, typhoon bogus data are generated to represent its accurate structure in the initial field of forecast models. They are made up of artificial sea-surface pressure, temperature and wind data around a typhoon. The structure is axi-asymmetric. At first, symmetric bogus data are generated automatically based on the central pressure and 30kt wind speed radius of the typhoon. The axi-asymmetric bogus data are then generated by retrieving asymmetric components from the first guess field. Finally, those bogus profiles are implanted into the first guess fields of global analysis, and they serve as pseudo-observation data for the regional and mesoscale analyses.

Initialization

Non-linear normal mode initialization with full physical processes is applied to the first five vertical modes.

Table 7-2 Specifications of SST analysis

Methodology	two-dimensional Optimal Interpolation scheme
Domain and Grids	global, 1x1 degree equal latitude-longitude grids
First guess	mean NCEP OI SST (Reynolds and Smith, 1994)

Data usedSHIP, BUOY and NOAA AVHRR SST data observed in past five daysFrequencydaily

Table 7-3 Specifications of Snow Depth analysis

Methodology	two-dimensional Optimal Interpolation scheme
Domain and Grids	global, 1x1 degree equal latitude-longitude grids
First guess	USAF/ETAC Global Snow Depth climatology (Foster and Davy, 1988)
Data used	SYNOP snow depth data and SSM/I snow cover data observed in past one day
Frequency	daily

JMA runs the Global Spectral Model (GSM0103; T213L40) twice a day (90-hour forecasts from 00 UTC and 216-hour forecasts from 12 UTC) and the Regional Spectral Model (RSM0103; 20kmL40) twice a day as well (51-hour forecasts from 00 and 12 UTC). The non-hydrostatic Meso-Scale Model (MSM0409; 10kmL40) was introduced for operational use on 1 September 2004 in place of the former operational model (hydrostatic MSM; MSM0103). It is executed four times a day (18-hour forecasts starting from 00, 06, 12 and 18 UTC) for prediction of severe weather phenomena. The Typhoon Model (TYM0103; 24kmL25) is also run four times a day (84-hour forecasts starting from 00, 06, 12 and 18 UTC) when any typhoons exist or a typhoon is expected to form over the western North Pacific. Moreover, JMA carries out 9-day Ensemble Prediction System (EPS) every day, 34-day EPS once a week for one-month outlook, 120-day EPS once a month for 3-month outlook, 150 to 210-day EPS in February, March and April for warm season outlook and in September and October for cold season outlook. The basic features of the operational forecast models of JMA are summarized in Tables 7.2.2-1, 7.3.1.2-1 and 7.3.2.2-1.

An operational tracer transport model is run on request of national Meteorological Services in RA II or the International Atomic Energy Agency (IAEA) for RSMC support for environmental emergency response. A high-resolution regional transport model is experimentally run every day to predict volcanic ash spread.

The very short-range forecast of precipitation (VSRF) is operationally performed every half an hour. Details of the VSRF are described in 7.3.4.

Two ocean wave models, Global Wave Model and Coastal Wave Model are run operationally. The specifications of the models are described in Table 7.4.3.1-1.

The numerical storm surge model is run four times a day to predict storm surges caused by tropical and extratropical cyclones. The specifications of the model are described in Table 7.4.4.1-1.

The Global Ocean Data Assimilation System (ODAS), whose specifications are described in Table 7.4.5-1, is operated. The ocean data assimilation system in the North Pacific has been in operation since January 2001. The specifications of the model are described in Table 7.4.6.1-1.

The numerical sea ice model is run to predict sea ice distribution and thickness over the seas adjacent to Hokkaido Island twice a week in winter. The specifications of the model are given in Table 7.4.7.1-1.

The numerical marine pollution transport model is run in case of a marine pollution accident. The specifications of the model are described in Table 7.4.8.1-1.

7.1 System job schedule and forecast ranges

Table 7.1-1 summarizes the system job schedule of NAPS and forecast ranges. These jobs are executed in batch on the supercomputer and the UNIX server 1.

.1-1	JOD Schedule of the NAFS	(Numerical Analysis and Frediction System)
<u>1</u>	Time (UTC)	NAPS job (Model forecast range)
0	030 - 0120	12UTC decode, global cycle analysis
0	030 - 0110	00UTC decode, mesoscale analysis
0	0110 - 0130	00UTC mesoscale forecast (0 - 18h)
0	0120 - 0210	18UTC decode, global cycle analysis
0	0140 - 0150	00UTC storm surge forecast (00h - 33h)
0	230 - 0700	00UTC El Nino forecast, Ocean Data Assimilation
0	230 - 0300	00UTC decode, global early analysis
0	255 - 0320	18UTC decode, regional analysis
0	300 - 0330	00UTC global forecast (00h - 90h)
0	320 - 0345	00UTC decode, regional analysis
0	330 - 0430	00UTC typhoon forecast (00 - 84h)
0	345 - 0405	00UTC regional forecast (00h - 51h)
0	410 - 0430	00UTC ocean wave forecast (00h - 90h)
0	630 - 0710	06UTC decode, mesoscale analysis
0	0710 - 0730	06UTC mesoscale forecast (0 - 18h)
0	0730 - 0800	06UTC decode, typhoon analysis
0	0740 - 0750	06UTC storm surge forecast (00h - 33h)
0	0800 - 0900	06UTC typhoon forecast (00h - 84h)
1	230 - 1320	00UTC decode, global cycle analysis
1	230 - 1310	12UTC decode, mesoscale analysis
1	310 - 1330	12UTC mesoscale forecast (0 - 18h)
1	320 - 1410	06UTC decode, global cycle analysis
1	340 - 1350	12UTC storm surge forecast (00h - 33h)
1	430 - 1500	12UTC decode, global early analysis
1	455 - 1830	12UTC medium-range ensemble forecast $(0 - 216h)$
1	455 - 1520	06UTC decode, regional analysis
1	500 - 1530	12UTC global forecast (00h - 90h)
1	520 - 1545	12UTC decode, regional analysis
1	530 - 1630	12UTC typhoon forecast (00 - 84h)
1	545 - 1605	12UTC regional forecast (00h - 51h)
1	610 - 1630	12UTC ocean wave forecast (00h - 90h)
1	630 - 1715	12UTC global forecast (90h - 216h)
1	715 - 1735	12UTC ocean wave forecast (90h - 216h)
1	830 - 2135	12UTC one month forecast (34 days)
1	830 - 1910	08UTC decode, mesoscale analysis
1	910 - 1930	08UTC mesoscale forecast (0 - 18h)
1	930 - 2000	18UTC decode, typhoon analysis
1	940 - 1950	18UTC storm surge forecast (00h - 33h)
2	2000 - 2100	18UTC typhoon forecast (00h - 84h)

 Table 7.1-1
 Job schedule of the NAPS (Numerical Analysis and Prediction System)

7.2 Medium-range forecasting system (3 - 9 days)

7.2.1 Data assimilation, objective analysis and initialization (Table 7.2.2-1)

A three-dimensional variational (3D-VAR) data assimilation method is employed for the analysis of the atmospheric state for the JMA Global Spectral Model (GSM). In the 3D-VAR, a statistical linear balance that includes dynamics in tropics and surface friction effects is globally satisfied. The control variables are relative vorticity, unbalanced divergence, unbalanced temperature, unbalanced surface pressure and the natural logarithm of specific humidity. In order to save the computational efficiency, an incremental method is adopted in which the analysis increment is evaluated at a lower horizontal resolution (T106) and then it is interpolated and added to the first guess field at the original resolution (T213).

A non-linear normal mode initialization with full physical processes is applied to the first five vertical modes. The effect of the atmospheric tide is considered by adding the model tidal tendency to the specific normal modes.

The operation of the global land surface analysis system (GLSAS) was started in April 2002 to provide initial conditions of land surface parameters for the T106 version of GSM used in the medium- and long- range forecasts. The system consists of a land surface model (JMA-SiB) forced by atmospheric parameters and the JMA global snow depth analysis system. The GLSAS using daily SSM/I snow coverage was started in April 2003 to obtain an appropriate initial condition of land surface parameters.

The assimilation of QuikSCAT sea surface winds was started in May 2003. Positive impacts were found in typhoon track forecast experiments for July 2002.

Temperature reports from radiosonde observations have been used instead of geopotential height reports since April 2004. The shift of data was made as a preparation for the introduction of a variational quality control (VarQC) scheme because an appropriate treatment of a strong vertical correlation in observation errors of geopotential height is difficult in the VarQC scheme. This shift slightly improved the GSM forecasts.

Direct assimilation of ATOVS level-1c radiance data (AMSU-A and AMSU-B of NOAA15, NOAA16 and AMSU-B of NOAA17) instead of NESDIS pre-processed radiance data was started in December 2004. At the same time, the radiative transfer model was updated from RTTOV-6 to RTTOV-7 that has been developed at ECMWF.

Use of MODIS polar wind data of Aqua and Terra in the Arctic area was started in May 2004 and in the Antarctic area in September 2004. These data contribute to the improvement of the forecast accuracy.

7.2.2 Medium-range forecasting model

The specifications of the JMA Global Spectral Model (GSM) are listed in Table 6. In July 2004, a new parameterization scheme accounting for marine stratocumulus was introduced, and a revision of both the cloud water/ice scheme and a land surface model on ice sheet was made. These brought about positive impacts: a reasonable increase in the low-level cloud amount over the ocean, especially to the west of continents, a reduction in bias in the radiation budget, and a mitigation of warm bias in the lower troposphere over the ice sheet in summer.

