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UNCERTAINTY IN SEASONAL FORE­
CAST ING. Any prediction of the future evolution 
of the Earth system requires an associated assessment 
of its uncertainty. This is true whether the forecast is 
for the days ahead or is a longer-term prediction for 
the following months and seasons.

For seasonal forecasts, the uncertainty associ-
ated with inexact initial conditions, which can grow 
rapidly in time, is usually addressed by running 
multiple forecasts with perturbations applied to the 
initial state of the ocean and atmosphere (Arribas et 
al. 2011; Stockdale et al. 2011). The idea is that the 
perturbed initial conditions are of a suitable mag-
nitude to represent the uncertainty in the observa-
tional measurements and the analysis tools that are 

used to process them. As the forecast evolves, the 
differences between the forecasts, known as the en-
semble “spread,” should therefore reflect the typical 
forecast error, or “uncertainty”; in other words, the 
eventual real-world evolution should be contained 
within the cluster of this forecast ensemble. In tan-
dem, uncertainty in forecasts is also contributed to 
by our inexact representations of the Earth system 
physics. This contribution to uncertainty is sampled 
by employing different Earth system models (Yun 
et al. 2005; Weisheimer et al. 2009; Smith et al. 2013), 
the so-called multimodel approach, which is often 
supplemented by the use of perturbations to physical 
processes, known as stochastic physics schemes, to 
further account for structural errors in a particular 
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model (Buizza et al. 1999). The use of ensembles to 
quantify uncertainty enables forecasting probabilities 
of different outcomes, which in turn demands that 
forecast evaluation be conducted using probabilistic 
skill metrics (e.g., Candille and Talagrand 2005).

The advantage of multimodel approaches over 
a single seasonal forecast model has been amply 
demonstrated (e.g., Hagedorn et al. 2005). Multiple 
models will employ a range of methods for represent-
ing small-scale physical processes and numerically 

integrating the underlying equation set, usually re-
sulting in a partial cancellation of the biases and er-
rors of individual models. These biases of individual 
models nevertheless require calibration, both for 
communication of forecasts to the public and for 
their use in applications such as health, agriculture, 
and energy (e.g., Challinor et al. 2005; Morse et al. 
2005). To accomplish this, forecasting centers ac-
company their predictions of the future with sets of 
forecasts conducted for dates in the past, referred to as 

Table 1. Details of modeling systems that contribute to the CHFP database. The column “Daily T/P” indi­
cates the availability of (at least) daily precipitation and 2­m/surface temperature. For the other systems, 
only monthly averaged data are presently available as of November 2017.

 Institution  Model Retrospective Forecast No. of Daily T/P Reference(s) 
 (country)  period months ensemble 
     members 

Meteorological JMA/MRI-  1979–2010 7 10 ü Takaya et al. (2017a) 
Research  CGCM1 
Institute (MRI)- 

JMA/MRI-  1981–2011 7 10  Takaya et al. (2017b) JMA (Japan) 
CGCM2

 

Met Office  L38GloSea4 1989–2003 5 9  Arribas et al. (2011) 
(United  L85GloSea4 1989–2010 5 9  Fereday et al. (2012) 
Kingdom)

 GloSea5a 1996–2009 3 24  MacLachlan et al. (2015) 

CCCma  CMAM 1979–2009 4 10 ü Scinocca et al. (2008) 
(Canada) CMAMlo 1979–2009 4 10 ü Sigmond et al. (2008)  
  CCCma- 1979–2010 12 10 ü Merryfield et al. (2013) 
  CanCM3 
  CCCma- 1979–2010 12 10 ü von Salzen et al. (2013) 
  CanCM4 

NOAA  CFS 1981–2007 9 7 ü Saha et al. (2006) 
(United States) 

MétéoFrance  ARPEGE 1979–2008 4 11  Voldoire et al. (2013) 
(France) 

CAWCR  POAMA 1980–2009 9 10  Cottrill et al. (2013) 
(Australia) 

CCSR- MIROC5 1979–2011 12 8 ü Watanabe et al. (2010); 
University of       Imada et al. (2015) 
Tokyo (Japan)  

ECMWF  ECMWF-S4 1981–2010 7 15  Molteni et al. (2011) 
(international) 

MPI (Germany) MPI-ESM-LR 1982–2012 12 9  Baehr et al. (2015)

  MPI-ESM-MR 1981–2012 7 10  Stevens et al. (2013);  
       Jungclaus et al. (2013)

 a Global Seasonal Forecast System.
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To facilitate comparison, CHFP uses a common 
grid of 2.5° × 2.5° for atmospheric fields and 1° × 1° 
for oceanic variables. The self-describing network 
Common Data Form (netCDF) format is adopted, 
and three types of metadata are specified in each case: 
dimensions, variables, and global attributes. Work 
is ongoing to ensure that metadata and dimension 
conventions are compliant to allow an impending mi-
gration to the Earth System Grid Federation (ESGF) 
to take place.