In December 2004, improvements were made on long-wave and short-wave radiation schemes. For the long-wave scheme, a new scheme that employs a lookup-table method and a k-distribution method is introduced instead of a traditional band model. At the same time, a number of spectral bands are increased from 4 to 9 for radiation calculation. In this new scheme, an improved parameterization of water vapor

continuum absorption is also used, and the effect of trace gases such as methane, nitrous oxide and CFCs are taken into account. As for the short-radiation scheme, refinements of the parameterization of absorption by ozone, carbon dioxide and oxygen were made. The improvements in the short- and long-wave radiation schemes lead to a substantial mitigation of cooling bias in the lower stratosphere and the underestimation of the downward long-wave flux at the surface.

Table 7.2.2-1	Specifications of	Global Spectral Model	for 9-day forecasts
---------------	-------------------	------------------------------	---------------------

Basic equation	Primitive equations
Independent variables	Latitude, longitude, sigma-p hybrid coordinate and time
Dependent variables	Vorticity, divergence, temperature, surface pressure, specific humidity
Numerical technique	Euler semi-implicit time integration, spherical harmonics for
	horizontal representation and finite difference in the vertical
Integration domain	Global
Horizontal resolution	T213 (about 0.5625 degree Gaussian grid) 640x320
Vertical levels	40 (surface to 0.4hPa)
Forecast time	90 hours from 00UTC and 216 hours from 12UTC
Forecast phenomena	Synoptic disturbances and tropical cyclones
Orography	GTOPO30 30" x 30" dataset, spectrally truncated and smoothed.
Horizontal diffusion	Linear, second-order Laplacian
Moist processes	Prognostic Arakawa-Schubert cumulus parameterization +
	large-scale condensation
Radiation	Short-wave radiation computed every hour
	Long-wave radiation computed every three hours
Cloud	Prognostic cloud water, cloud cover diagnosed from moisture and cloud
water	
Gravity wave drag	Long-wave scheme for troposphere and lower stratosphere
	Short-wave scheme for lower troposphere
PBL	Mellor-Yamada level-2 closure scheme and similarity
	theory for surface boundary layer
Land surface	Simple Biosphere Model (SiB)
Surface state	SST anomaly added to seasonally changing climatological SST.
	Initial soil moisture, roughness length and albedo are climatological values.
	The analyzed snow depth is used for the initial value. Predicted values are
	used for the initial soil and canopy temperatures

7.2.3 Numerical weather prediction products for Medium-range forecast

The following model output products from GSM are disseminated through the JMA radio facsimile broadcast (JMH), GTS and RSMC Tokyo Data Serving System.

Content	Level (hPa)	Area (see Fig.1a)	Forecast Hours	Initial Time	Transmission Method
geopotential height, relative vorticity	500	0	96, 120, 144, 168, 192	12UTC	GTS
sea level pressure, rainfall amount	-	С	96, 120		radio facsimile

 Table 7.2.3-1
 Facsimile products for medium-range forecast

Table 7.2.3-2 Grid point value products (GRIB) for medium-range forecast

Contents	Level	Area	Forecast	Initial	Transmission
	(hPa)	Alca	Hours	Time	Method
sea level pressure, rainfall amount	-				
temperature, wind	surface				
geopotential height	1000				
geopotential height,	850, 700, 500, 300, 250, 200,		96, 120		
temperature, wind	100, 70, 50, 30	Global			GTS RSMC DSS
T-TD	850, 700	2.5x2.5		12UTC	
sea level pressure, rainfall amount	-	Degree			
temperature, wind	Surface				
	1000		144 160 100		
geopotential height, temperature,	850, 700, 500,		144, 168, 192		
wind	300, 200				
T-Td	850, 700				
sea level pressure, rainfall amount	-				
temperature, wind, relative humidity	surface				
geopotential height, temperature,	1000, 925,				
wind, relative humidity,	850, 700, 600,				
vertical p-velocity	500, 400, 300,	Global	96, 108, 120		
geopotential height, temperature,	250, 200, 150,	1.25x1.25	132, 144, 156,	12UTC	RSMC DSS
wind	100, 70, 50,	Degree	168, 180, 192		
willa	30, 20, 10				
relative vorticity	500				
T-TD	850, 700				

7.2.4 Techniques for application of GSM products

Atmospheric angular momentum (AAM) functions are computed from analyzed and forecasted global wind and surface pressure data and sent to NCEP/NOAA.

7.2.5 Medium-range Ensemble Prediction System (EPS) (9-day)

A numerical weather prediction model applied for the EPS is a low-resolution version (T106) of the GSM. Thus, the dynamical framework and all physical processes are identical with those of the high-resolution GSM (T213) mentioned in 7.2.2 except for the horizontal resolution. The atmospheric initial condition for the control run is prepared by interpolating the T213 analysis. The initial condition for a land surface model is generated by running the land surface model with external forcing of T213 atmospheric four-dimensional data assimilation (4DDA) as well as assimilating snow depth analysis.

1	5
Integration domain	Global, surface to 0.4hPa
Horizontal resolution	T106 (about 1.125 degree Gaussian grid) 320x160
Vertical levels	40 (surface to 0.4hPa)
Forecast time	216 hours from 12UTC
Ensemble size	25 members
Perturbation generator	Breeding of Growing Mode (BGM) method
	(12 independent breeding cycles in 12 hours periods)
Perturbed area	Northern hemisphere and tropics (20S-90N)

Table 7.2.5-1 Specifications of 9-day Ensemble Prediction System

7.2.5.1 Numerical weather prediction products for Medium-range Ensemble Prediction

The following model output products from Medium-range Ensemble Prediction are disseminated through RSMC Tokyo Data Serving System.

Contents	Level (hPa)	Area	Forecast Hours	Initial Time	Transmission Method
sea level pressure geopotential height temperature wind	- 1000, 500 850 850, 250	Global 2.5x2.5 Degree	Every 6 hours from 0 to 192 hours	12UTC	RSMC DSS

* Above GPVs are ensemble mean and standard deviation derived from ensemble members.

7.2.5.2 Techniques for application

The Kalman-filtering technique is applied to derive maximum and minimum daily temperature of each 3-8 forecast day from grid point values predicted by EPS. Probability of precipitation (above 1mm a day) at each grid point is derived directly from probability density of EPS.

7.3 Short-range forecasting systems

7.3.1 Short-range forecasting system (0-51 hours)

7.3.1.1 Data assimilation, objective analysis and initialization

A regional 4D-VAR system was introduced on 19 June 2003 for the analysis of the atmospheric state for the JMA Regional Spectral Model (RSM). The architecture of the system is almost the same as those of the mesoscale 4D-VAR (see 7.3.2.1), except that the resolution of the inner-loop model is 40km and a six-hour assimilation window is employed. Initial and lateral boundary conditions for 4D-VAR are derived from GSM forecasts.

7.3.1.2 Regional Spectral Model (RSM)

In addition to ordinary 4th order horizontal diffusion scheme, targeted moisture diffusion scheme was introduced in RSM in April 2004 in order to suppress strong grid-scale updrafts and the associated intense rainfall. This scheme well inhibits a formation of pseudo small lows over the sea.

Primitive equations
x-y coordinate on a Lambert projection plane and sigma-p hybrid coordinate
Wind components of x-y direction, virtual temperature,
natural log of surface pressure and specific humidity
Euler semi-implicit time integration, double Fourier for
horizontal representation and finite difference in the vertical
Lambert projection, 20km at 60N and 30N
East Asia centering on Japan, 325 x 257 transform grid points
40 (surface to 10hPa)
51 hours from 00, 12UTC
Meso-beta scale disturbances
First guess is 3-9 hours forecast of RSM initialized 6 hour earlier
3 (9)-hour cutoff for 00, 12 (06, 18) UTC
0-51 hours forecast by GSM runs
Envelope orography. Orography is smoothed and spectrally truncated.
Linear, second-order Laplacian with targeted moisture diffusion.
Large scale condensation + Prognostic Arakawa-Schubert
convection scheme + middle level convection + shallow convection
Every hour
Every hour
Diagnosed from relative humidity, maximum overlap
Short-wave scheme for lower troposphere is included.
Mellor-Yamada level-2 closure scheme for stable PBL, non-local scheme
for unstable PBL, and similarity theory for surface boundary layer
Ground temperature is predicted with the use of four levels in the ground.
Evaporability depends on location and season.
Observed SST (fixed during time integration) and sea ice distribution.
Evaporability, roughness length, albedo are climatological values.
Snow cover over Japan is analyzed every day.

Table 7.3.1.2-1 Specifications of Regional Spectral Model (RSM0103)

7.3.1.3 Numerical weather prediction products

The following model output products derived from GSM are disseminated through the JMA radio facsimile broadcast (JMH), GTS and RSMC Tokyo Data Serving System. No products from RSM are disseminated through these systems.

Br	101000050			
Level (hPa)	Area (see Fig.1)	Forecast Hours	Initial Time	Transmission Method
500	A'		00UTC	
700		0	12UTC	GTS
850				
500		24, 36		
-				
	Level (hPa) 500 700 850	(hPa) (see Fig.1) 500 A' 700 850	Level Area Forecast (hPa) (see Fig.1) Hours 500 A' 700 850 0	Level (hPa)Area (see Fig.1)Forecast HoursInitial Time500A'00UTC 12UTC700012UTC

 Table 7.3.1.3-1
 Facsimile products for short-range forecast

Temperature	500				
T-Td, vertical p-velocity	700				
temperature, wind	850				
sea level pressure, rainfall amount	-		24, 48, 72		
geopotential height, relative vorticity	500		48, 72		
geopotential height, temperature, T-Td	850	С			
geopotential height, temperature, T-Td	700		0		
geopotential height, temperature	500		Ŭ		
geopotential height, temperature, wind	300				
geopotential height, temperature, wind	200		0		
geopotential height, temperature, wind	250	Q	0, 24		
geopotential height, temperature, wind	500		24		
geopotential height, temperature	500	D	0	12UTC	
stream line	200		0 24 49		
stream line	850	-	0, 24, 48		
geopotential height, temperature	500		0		
geopotential height, temperature, T-Td	850	C		00UTC 12UTC	radio facsimile
sea level pressure, rainfall amount	-		48,72	12010	

Contents	Level (hPa)	Area	Forecast Hour	Initial Time	Transmission Method
sea level pressure	-				
temperature, wind, T-TD	Surface				
geopotential height, temperature, wind	1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, 10		0	00UT C 12UT	
T-Td	1000, 850, 700, 500, 400, 300 (00UTC) 850, 700 (12UTC)	Global 2.5x2.5 degree		С	GTS Internet
sea level pressure, rainfall amount	-				
temperature, wind	Surface			00UT	
geopotential height, temperature, wind	850, 700, 500, 300, 250, 200, 100, 70, 50, 30		24, 48, 72	C 12UT C	
T-TD	850, 700				
sea level pressure, rainfall amount	-			00UT	GTS
temperature, wind, T-TD	Surface			С	Internet
geopotential height, temperature, wind, T-TD, vertical p-velocity	850, 700	20S-60N 80E-160W	0, 6, 12, 18, 24, 30,	12UT C	
geopotential height, temperature, wind, T-TD, relative vorticity	500	2.5x2.5 degree	36, 48, 60, 72		
geopotential height, temperature, wind	300, 250, 200, 150, 100				
sea level pressure, rainfall amount	-	20S-60N	0, 6, 12,		
temperature, wind, T-TD	Surface	80E-160W	18, 24, 30,		
geopotential height, temperature, wind, T-TD, vertical p-velocity	925, 850, 700	1.25x1.25 degree	36, 42, 48, 54, 60, 66,		

geopotential height, temperature, wind, T-TD	500, 400, 300		72, 78, 84		
geopotential height, temperature, wind	250, 200, 150, 100, 70, 50 30, 20				
relative vorticity	500				
vorticity potential, stream function	850, 200				
sea level pressure, rainfall amount	-				
temperature, wind, relative humidity	Surface				
geopotential height, temperature, wind, relative humidity, vertical p-velocity	1000, 925, 850, 700, 600, 500, 400, 300,	Global	0, 6, 12, 18, 24, 30,	00UT C	
geopotential height, temperature, wind	250, 200, 150, 100, 70, 50, 30, 20, 10	1.25x1.25 degree	36, 42, 48, 54, 60, 66, 72, 78, 84	12UT C	Internet
relative vorticity	500				
vorticity potential, stream function	850, 200				

7.3.1.4 Operational techniques for application

Two types of operational techniques for application are routinely used; one employs the Kalman-filter, and the other an artificial Neural-network. These techniques are applied to grid point values from RSM output in order to reduce systematic forecast errors or to extract some useful information on such as probabilistic or categorical values in an adaptive manner. The Kalman-filtering technique is used to derive probability of precipitation, precipitation amount in each 20km square grid, maximum/minimum/momentary temperatures, maximum/momentary wind speed and the associated direction at each of the JMA surface stations. This method is also used for the aviation weather forecast (TAF-Long) guidance for cloud amount, minimum ceiling, minimum visibility, wind speed and the associated direction, and minimum/maximum temperatures at each major airport for example. As for the artificial Neural-network technique, it is employed for forecasting weather category, probability of heavy precipitation and probability of thunderstorm in each 20km square grid, and minimum humidity at each meteorological observatory of JMA. This technique also constitutes an essential basis for forecasting a maximum precipitation and the snowfall depth. The maximum precipitation forecast is obtained by multiplying average precipitation in each forecast area by an optimum ratio, derived from Neural-network, of the observed maximum precipitation to an average precipitation from model output. The snowfall depth forecast, operationally used since March 2004, estimates the depth of snowfall by multiplying model-derived precipitation amount and a Neural-network-derived optimal ratio that determines the empirical relation between observed snowfall depth and precipitation.

The above two types of techniques produce forecasts up to 51 hours at 3-hour intervals, except for 6-hour probability of precipitation, daily maximum/minimum temperatures, and daily minimum humidity.

7.3.2 Short-range forecasting system (0 – 18 hours)

7.3.2.1 Data assimilation, objective analysis and initialization

A four-dimensional variational (4D-VAR) data assimilation method has been employed since 19 March 2002 for the analysis of the atmospheric state for the JMA Meso-Scale Model (MSM) with a three-hour assimilation window. Radar-AMeDAS (Automated Meteorological Data Acquisition System) precipitation data (see 7.3.4.1) in addition to conventional data is used for assimilation. The control variables

are surface pressure, temperature, unbalanced wind and specific humidity. In order to save the computational efficiency, an incremental method is adopted in which the analysis increment is evaluated at a lower horizontal resolution (20km) and then it is interpolated and added to the first guess field at the original resolution (10km).

Non-linear normal mode initialization (NNMI) with full physical processes is applied to the first five vertical modes. Initial and lateral boundary conditions for 4D-VAR are derived from RSM forecasts.

A new tropical cyclone bogussing method was introduced in June 2003. In the new bogussing method, the following procedures are employed; 1) a bogus structure is made with the same method as the GSM bogussing. 2) pseudo observational data are made according to the 3D-structures of wind and pressure field determined from the bogus structure. 3) 4D-VAR analysis is conducted with the pseudo observational data so that the dynamical consistency in the analysis field is preserved.

Assimilation of precipitation and TPW (Total Precipitable Water) data retrieved from TMI and SSM/I for meso 4D-VAR analysis was started in October 2003. In November 2004, the usage of these data retrieved from Aqua/AMSR-E was started for meso 4D-VAR analysis. The use of precipitation and TPW data from two satellites ameliorates the quality of water vapor field to bring about positive impact on the precipitation prediction.

Assimilation of QuikSCAT/SeaWinds data was started in July 2004 for the meso 4D-VAR analysis and treat score has improved.

Assimilation of SATEM data of NOAA-17 retrieved by the Meteorological Satellite Center, JMA for meso and regional 4D-VAR analyses was started in November 2004. The quality of the data is confirmed to be almost the same as that from NOAA-16.

7.3.2.2 Meso-Scale Model (MSM)

A non-hydrostatic Meso-Scale Model (MSM0409; 10kmL40) with 10-km resolution was put into operation on 1 September 2004 in place of the former operational hydrostatic model (MSM0103) of the same resolution. MSM0409 has new features in dynamics and physics such as the use of non-hydrostatic equations and explicit cloud microphysics for example. The forecast domain, the map projection, the initial and boundary conditions, forecast time and update frequency of the new model are the same as those for the former one. The specifications of the model are listed in Table 7.3.2.2-1.

Table 7.3.2.2-1 Specifications of Meso-Scale Model (MSM0409)

Basic equations	Fully compressible non-hydrostatic equations.
Independent variables	Latitude, longitude, terrain-following height coordinates, and time.
Dependent variables	Momentum components in three dimensions, potential temperature, pressure,
	mixing ratios of water vapor, cloud water, cloud ice, rain, snow, and graupel.
Numerical technique	Finite discretization onto the Arakawa-C type staggered coordinates,
	horizontally explicit and vertically implicit time integration scheme, fourth
	order horizontal finite differencing in flux form with modified advection
	treatment for monotonicity.
Projection and grid size	Lambert projection, 10km at 60N and 30N.
Integration domain	Japan, 369 x 289 grid points.
Vertical levels	40 (surface to 22km).

Forecast time	18 hours from 00, 06, 12, 18 UTC.
Forecast phenomena	Severe weather.
Initial fields	4D-VAR analysis with mixing ratios of cloud water, cloud ice, rain, snow,
	and graupel derived from preceding forecasts considering consistency with
	the analysis field of relative humidity.
Lateral boundary	06-24 (12-30) hour forecast by RSM initialized at 6 (12) hours earlier for 06,
	18 (00, 12) UTC forecast.
Orography	Mean orography smoothed to eliminate the shortest-wave components.
Horizontal diffusion	Linear, fourth order Laplacian + nonlinear damper.
	Targeted moisture diffusion applied to the grid points where excessive
	updrafts appear.
Moist processes	Three-ice bulk cloud microphysics + Kain-Fritsch convection scheme.
	Lagrangean treatment for the fall of rain and graupel.
Radiation (short-wave)	Every 15 minutes.
Radiation (long-wave)	Every 15 minutes.
Cloudiness	Diagnosed from relative humidity with maximum overlap assumed.
Gravity wave drag	No parameterization scheme included.
PBL	Diffusion processes based on diagnosed turbulent kinetic energy, considering
	non-local effect by adjusting mixing length.
	Similarity theory adopted for the surface boundary layer.
Land surface	Ground temperature predicted using a four-layer ground model.
	Evaporability depends on location and season.
Surface state	Observed SST (fixed during time integration) and sea ice distribution.
	Climatological values of evaporability, roughness length, albedo.
	Snow cover over Japan analyzed every day.