The database is accessed by scientists around the 
world. Since its inception the database has seen a steady 
increase in active users, who originate from more than 
30 countries. Figure 1 shows the evolution of hindcast 
systems included in CHFP and the total download, 
per year, from 2012 to 2016. A gradual increase in the 
number of models is visible.

POTENTIAL RESEARCH USE OF CHFP. 
There is obviously a wide range of research questions 
that can be addressed with such a hindcast dataset. 
Many uses of seasonal prediction hinge on the pre-
diction or determining the limits of predictability 
of near surface temperatures and of rainfall in the 
tropics (Rajeevan et al. 2012). Seasonal forecasting 
has also shown recent application in midlatitudes, 
with current modeling systems now showing skill 
at predicting the North Atlantic Oscillation (NAO) 
for the winter ahead (Scaife et al. 2014). Yuan et al. 
(2015) demonstrated the use of CHFP precipitation 
hindcasts in combination with those of the North 
American Multimodel Ensemble (NMME; Kirtman 
et al. 2014) for hydrological applications both in tropi-
cal and midlatitude basins.

hindcasts. Comparing these hindcasts with the actual 
measured evolution of the atmosphere and surface 
measurements of temperature and precipitation al-
lows the biases to be characterized and accounted 
for (Di Giuseppe et al. 2013a,b). For this process to be 
robust, and not be subject to the vagaries of interan-
nual variability, these hindcast suites need to span a 
large number of years, typically two decades or longer. 
The hindcast suite of ensemble integrations therefore 
represents a significant investment of supercomput-
ing resources.

THE CLIMATE­SYSTEM HISTORICAL 
FORE CAST PROJECT. Leading operational and 
research centers around the globe thus collectively 
possess a sizable database of past hindcasts that poten-
tially represents an immensely valuable resource for 
the research community interested in questions per-
taining to seasonal prediction and predictability. For 
this potential to be realized, the hindcast suites need 
to be freely and publicly available, using a common 
format to facilitate their manipulation and analysis. 
The World Climate Research Programme’s (WCRP) 
Working Group on Subseasonal to Interdecadal 
Prediction (WGSIP) therefore initiated a project 
known as the Climate-System Historical Forecast 
Project (CHFP) to achieve these aims, with the proj-
ect launched at the WCRP Workshop on Seasonal 
Prediction in June 2007 (Kirtman and Pirani 2009). 
The CHFP invites leading centers to contribute their 
hindcast suite on a voluntary basis to a common da-
tabase hosted at Centro de Investigaciones del Mar y 
la Atmósfera (CIMA) in Argentina. These hindcasts 
are made freely available for noncommercial purposes 
through a web portal, while advanced users can access 
files through wget or Open-Source Project for a Net-
work Data Access Protocol (OPENDAP)-based scripts.

A description of the contributing centers and mod-
els is given in Table 1. As a guide to data producers, 
a set of 27 atmospheric and 13 oceanic variables are 
requested as monthly averages. Although not all cen-
ters are able to fulfill the full complement, a common 
set of nine variables are available as monthly means 
from all centers. Daily data submission is also encour-
aged where resources allow, and as a minimum, daily 
(near) surface temperature and precipitation output 
are presently available for seven contributing systems 
(Table 1, column 6). (For a full list of up-to-date vari-
ables available the reader is referred to http://chfps 
.cima.fcen.uba.ar/DS/summary2.php.)