7.3.2.3 Numerical weather prediction products

Products derived from MSM are disseminated through neither JMH nor GTS.

7.3.2.4 Techniques for application

Prognostic charts of significant weather, such as the location of jet axis, the area of CAT and Cb in horizontal cross-sections as well as vertical cross-sections along major flight paths for domestic aviation are derived from the grid point values of MSM.

The Kalman Filtering technique is used for the aviation weather forecast (TAF-Short) guidance, such as hourly cloud amount, minimum ceiling, minimum visibility, and maximum wind speed and the associated direction up to 15 hours at each major airport.

The same techniques as the RSM-based guidance (see 7.3.1.4) are also used to derive the following weather guidance; averaged precipitation amount at each 20km square grid, maximum precipitation in each sub-divided forecast area, and maximum wind speed and the associated direction at each observation station. The weather forecast guidance produces three hourly values up to 18 forecast hours.

7.3.3 The Hourly Wind Analysis in Lower Atmosphere

A multivariate three-dimensional optimum interpolation (3D-OI) scheme was introduced to create an objective analysis of wind fields in the troposphere and lower stratosphere, using the latest MSM forecast output as a first guess. Major wind data used in the analysis are the following three: wind profiler data from the Wind Profiler Network and Data Acquisition System (WINDAS) of JMA, and the VVP wind data from the Doppler Radar for Aviation Weather (DRAW) in the lower troposphere, and AMDAR data from domestic airlines, mostly concentrated in the upper troposphere and the lower stratosphere. This product is made every hour within 30 minutes from hourly observation time. The reliability of the analyzed wind fields is limited in regions where many observational data exist.

7.3.4 Very short-range forecasting system (0-6 hours)

7.3.4.1 Method of data processing

Using radar reflectivity factors estimated from with the power scattered by rain particles at 20 digitized ground-based radar sites and precipitation observations by ground stations, which include more than 1300 stations operated by JMA and nearly 4,000 stations operated by other organizations, one-hour precipitation data over Japan, called Radar-AMeDAS precipitation, are analyzed every half hour with a 2.5km resolution. Radar reflectivity factors are translated into rainfall intensities with a Z-R relationship and accumulated to one-hour precipitation. The analysis of precipitation at each radar is made by calibrating the accumulated radar one-hour precipitation with the rain-gauge observations. The Radar-AMeDAS precipitation is the composite of analyzed precipitation of all the radars. An initial field for a linear extrapolation forecast is the composite of calibrated rainfall intensities.

The linear extrapolation forecast and the precipitation forecast from the Meso-Scale Model (MSM; see 7.3.2.2) are merged into the final very-short-range precipitation forecast. The merging weight of MSM forecast is nearly zero at one hour forecast and gradually increased with forecast time to a value determined from the relative skill of the MSM forecasts.

7.3.4.2 Model

Forecast process	Linear extrapolation
Physical process	Topographic enhancement and dissipation
Motion vector	Motion of a precipitation system is evaluated by the cross correlation method
Time step	5-10 minutes
Grid form	Oblique conformal secant conical projection
Resolution	5km
Number of grids	320 x 720
Initial	Calibrated radar echo intensities
Forecast time	Up to six hours from each initial time (every 30 minutes = 48 times/day)

Table 7.3.4.2-1 Specifications of linear extrapolation model

7.3.4.3 Products

The basic products of the very short-range forecasting system are: (a) composite radar echo (echo intensity and echo top height), (b) estimated one-hour precipitation distributions and (c) one-hour

precipitation forecasts up to six hours. These products are provided at about 20 minutes after the analysis time to support the local weather offices that issue weather warnings for heavy precipitation.

7.3.5 Precipitation nowcasting system (0-60 minutes)

7.3.5.1 Method of data processing

Precipitation nowcasting is to predict distribution of precipitation by extrapolation up to 1 hour. Initial rainfall intensity distribution is derived from radar data obtained at 10-minute interval, which is calibrated by AMeDAS rain gauge observation. Rain rates are predicted based on the echo motion of rainfall pattern analyzed in the very-short range forecasting (see 7.3.4). This method takes only into account the horizontal displacement of echo pattern, keeping rain rates at initial state unchanged.

7.3.5.2 Model

Table 7.5.5.2-1	recipitation nowcasting model
Forecast process	Linear extrapolation
Physical process	none
Motion vector	Taken from very-short range forecasting system
Time step	1 minute
Grid form	Cylindrical equidistant projection
Resolution	about 1km
Number of grids	2560 x 3360
Initial	Calibrated radar echo intensities
Forecast time	Up to 60 minutes from each initial time (every 10 minutes = 144 times/day)

Table 7.3.5.2-1 Precipitation nowcasting model

7.3.5.3 Products

The product of the precipitation nowcasting is 10-minute precipitation forecast up to 60 minutes. Precipitation forecasts are provided after 3 minutes from the observation to support the local weather offices for issuing warnings of heavy precipitation.

7.4 Specialized forecasts

7.4.1 Typhoon forecasting system

7.4.1.1 Objective analysis and initialization

The analysis for numerical typhoon track prediction is made using the global analysis model. After symmetric typhoon bogus data is implanted into the analysis field with asymmetric components preserved, nonlinear normal mode initialization with full physics is applied to the first five vertical modes.

7.4.1.2 Typhoon model (TYM)

The specifications of the JMA Typhoon Model (TYM) are shown in Table 7.4.1.2-1. A new physical process package, including a prognostic cloud water scheme, a modified cumulus parameterization and a new radiation schemes, was introduced in July 2003. In order to suppress the excessive low pressure at and around typhoon center, the roughness length on sea surface, and the ratio of the bulk exchange coefficients of heat and moisture to that of momentum, were also revised. The resultant amelioration of heat and

moisture fluxes over sea surface brings about moderate representation of typhoon intensity.

Basic equation	Primitive equations			
Independent variables	x-y coordinate on a Lambert (Mercator) projection plane for the target			
independent variables	tropical cyclone north (south) of 20N and sigma-p hybrid coordinate			
Dependent veriables	Wind components of x-y direction, virtural temperature, natural log of			
Dependent variables				
NT 1.1.1	surface pressure and specific humidity			
Numerical technique	Euler semi-implicit time integration, double Fourier for horizontal			
	representation and finite difference in the vertical			
Projection and grid size	Lambert (Mercator) projection, 24 km at the tropical cyclone center when			
	center of the target tropical cyclone is north (south) of 20N			
Integration domain	Center of domain is set at median of expected track of the target tropical			
	cyclone in the western North Pacific, 271x271 transform grid points			
Vertical levels	25 (Surface to 17.5hPa)			
Forecast time	84 hours from 00, 06, 12, 18UTC, maximum two runs for each initial time			
Forecast phenomena	Tropical cyclones in the western North Pacific			
Initial	Global analysis using 6-hour forecast by GSM as a guess field with data			
	cut-off time of 2.5 (1.5) hours for 00, 12 (06, 18) UTC initial			
Lateral boundary	0-84 hour forecast by GSM for 00, 12 UTC initial			
	6-90 hour forecast by GSM initialized 6 hours earlier for 06, 18 UTC initial			
Orography	GTOPO3030"x30" dataset, spectrally truncated and smoothed			
Horizontal diffusion	Linear, second-order Laplacian			
Moist processes	Large scale condensation + Prognostic Arakawa-Schubert convection			
	scheme + shallow convection			
Radiation (short-wave)	Every hour			
Radiation (long-wave)	Every hour			
Cloud	Prognostic cloud water, cloud cover diagnosed from moisture and cloud			
	water			
Gravity wave drag	Short-wave scheme for lower troposphere is included			
PBL	Mellor-Yamada level-2 closure scheme for stable PBL, and similarity theory			
	for surface boundary layer			
Land surface	Ground temperature is predicted with the use of four levels in the ground.			
	Evaporability depends on location and season.			
Surface state	Observed SST fixed during time integration, climatological evaporability,			
	roughness length and albedo			
Typhoon bogussing	Symmetric vortex generated using a manually analyzed central pressure and			
	the radius of 30kt winds with gradient-wind balance assumed in the free			
	atmosphere, Ekman-frictional inflow and compensating outflow added in			
	PBL and in upper levels, respectively. The vortex is blended with the global			
	analysis in combination with asymmetric components taken from TYM's own			
	forecasts, when available.			

Table 7.4.1.2-1 Specifications of Typhoon Model (TYM)

7.4.1.3 Numerical weather prediction products

The following products on typhoon from the output of GSM and TYM are disseminated through GTS.

Contents	Level (hPa)	Area	Forecast Hours	Initial Time	Transmission Method
Center position and changes of intensity parameters from the initial time by GSM	-	Eq 60N 100E-180E	06, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90	00UTC 12UTC	GTS
Center position and changes of intensity parameters from the initial time by TYM	-	Eq 60N 100E-180E	06, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84	00UTC 06UTC 12UTC 18UTC	GTS

 Table 7.4.1.3-1
 Numerical weather prediction products for typhoon forecast

7.4.2 Environmental Emergency Response System

JMA is a Regional Specialized Meteorological Center (RSMC) for Environmental Emergency Response in RA II for preparation and dissemination of transport model products on exposure and surface contamination of accidentally released radioactive materials.

The transport model adopts a Lagrangian method. In the model, many tracers are released in time and location according to information on pollutant emissions. Effects for three-dimensional advection and horizontal and vertical diffusions, dry and wet depositions and radioactive decay are computed from 3-hourly model-level outputs of the high resolution global model (T213L40). Main products of the RSMC are trajectories, time integrated low-level concentrations and total deposition up to 72 hours.