Fig. 1. Evolution of the number of hindcast systems 
contained in the CHFP database (blue bars) and total 
download (red curve; in GB) between 2012 and 2016.

http://chfps.cima.fcen.uba.ar/DS/summary2.php
http://chfps.cima.fcen.uba.ar/DS/summary2.php
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To provide guidance to the use of the database 
and also avoid duplication of efforts, WGSIP also 
supports specific sponsored subprojects. These have 
included the Seasonal Prediction Intercomparison 
Project (SMIP), the first and second Global Land–
Atmosphere Coupling Experiments (GLACE), the 
Stratosphere-Resolving Historical Forecast Project 
(stratHFP), and the Sea Ice Historical Forecast Proj-
ect (iceHFP). In addition, recently initiated WGSIP 
projects are the Long-Range Forecast Transient Inter-
comparison Project (LRFTIP); SNOWGLACE, which 
is evaluating the impact of realistic snow initialization 
on skill of subseasonal-to-seasonal forecasts; and 
WGSIP’s teleconnections initiative that is aimed at 
diagnosing tropical–extratropical interactions at 
seasonal and subseasonal time scales. Many of these 
projects were designed to examine the impact of a 
certain component of the Earth system (e.g., land 
surface, stratospheric phenomena such as the quasi-
biennial oscillation, and sea ice) on prediction and 
predictability. WGSIP’s projects frequently draw 
on the CHFP database, supplemented by additional 
sensitivity integrations when needed. Further details 
of the recently initiated WGSIP projects are available 
in Merryfield et al. (2017), with Butler et al. (2016) and 
Osman et al. (2016) reporting on the research deriving 
from stratHFP and SMIP, respectively. Osman and 
Vera (2017) made an assessment of the predictability 
and prediction skill of climate anomalies over South 
America from CHFP models and confirmed that the 
multimodel ensemble performed on average better 
than any single model.

Ideas for CHFP-based experiments can be submitted 
to WGSIP for consideration for support, which may lead 
to participating centers conducting additional experi-
ments. The only rule for consideration is that suggested 
model hindcast experiments should be conducted in 
true forecast mode and should not incorporate any in-
formation concerning the climate or environment after 
the experiment initialization, such as data concerning 
the evolution of the sea surface temperatures (SSTs) or 
the occurrence of volcanic eruptions.

AN EXAMPLE ANALYSIS: ENSO. Here, we 
will brief ly show one example of the multimodel 
collective hindcast skill at predicting the SST pat-
terns associated with the El Niño–Southern Oscil-
lation (ENSO) in the Pacific Ocean and the associ-
ated rainfall patterns. Skillful prediction of this 
mode of Pacific SST variability is important owing 
to its near-global impact on surface precipitation 

through teleconnections. In the following analysis, 
all ensemble members of all prediction systems are 
combined into one superensemble, with each integra-
tion weighted equally. Forecast systems with larger 
numbers of ensemble members thus contribute more 
to the superensemble than those systems with few 
integrations.

The evolution of the Niño-3.4 (a central–eastern 
Pacific region: 5°S–5°N, 170°–120°W) SST is often 
used to monitor ENSO. Niño-3.4-averaged SST anom-
alies based on NOAA's Optimum Interpolation Sea 
Surface Temperature (OISST) observational analysis 
and the multimodel ensemble average for a core set of 
CHFP prediction systems at lead times of 0, 3, and 6 
months is presented in Fig. 2. The close match of the 
observations and forecast SST at the short lead time is 
not only due to the forecast quality, since the temporal 
variation in SST is mostly derived from the changing 
initial conditions; a forecast based simply on persist-
ing the initial conditions or the initial-condition 
anomaly would give a similar visual impression of a 
reliable forecasting system and has nearly the same 
skill, as quantified by the anomaly correlation values 
in the top-right panel of Fig. 2. This emphasizes the 
importance of using forecast skill metrics that judge 
the forecast in terms of its performance relative to a 
baseline forecast. At lead times of 3 and 6 months, the 
ensemble mean is still able to reproduce the evolution 
of the Niño-3.4 SST anomalies, and the advantage of 
the CHFP forecast models over persistence is clear.

The longer-term predictability of SST associated 
with ENSO results in improved predictions of pre-
cipitation anomalies, both locally over the Pacific and 
globally through teleconnections in both the Northern 
Hemisphere summer and winter (Fig. 3). The com-
posite rainfall anomaly of La Niña minus El Niño 
years shows a strong correspondence at a lead time of 
0 months over the Pacific Ocean basin, the Americas, 
and the Indian Ocean Basin. There are, however, 
some significant spatial differences over the Indian 
subcontinent during the monsoon, and likewise over 
central and West Africa, where ENSO teleconnections 
are fairly weak and monsoon precipitation is more 
strongly influenced by the Atlantic and Gulf of Guinea 
SST dipole (Camberlin et al. 2001).