A high-resolution regional transport model is experimentally operated to predict volcanic gas spread from Miyakejima Island, an active volcano of Japan. The concentration of SO_2 is predicted up to 36 hours every day (00UTC initial). The atmospheric state is provided by the RSM forecast 3-hourly.

7.4.3 Ocean wave forecasting system

7.4.3.1 Models

JMA operates two numerical wave modes; Global Wave Model (GWM) and Coastal Wave Model (CWM). Both models are classified into the third generation wave model.

Model name	Global Wave Model Coastal Wave Model				
Model type	Spectral model (third generation wave mo	odel)			
Spectral component	400 components				
	(25 frequencies from 0.0375 to 0.3Hz and	16 directions)			
Grid form	Equal latitude-longitude grid on spherical coordinate				
Grid size	1.25deg. x 1.25deg. (288x121) 0.1deg. x 0.1deg. (400x400)				
Integration domain	Global 75N-75S, 0E-180-1.25W Coastal sea of Japan 55N-				
	115E-155E				
Time step	30 minutes	5 minutes			
Forecast time	90 hours from 00UTC	84 hours from 00, 12UTC			
	216 hours from 12UTC				

 Table 7.4.3.1-1
 Specifications of ocean wave prediction models

Boundary condition	-	Global Wave Model		
Initial condition	Hindcast			
Wind field	Global Spectral Model (GSM)	Regional Spectral Model (RSM) with the supplement of GSM		
	Bogus gradient winds (for typhoons in the western North Pacific)			

7.4.3.2 Numerical wave prediction products

The grid point values (GPVs) of CWM are disseminated to domestic users. The GPVs of GWM are also available in the RSMC Tokyo Data Serving System of JMA for NMHSs.

7.4.4 Storm surge forecasting system

7.4.4.1 Model

JMA operates a numerical storm surge model to predict storm surges that occur in coastal areas of Japan mainly due to tropical cyclones. The model was upgraded in January 2004 to provide predictions of storm surges caused by extratropical cyclones using Meso-Scale Model (MSM) wind fields.

The model specifications are given in Table 7.4.4.1-1.

Table 7.4.4.1-1 Specifications of the numerical storm surge model			
Basic equations	Two dimensional shallow water equations		
Numerical technique	Explicit finite difference method		
Integration domain	Coastal area of Japan		
	(122.5-143.1E, 23.5-42.1N)		
Grid size	1 minute(longitude) x 1 minute(latitude)		
Boundary conditions Modified radiation condition at open boundaries ar			
	zero normal flows at coastal boundaries		
Forcing data Meso Scale Model (MSM)			
	bogusing data for typhoons around Japan		

 Table 7.4.4.1-1
 Specifications of the numerical storm surge model

7.4.4.2 Numerical storm surge prediction products

Time series of predicted storm surge and predicted tidal level, and predicted highest tide for about 300 ports are disseminated to local meteorological observatories, and are used as a major basis for issuing storm surge advisories and warnings.

7.4.4.3 Operational techniques for application of storm surge prediction products

Considering the error of typhoon forecast track, storm surges for possible 5 tracks are predicted.

7.4.5 Global Ocean data assimilation system

A global ocean data assimilation system (ODAS), upgraded in February 2003, has been in operation. Its specifications are shown in Table 7.4.5-1.

Basic equation	Primitive equations, rigid lid		
Independent variables	Lat-lon coordinate and z vertical coordinate		
Dependent variables u, v, T, S			
Numerical technique	Finite difference both in the horizontal and in the vertical		
Grid size 2.5 degree (longitude) x 2.0 degree (latitude, smoothly decreasing to			
degree toward the equator) grids			
Vertical levels	20 levels		

 Table 7.4.5-1
 Specifications of the Global Ocean Data Assimilation System

Integration domain	Global (from 66N to 80S, toward poles from 60N and 60S, prognostic fields are nudged to climatology)
Forcing data	Heat, water, and momentum fluxed are driven from the operational global 4DDA
Observational data	Sea surface and sub surface temperature and salinity, sea surface height
Operational runs	Two kinds of run, final run and early run, with cut-off time of 30 days and 1 day, respectively, for ocean observation data

The output of ODAS is fed to an interactive graphic tool for the analysis of tropical ocean status. Some figures based on ODAS outputs are included in the Monthly Ocean Report and in the Monthly Report on Climate System of JMA, and provided through the Tokyo Climate Center (TCC) Web site (http://cpd2.kishou.go.jp/tcc). The data are also used as the oceanic initial conditions for the JMA coupled ocean-atmosphere model.

7.4.6 Ocean Data Assimilation System in the North Pacific Ocean

7.4.6.1 Model

The ocean data assimilation system in the North Pacific has been in operation since January 2001, to represent the ocean structure such as the Kuroshio in the mid/high latitudes of the North Pacific with the following specifications.

1	b of the occur duti ussimilation system in the root in ruente occur			
Basic equation	Primitive equations, rigid lid			
Independent variables	Latitudinal and longitudinal in horizontal coordinate, z in vertical			
	coordinate			
Dependent variables	Ocean current components of latitudinal and longitudinal			
_	direction, temperature and salinity (nudged to climatology deeper			
	than 2,000 m)			
Numerical technique	Finite difference both in the horizontal and in the vertical,			
_	nudging with observational temperature, estimated temperature			
	and salinity from sea surface height			
Grid size	Variable horizontal resolution, 1/4 x 1/4 degrees adjacent to			
	Japan between 23N and 45N west of 180E, smoothly increasing			
	to 0.5 degree in latitude and to 1.5 degrees in longitude			
Time step	10 minutes			
Vertical levels	21 levels			
Integration domain	North Pacific between 13N and 55N from 120E to 110W			
Forcing data	Ocean currents are driven by operational daily wind stress			
Observational data	Sea surface height, sea surface and subsurface temperature			

 Table 7.4.6.1-1
 Specifications of the ocean data assimilation system in the North Pacific Ocean

7.4.6.2 Products of the ocean data assimilation system

The output of this system is monthly averaged for the provision in a printed matter, "Monthly Ocean Report" of JMA, and on a web site, NEAR-GOOS RRTDB (http://goos.kishou.go.jp).

7.4.7 Sea ice forecasting system

7.4.7.1 Model

JMA issues information on the state of sea ice in the seas adjacent to Japan. A numerical sea ice model has been run to predict sea ice distribution and thickness in the seas adjacent to Hokkaido Island (mainly the southern part of the Sea of Okhotsk), twice a week in winter since December 1990 (see Table 7.4.7.1-1).

Dynamical processes	Viscous-plastic model(MMD/JMA,1993. wind and sea water			
Dynamical processes	stress to sea ice, Coriolis' force, force from gradient of sea			
	surface and internal force are considered)			
Physical processes	Heat exchange between sea ice, atmosphere and sea water			
Dependent variables	Concentration and thickness			
Grid size and time step	12.5km and 6 hours			
Integration domain	Seas around Hokkaido			
Initial time and forecast time	168 hours from 00UTC twice a week			
Initial	Concentration analysis derived from GMS and NOAA satellite			
	imagery and thickness estimated by hindcast			

 Table 7.4.7.1-1
 Specification of the numerical sea ice prediction model

7.4.7.2 Numerical sea ice prediction products

The grid point values (GPVs) of the numerical sea ice model are disseminated to domestic users. The sea ice conditions for the coming seven days predicted by the model are broadcast by JMH twice a week.

7.4.8 Marine pollution forecasting system

7.4.8.1 Model

JMA operates the numerical marine pollution transport model in case of a marine pollution accident. Its specifications are shown in Table 7.4.8.1-1. The ocean currents as the input data of the model are derived from the result of the ocean data assimilation system in the North Pacific Ocean.

-	
Area	Western North Pacific
Grid size	2 - 30km (variable)
Model type	3-dimensional parcel model
Processes	Advection caused by ocean currents, sea surface winds and ocean waves Turbulent diffusion Chemical processes (evaporation, emulsification)

 Table 7.4.8.1-1
 Specifications of the marine pollution transport model

7.5 Extended-range forecasting system

7.5.1 Data assimilation and Model

An extended-range ensemble prediction system is carried out as an extension of the Medium-range Ensemble Prediction System described in 7.2.5. Data assimilation, objective analysis, initialization and the model are common to those of the medium-range ensemble prediction system. For the lower boundary condition of the model, SST anomalies are fixed during the 34-day time integration. Soil moisture, temperature and snow depth are predicted by the model, and their initial states are provided by the land data assimilation system.

7.5.2 Methodology

An ensemble consists of 26 members per week by extending 13 member runs of the medium-range ensemble prediction system on consecutive two days up to 34 days. Thus, initial perturbation is prepared with a combination of a breeding of growing mode (BGM) method and a lagged average forecast (LAF) method.

7.5.3 Numerical prediction products

A model systematic bias was estimated as an average forecast error which was calculated from hindcast experiments for years from 1984 to 1993. The bias is removed from forecast fields, and grid point values are processed to produce several forecast materials such as ensemble mean, spread, and so on.

The grid point value products from extended-range ensemble prediction system disseminated through the GTS and the Tokyo Climate Center (TCC) Web site (http://cpd2.kishou.go.jp/tcc) are shown in Table 7.5.3-1. The map products disseminated through TCC are shown in Table 7.5.3-2.

		Level		
Contents			Area	Initial time &
		(hPa)		Forecast Time
Ensemble mean value of forecast members averaged	Sea level pressure, rainfall amount	-		Initial time : 12UTC of 2 days
for 7 days forecast time range	Temperature, RH, wind (u, v)	850		of the week (Wednesday &
	Geopotential height	500,100		Thursday)
	Wind (u, v)	200		Forecast time :
	Sea level pressure anomaly	-	Global	2-8, 9-15, 16-22,
	Temperature anomaly	850	2.5x2.5 degree	23-29 days from later initial time
	Geopotential height anomaly	500,100	uegree	
Spread (Standard deviation)	Sea level pressure	-		Forecast time :
among time averaged	Temperature	850		2-8, 9-15, 16-22,
ensemble member forecasts	Geopotential height	500		23-29, 2-15,
large anomaly index * of geopotential height		500		16-29, 2-29 days
				from later initial
				time

Table 7.3.5-1 Grid point value products (GRIB) for extended–range forecast through GTS and TCC

large anomaly index is defined as {(number of members whose anomaly is higher than 0.5xSD) – (number of members whose anomaly is lower than – 0.5xSD)}/{number of members} at each grid point, where SD is defined as observed climatological standard deviation.

 Table 7.5.3-2
 Map products for extended-range forecast through TCC

	Forecast time	Parameter
Ensemble mean Spread (Standard deviation) among time averaged ensemble member forecasts Large anomaly index*	Day 2–8, day 9–15, day 16–29, day 2–29 averages	Geopotential height and anomaly at 500hPa, temperature and anomaly at 850hPa, sea level pressure and anomaly Geopotential height at 500hPa
Time-longitude cross section Time sequence	7-day running mean	Velocity potential at 200hPa averaged in the equatorial region (from 5N to 5S) Several circulation indices

^c large anomaly index is defined as {(number of members whose anomaly is higher than 0.5xSD) – (number of members whose anomaly is lower than – 0.5xSD)}/{number of members} at each grid point, where SD is defined as observed climatological standard deviation.

7.5.4 Operational technique for an application of extended-range forecast

Objective guidance products of forecast elements such as the surface temperatures (monthly mean, weekly mean), precipitation amounts (monthly total), sunshine durations (monthly total), and snowfall amounts (monthly total) are derived by the Perfect Prognosis Method (PPM) technique. A clustering method is applied and cluster-averaged fields are disseminated to local meteorological observatories.

7.6 Long-range forecasting system

7.6.1 The 120-day ensemble prediction system (EPS) for 3-month outlook

The 120-day long-range EPS for 3-month outlook is operated once a month by the 25th day. The numerical prediction model applied for the long-range EPS is an old and low-resolution version (T63) of GSM (Table 7.6.1-1). Thus, cumulus parameterization and associated initialization schemes are different from those of the current GSM mentioned at 7.2 in addition to the horizontal resolution. For the lower boundary condition of the model, initial SST anomalies are fixed during the 120-day time integration. Soil moisture, temperature and snow depth are predicted by the model, and their initial states are provided by the land data assimilation system.

An ensemble consists of 31 members including a control run. The initial condition for the control run is prepared in the same way as those for the medium-range EPS. Their initial perturbations in the atmosphere are prepared with a Singular Vector (SV) Method.

Atmospheric model	GSM0103
Integration domain	Global, surface to 0.4hPa
Horizontal resolution	T63 (about 1.875° Gaussian grid 192by96 ~180km)
Vertical levels	40 (surface to 0.4hPa)
Forecast time	2880 hours from 12UTC
Ensemble size	31 members
Perturbation generator	Singular Vector (SV) Method
Perturbed area	Northern hemisphere and tropics (20S-90N)

Table 7.6.1-1 Specifications of 120-day Ensemble Prediction System

7.6.2 Numerical prediction products for 120-day ensemble prediction

A model systematic bias was estimated as an average forecast error, which was calculated from hindcast experiments for 18 years from 1984 to 2001. The bias is removed from forecast fields, and grid point values are processed to produce several forecast materials such as ensemble mean, spread, and so on.

The following model output products (Table 7.6.2-1) from 120-day ensemble prediction are disseminated through the Tokyo Climate Center (TCC) Web site (http://cpd2.kishou.go.jp/tcc).

Table 7.0.2-1 Grid point val	gn ICC			
Cor	Level	Area	Initial time &	
	(hPa)		Forecast Time	
Ensemble mean and spread	Rainfall amount, surface	-		Initial time :
(standard deviation) values of	temperature at 2m, sea surface			12UTC around
forecast members averaged	temperature, sea level pressure			15th day in each
for every each month and		Global	month	
three months during forecast	850	2.5x2.5		

 Table 7.6.2-1
 Grid point value products and maps for 120-day prediction through TCC

time range	Geopotential height and its	500	degree	
	anomaly		-	Forecast time :
	Wind (u, v) and their	850,20		Every each
	anomalies	0		month and three
				months average

7.6.3 The 210-day ensemble prediction system (EPS) for warm and cold seasons outlook

The 210-day long-range EPS for warm and cold seasons outlook is operated twice a year by the 25th day in February and September, respectively. The 210-day ensemble prediction system is carried out as an extension of the 120-day ensemble prediction system except that separately predicted SST anomalies are prescribed as a boundary condition (see 7.6.4). Note that 180-day and 150-day EPSs are also conducted in March, April and October for warm and cold season outlook in the same way as the 210-day EPS.

The following model output products (Table 7.6.2-2) from 210-day ensemble prediction are disseminated through the Tokyo Climate Center (TCC) Web site (http://cpd.kishou.go.jp/tcc).

Table 7.6.2-2Grid point value products (GRIB) and maps for 210-day prediction throughTCC

C	ontents	Level (hPa)	Area	Initial time & Forecast Time
Forecast members (only for grid-point-value), their ensemble mean and spread (standard deviation) values averaged for every each month and three months during forecast time range	Rainfall amount, surface temperature at 2m, sea surface temperature, sea level pressure and their anomalies Temperature and its anomaly Geopotential height and its anomaly Wind (u, v) and their anomalies Relative humidity and its anomaly	- 850 500 850,200 850	Global 2.5x2.5 degree	Initial time : 12UTC around 15 th day in each month Forecast time : Every each month and three months average

7.6.4 Methodology for the prediction of global SST anomalies for 210-day EPS

A two-tiered way is adapted for the 210-day EPS; first, global SST anomalies are predicted, then the integration of the atmospheric model (GSM) is performed during 210 days under the prescribed global SST anomalies.

It is assumed that initial SST anomalies persist for first two months of the 210 days. To predict global SST anomalies for the last two months of the 210 days, the Niño3 (a region in eastern-equatorial Pacific) SST anomaly is predicted with the El Niño prediction model (atmosphere-ocean coupled model) and corrected by the MOS (Model Output Statistics) method. Then, global SST anomalies are regressed against the corrected Niño3 SST anomaly. The regressed SST anomalies are prescribed globally as the GSM boundary condition for the last two months. The interpolated global SST anomalies are applied to the months between the first and the last two months.

7.6.5 El Niño prediction system

A coupled atmosphere-ocean model for monthly El Niño outlook has been operated. The atmospheric part was replaced by a low-resolution version (T42L40) of the one used in the current 120-day forecast system. The specifications of the coupled model are shown in Table 7.6.5-1. JMA makes the model results available through the Tokyo Climate Center (TCC) Web site (http://cpd2.kishou.go.jp/tcc). The

MOS-corrected NINO3 SST anomaly is used in the 210-day dynamical forecast.

Oceanic component	Identical to the model for	ODAS				
Atmospheric component	Basic equation	Primitive equation				
	Domain	Global				
	Resolution	T42, 40 vertical levels				
	Convection scheme	Arakawa-Schubert				
	Land surface processes	SiB of Sellers et al. (1986)				
Coupling	Coupling interval	24 hours				
	Flux adjustment	Monthly heat and momentum flux adjustment				
Forecast period	18 months					
Model run interval	15 days					

 Table 7.6.5-1
 Specifications of the JMA coupled model

8. Verification of prognostic products

8.1 Verification for short-range and medium-range prediction

Objective verification of prognostic products is operationally performed against analysis and radiosonde observations according to the WMO/CBS recommendations. Results of the monthly verification for the year of 2003 are presented in Tables 8.1-1 - 8.1-20. All the verification scores are only for the prediction from 1200 UTC initials.

8.2 Verification system for extended-range ensemble prediction

Scores of the extended-range ensemble prediction for each season and year are shown using anomaly correlation and root mean square error for broad geographic areas. Error maps are produced for every single forecast and each season. These are available on the Tokyo Climate Center (TCC) Web site (http://cpd2.kishou.go.jp/tcc) as listed in Table 8.2-1. Other various verification methods of reliability diagrams, relative operating characteristics, reduction rates of total loss and ranked probability score for each season are also applied.

Table 8.2-1 Verification products of extended-range ensemble prediction at TCC Web site

(a) Score

	Forecast period	Parameter	Verification areas
Anomaly correlation and root mean square error	Day 2–8, day 9–15, day 16–29, day 2–29 average	Geopotential height at 500hPa, temperature at 850hPa, sea level pressure	Northern Hemisphere (20N-90N), Eurasia (20N-90N, 0E-180E), North Pacific (20N-90N, 90E-90W), East Asia(20N-60N, 100E -179E)
		Stream function at 200hPa and 850hPa, velocity potential at 200hPa and 850hPa, and geopotential height at 500hPa	Global, Tropics(20N-20S), Northern Hemisphere(20N- 90N), Southern hemisphere(20S-90S)

(b) Map

Forecast period	Parameter
Day $2-8$, day $9, 15$	Geopotential height and anomaly at 500hPa,t temperature and anomaly at 850hPa,
day 16–29,	sea level pressure and anomaly,
day 2–29	stream function and anomaly at 200hPa and 850hPa,
average	velocity potential and anomaly at 200hPa and 850hPa, precipitation (forecast only)
	Day 2–8, day 9–15, day 16–29,

Mean error	Geopotential height at 500hPa,
map for each	temperature at 850hPa,
season	sea level pressure

8.3 Verification system for long range ensemble prediction for 3-month outlook

Error maps for operational 120-day ensemble prediction are available on TCC Web site in the same way as Table 8.2-1 (b). Additionally, hindcast experiments are verified by showing the scores for surface air temperature at 2m, precipitation, sea level pressure, 850hPa temperature and 500hPa geopotential height according to the Standard Verification System (SVS) for Long-Range Forecasts (LRF) as well as the scores of anomaly correlation and root mean square error. These are also available on TCC Web site.

8.4 Verification system for long range ensemble prediction for warm and cold seasons outlook

Hindcast experiments are verified by showing the scores for surface air temperature at 2m, precipitation, sea level pressure, 850hPa temperature and 500hPa geopotential height according to the Standard Verification System (SVS) for Long-Range Forecasts (LRF). These are provided from TCC Web site.

9. Plans for the future

Following developments are planned in 2005:

- (1) Direct assimilation of Aqua /AIRS radiance data for the global analysis in late 2005.
- (2) Direct assimilation of SSM/I radiance data for the global analysis in late 2005.
- (3) Direct assimilation of Aqua/AMSU-A radiance data for the global analysis in early 2005.
- (4) A 4D-VAR data assimilation system for the global analysis in early 2005.
- (5) Introduction of a semi-Lagrangian scheme in GSM in early 2005.
- (6) Implementation of new parameterization schemes for the gravity wave drag, cloud radiation, and atmospheric boundary layer processes of GSM in 2005.
- (7) Revision of parameterization schemes for snow albedo, ice-cloud and stratocumulus of GSM will be revised in early 2005.
- (8) Development of a higher resolution coupled model with a T63L40 atmosphere model and a 1deg.(lon.)x(1/3-1)deg.(lat.)L50 ocean model with particular attention to skill increase of SST forecast over the western tropical Pacific and the Indian Ocean.

10. References

Ebihara, S. 2003: The Development of Guidance for Forecast of Maximum Precipitation Amount, *RSMC Tokyo - Typhoon Center Technical Review*, **6**, 1-17.

Hosomi, T. 2005: Implementation of Targeted Moisture Diffusion for the JMA Regional Spectral Model (RSM). *CAS/JSC WGNE Res. Act. in Atmos. and Ocea. Modelling*, **35**, 05-07 – 05-08.

Ishida, J. and K. Saito 2005: Initialization scheme for water substances in the operational NHM. *CAS/JSC* WGNE Res. Act. in Atmos. and Ocea. Modelling, **35**, 01-19 – 01-20.

Ishida, J. and S. Tanaka 2005: Verification of mesoscale forecasts by the newly implemented JMA-NHM. *CAS/JSC WGNE Res. Act. in Atmos. and Ocea. Modelling*, **35**, 05-09 – 05-10.

Japan Meteorological Agency, 2002: Outline of the operational numerical weather prediction at the Japan Meteorological Agency. Japan Meteorological Agency, 157 pp.

Kawai, H, 2003: Impact of a Cloud Ice Fall Scheme Based on an Analytically Integrated Solution. CAS/JSC

WGNE Res. Act. in Atmos. and Ocea. Modelling, 33, 04-11 - 04-12.

Kawai, H, 2004: Impact of a Parameterization for Subtropical Marine Stratocumulus. *CAS/JSC WGNE Res. Act. in Atmos. and Ocea. Modelling*, **34**, 04/13-14.

Kawai, H. 2005: Improvement of a cloud ice fall scheme in GCM. *CAS/JSC WGNE Res. Act. in Atmos. and Ocea. Modelling*, **35**, 04-11 – 04-12.

Kazumori, M., K. Fukuda, H. Owada 2005: Assimilation of ATOVS level-1c radiance data at JMA. *CAS/JSC* WGNE Res. Act. in Atmos. and Ocea. Modelling, **35**, 01-25 – 01-26.

Kazumori, M. and Y. Nakamura 2005: MODIS polar winds assimilation at JMA. *CAS/JSC WGNE Res. Act. in Atmos. and Ocea. Modelling*, **35**, 01-27 – 01-28.

Kimura, Y., K. Niimi, 2005: Verification of the guidances during the period of typhoon Songda (0418), *RSMC Tokyo - Typhoon Center Technical Review*, **8**, in press

Kyouda, M., 2002: The ensemble prediction system for medium-range weather forecasting at JMA. *CAS/JSC WGNE Res. Act. in Atmos. and Ocea. Modelling*, **32**, 6-11- 6-13.

Murai, S. and S. Yabu 2005: Introduction of a new radiation scheme to the operational global NWP model at JMA. *CAS/JSC WGNE Res. Act. in Atmos. and Ocea. Modelling*, **35**, 04-19 – 04-20.

Nakagawa, M. and A. Shimpo, 2003: Development of a Cumulus Parameterization Scheme for the Operational Global Model at JMA. *RSMC Tokyo-Typhoon Center Technical Review*, **7**, 10-15.

Narui, A. 2005: Use of temperature data from radio-sonde observations in place of geopotential height in the JMA global 3D-VAR. *CAS/JSC WGNE Res. Act. in Atmos. and Ocea. Modelling*, **35**, 01-37 – 01-38.

Ohhashi, Y. and T. Imaizumi 2005: Operational use of QuikSCAT/SeaWinds ocean surface wind data in the meso 4D-Var system. *CAS/JSC WGNE Res. Act. in Atmos. and Ocea. Modelling*, **35**, 01-39 – 01-40.

Saito, K. and J.-I. Ishida 2005: Implementation of the Targeted Moisture Diffusion to JMA-NHM. *CAS/JSC* WGNE Res. Act. in Atmos. and Ocea. Modelling, **35**, 05-17 – 05-18.

Saito, K., K. Kato, H. Eito, and C. Muroi, 2001: Documentation of the Meteorological Research Institute / Numerical Predictio Division unified nonhydrostatic model. *Tech. Rep. MRI*, **42**, 133 pp.

Sakai, R., and T. Hosomi, 2004: A change to the physical process of JMA Typhoon Model. *CAS/JSC WGNE Res. Act. in Atmos. and Ocea. Modelling*, **34**, 5-27 - 5-28.

Tauchi, T., Y. Takeuchi, and Y. Sato 2005: Use of AMSR-E data in the JMA operational meso analysis. *CAS/JSC WGNE Res. Act. in Atmos. and Ocea. Modelling*, **35**, 01-51 – 01-52.

 Table 8.1-1
 Root mean square errors of geopotential height at 500 hPa against analysis (m)

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ave
24	13.6	13.5	12.9	12.6	11.7	11.0	10.0	10.6	11.2	11.0	12.1	13.4	12.0
72	37.2	36.0	34.1	33.9	29.3	28.2	25.1	25.9	29.2	30.7	33.5	34.2	31.4
120	68.1	60.1	64.9	60.9	53.5	50.8	43.3	46.0	52.8	58.2	64.8	60.3	57.0

Northern Hemisphere (20-90N)

Table 8.1-2 Root mean square errors of geopotential height at 500 hPa against analysis (m)

Southern Hemisphere (20-90S)

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ave
24	15.4	15.5	16.6	17.0	18.3	19.8	20.9	21.7	18.5	16.7	15.4	14.3	17.5
72	40.0	39.1	43.9	46.6	45.1	51.0	53.0	57.0	50.2	41.8	39.3	35.3	45.2
120	64.6	68.1	72.2	77.4	77.1	82.8	89.5	96.9	82.7	70.4	64.4	59.6	75.5

Table 8.1-3 Root mean square errors of geopotential height at 500 hPa against observations (m)

North America

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ave
24	14.2	13.7	13.6	13.1	11.8	10.5	9.7	9.9	11.5	12.6	13.4	16.1	12.5
72	39.0	39.5	35.9	34.5	28.7	26.4	21.7	21.0	29.2	32.3	40.1	40.0	32.4
120	70.7	59.7	69.9	61.5	53.3	45.6	36.3	39.6	50.1	58.9	67.6	60.7	56.2
ob. num.	78	79	80	79	78	79	79	78	79	79	79	79	78.8

 Table 8.1-4
 Root mean square errors of geopotential height at 500 hPa against observations (m)

Europe

							-						
Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ave
24	20.9	19.0	18.2	16.9	14.3	16.6	16.5	16.8	15.8	15.6	17.5	21.3	17.5
72	45.6	40.7	35.1	31.0	28.0	29.5	28.5	26.8	33.0	36.4	37.3	36.6	34.0
120	83.5	66.0	67.6	60.6	55.0	46.7	48.9	50.8	64.7	58.4	73.8	69.6	62.1
ob. num.	55	55	55	56	56	55	55	55	51	49	51	55	54.0

						Asi	a						
Hours	s Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ave
24	4 14.3	15.6	14.7	14.3	14.7	15.4	16.2	16.5	15.2	14.3	15.3	15.4	15.2
72	2 31.9	33.9	29.1	31.7	26.4	31.3	24.4	24.9	27.6	27.8	28.5	29.9	29.0
120	59.2	56.9	48.2	56.8	44.9	44.1	37.2	39.1	46.6	50.0	49.5	48.2	48.4
ob. num	. 46	48	49	46	47	47	46	48	48	51	51	50	48.1

 Table 8.1-5
 Root mean square errors of geopotential height at 500 hPa against observations (m)

Table 8.1-6 Root mean square errors of geopotential height at 500 hPa against observations (m)

Australia / New Zealand

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ave
24	11.3	12.3	12.5	11.6	11.6	12.4	12.9	16.7	14.9	13.2	13.2	13.8	13.0
72	20.5	25.9	26.5	27.8	26.1	28.9	27.5	31.5	24.0	26.8	28.8	26.7	26.8
120	36.4	38.4	45.7	50.1	45.6	50.5	49.1	51.9	43.3	45.8	46.4	37.8	45.1
ob. num.	22	22	23	23	22	22	22	22	22	22	22	22	22.2

Table 8.1-7 Root mean square errors of geopotential height at 500 hPa against observations (m)

Northern Hemisphere (20-90N)

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ave
24	17.6	16.8	16.0	15.6	14.2	14.5	14.2	15.0	14.7	14.4	15.9	18.0	15.6
72	41.6	40.3	36.2	35.9	30.8	31.0	27.1	27.4	33.1	35.2	37.9	38.2	34.6
120	75.9	64.6	68.2	65.3	55.9	51.4	45.0	48.1	58.0	62.4	72.3	64.0	60.9
ob. num.	235	238	241	237	240	241	238	240	236	238	237	242	238.6

Table 8.1-8 Root mean square errors of geopotential height at 500 hPa against observations (m)

Southern Hemisphere (20-90S)

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ave
24	14.2	15.3	16.4	16.1	15.5	18.5	18.5	20.6	18.3	17.1	17.0	16.0	17.0
72	28.0	32.3	33.6	36.9	31.8	38.3	41.2	39.0	36.9	34.0	31.3	29.1	34.4
120	49.5	53.6	54.6	60.9	52.8	61.5	65.4	64.1	60.2	57.3	50.7	46.3	56.4
ob. num.	37	39	39	40	38	37	37	36	38	39	40	39	38.3

 Table 8.1-9
 Root mean square of vector wind errors at 250 hPa against analysis (m/s)

							L V	,					
Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ave
24	5.0	5.2	5.1	5.2	5.2	5.1	4.9	5.1	5.1	5.0	5.1	5.2	5.1
72	10.4	10.7	10.3	10.8	10.5	10.6	10.1	10.4	11.0	10.4	10.5	10.2	10.5
120	15.9	15.4	16.3	16.5	16.2	15.9	14.6	15.1	16.9	16.8	16.7	15.7	16.0

Northern Hemisphere (20-90N)

Table 8.1-10 Root mean square of vector wind errors at 250 hPa against analysis (m/s)

Southern Hemisphere (20-90S)

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ave
24	5.4	5.5	5.4	5.6	5.8	6.1	5.8	6.0	5.8	5.7	5.4	5.3	5.7
72	12.2	11.7	12.2	12.6	12.3	13.2	12.8	13.3	12.4	11.9	11.3	10.8	12.2
120	17.5	17.9	18.4	19.0	18.4	19.2	19.6	20.0	18.4	17.6	16.6	15.8	18.2

Table 8.1-11 Root mean square of vector wind errors at 250 hPa against observations (m/s)

North America

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ave
24	7.1	7.5	6.8	6.7	6.6	6.6	6.3	6.4	6.5	7.0	6.8	7.1	6.8
72	12.1	14.1	11.9	12.8	11.8	11.5	10.4	10.0	12.3	12.2	13.8	13.2	12.2
120	17.6	19.0	19.2	18.7	17.3	16.5	14.9	14.8	17.4	19.5	20.6	18.7	17.9
ob. num.	70	72	75	75	76	77	78	77	77	75	74	72	74.8

 Table 8.1-12
 Root mean square of vector wind errors at 250 hPa against observations (m/s)

Europe

								1						
	Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ave
ſ	24	7.0	6.7	6.7	6.2	6.3	6.2	6.5	6.7	6.9	6.7	6.8	7.4	6.7
ſ	72	14.1	11.9	10.7	10.4	10.4	11.7	11.3	11.6	13.1	12.1	13.0	12.3	11.9
	120	22.5	18.7	18.4	16.8	16.8	16.5	17.0	16.7	20.0	17.6	19.6	19.0	18.3
	ob. num.	53	54	55	55	53	54	54	55	49	49	48	53	52.7

							Asi	a						
	Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ave
	24	6.1	6.5	7.3	7.0	7.0	7.2	6.6	6.6	6.0	5.9	5.6	5.7	6.5
	72	9.7	10.2	10.3	11.2	11.3	13.3	11.2	11.7	10.6	10.0	8.9	8.9	10.6
	120	13.1	13.6	14.0	17.6	16.1	17.4	14.9	15.0	15.6	16.0	14.3	12.1	15.0
C	b. num.	45	46	47	44	46	45	44	47	46	50	50	51	46.8

 Table 8.1-13
 Root mean square of vector wind errors at 250 hPa against observations (m/s)

Table 8.1-14 Root mean square of vector wind errors at 250 hPa against observations (m/s)

Australia / New Zealand

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ave
24	6.3	6.7	6.6	6.6	7.1	6.9	6.4	6.3	6.6	6.4	6.6	7.0	6.6
72	9.5	9.6	10.9	11.2	11.1	11.2	10.1	9.9	10.3	9.9	10.6	10.5	10.4
120	13.6	13.6	15.4	17.4	15.6	16.2	15.9	14.8	15.7	15.3	14.8	13.9	15.2
ob. num.	33	34	34	34	33	33	33	32	32	33	33	33	33.1

Table 8.1-15 Root mean square of vector wind errors at 250 hPa against observations (m/s)

Northern Hemisphere (20-90N)

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ave
24	6.6	6.8	6.7	6.5	6.5	6.5	6.4	6.5	6.4	6.4	6.3	6.6	6.5
72	12.0	12.1	10.8	11.5	11.1	11.8	11.0	11.2	12.1	11.6	11.9	11.5	11.6
120	18.1	17.2	17.3	17.7	16.7	16.7	15.8	15.8	18.1	18.0	18.5	16.8	17.2
ob. num.	220	226	229	226	230	233	232	234	228	229	227	231	228.8

Table 8.1-16 Root mean square of vector wind errors at 250 hPa against observations (m/s)

Southern Hemisphere (20-90S)

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ave
24	6.9	7.1	6.9	7.2	7.2	7.5	7.1	6.8	7.3	7.3	7.1	7.5	7.2
72	10.8	10.9	11.8	12.5	12.0	12.5	11.8	11.4	11.6	11.8	11.6	11.6	11.7
120	15.6	15.9	16.9	18.7	17.1	17.5	17.9	16.9	17.2	17.1	16.2	15.5	16.9
ob. num.	41	44	44	45	44	43	43	41	44	44	46	44	43.6

 Table 8.1-17
 Root mean square of vector wind errors at 850 hPa against analysis (m/s)

	Тгоріс														
Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ave		
24	2.3	2.3	2.3	2.3	2.3	2.4	2.3	2.4	2.4	2.4	2.4	2.2	2.3		
72	3.6	3.7	3.7	3.6	3.6	3.8	3.6	3.9	3.7	3.7	3.6	3.5	3.7		
120	4.3	4.4	4.5	4.2	4.3	4.5	4.2	4.7	4.4	4.3	4.2	4.1	4.3		

 Table 8.1-18
 Root mean square of vector wind errors at 250 hPa against analysis (m/s)

 Tropic														
Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ave	
24	4.7	4.8	4.8	4.6	4.7	4.8	4.5	4.6	4.5	4.5	4.4	4.4	4.6	
72	7.6	8.0	8.0	7.4	7.5	7.6	7.2	7.3	7.4	7.0	7.2	6.9	7.4	
120	9.4	9.6	9.6	9.0	9.1	9.3	8.6	8.8	8.7	8.5	8.5	8.1	8.9	

Table 8.1-19 Root mean square of vector wind errors at 850 hPa against observations (m/s)

Tropic

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ave
24	4.1	4.2	4.2	3.9	4.0	4.5	4.0	4.2	4.1	3.9	3.9	4.1	4.1
72	4.6	4.7	4.8	4.3	4.4	5.3	4.7	5.0	4.7	4.6	4.2	4.6	4.7
120	5.0	5.2	5.4	4.7	4.8	5.6	4.8	5.6	5.1	5.2	4.7	5.2	5.1
ob. num.	34	35	35	34	33	33	34	33	32	34	34	33	33.7

 Table 8.1-20
 Root mean square of vector wind errors at 250 hPa against observations (m/s)

Tropic

Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ave
24	6.4	6.7	6.6	6.1	6.2	6.6	5.9	6.4	5.8	6.0	5.8	5.8	6.2
72	8.2	8.7	8.6	7.7	7.5	7.8	7.2	7.8	7.2	7.6	7.2	7.3	7.7
120	9.4	10.1	10.0	9.0	9.0	8.9	8.2	9.1	8.3	8.8	8.2	8.3	8.9
ob. num.	33	34	34	33	32	32	32	32	31	33	33	32	32.6