As stated earlier, an ensemble of forecasts is used to 
sample various uncertainties in the forecasts due to er-
rors in initial conditions or, when multiple or perturbed 
models are considered, the modeling system itself. If, 
for a given quantity such as surface temperature, the 
differences between the ensemble members are smaller 
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contributing models. In some cases the ensemble mean 
error is more than twice that of the ensemble spread. 
The figure also clearly demonstrates the major ad-
vantage of employing a multimodel approach, in that 
when the various modeling systems are combined into 
a single superensemble that consists of all ensemble 
members of each modeling system, the combination of 
different modeling approaches inflates that ensemble 
spread to match the error growth almost exactly.

than the errors in the forecast, it implies these sources 
of error are underestimated, and the forecast is deemed 
“overconfident.” Likewise, in rare cases the opposite 
can occur, where models have too much spread and are 
underconfident (Kumar et al. 2014; Eade et al. 2014). 
However, it is clear when examining Fig. 4, which 
compares Niño-3.4 ensemble spreads and root-mean-
square errors (RMSE), that overconfidence is a com-
mon deficiency in the tropics for many of the CHFP 

Fig. 2. (left) Seasonal­mean Niño­3.4 index (area­averaged SST anomaly in 5°S–5°N, 170°–120°W), as ob­
served (OISST analysis; black) and predicted by CHFP models (red) initialized from February, May, August, 
and November 1982–2009 at (a) 0­, (b) 3­, and (c) 6­month lead times. Circles indicate mean values and error 
bars indicate standard deviations of predictions from 95 ensemble members. (right) Comparison of CHFP 
anomaly correlation skill values with those based on persisting the observed Niño­3.4 value prior to the start 
of the forecast.
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Fig. 3. Composite precipitation differences (La Niña minus El Niño) based on years 1982–2009 in which ob­
served seasonal­mean Niño­3.4 index exceeds ±1, from (left) GPCP observations and (right) the multimodel 
ensemble at 0­month lead, for (top) JJA and (bottom) DJF.

store forecast data in version 2 of the gridded bi-
nary (GRIB2) format, a strategic choice was taken 
to archive CHFP data in netCDF format more com-
monly used in the research and climate modeling 
community. Climate prediction protocols require 
the ability to handle multiple time axes (viz., the 
hindcast start date associated with a particular real-
time forecast and the hindcast time step). To address 
this issue new protocols have been developed within 
the European Union–funded Seasonal-to-Decadal 
Climate Prediction for the Improvement of Euro-
pean Climate Services (SPECS) project. Once these 
protocols are in place, processing of large hindcast 
ensembles stored within a single netCDF file will be 
possible with standard software packages. An added 
advantage is that this will also permit the database 
to be migrated to the ESGF, which is already used 
to access the Earth system models that are assessed 
by the Intergovernmental Panel on Climate Change 
(IPCC) process. These actions will underpin the 
sustainability of the database.

The final issue regards the choice of fields submit-
ted to the database. On the one hand, the core set 

CHALLENGES AND SUSTAINABILITY. To 
ensure that the CHFP database is sustainable and well 
utilized by the research community over the longer 
term, a number of challenges need to be addressed. 
First and foremost, the forecasting systems that have 
contributed to the CHFP are not static but are subject 
to intermittent upgrades with improvements to model 
physics and data assimilation systems. With each new 
release, a new set of hindcasts is conducted to ensure 
changing bias characteristics can be accounted for. 
If the CHFP is to remain relevant for research, it is 
imperative that each new state-of-the-art system is 
included in the database. Indeed, by retaining all 
earlier model releases, the intention is that the CHFP 
will serve to document the systematic improvement 
in seasonal forecasting systems over time. A key 
challenge to this endeavor is that, at present, both the 
submission of data and the maintenance of the CHFP 
database is conducted on a voluntary basis without 
external funding sources.

A second aspect that is critical to sustainability 
is the use of a data format that is self-describing 
and standard. While many operational centers 



2299AMERICAN METEOROLOGICAL SOCIETY |NOVEMBER 2017

Fig. 4. RMSE (black) and ensemble standard deviation (red) for Niño­3.4 prediction by nine CHFP models and 
the multimodel ensemble, as a function of lead time for predictions from August 1982–2009.

in international multiorganization projects. As ex-
amples of the open-access development, data from 
the most recent European Organisation for the Ex-
ploitation of Meteorological Satellites (EUMETSAT) 
launches in the sentinel series of satellites are made 
available in near–real time, emulating access rights 
for remote sensing products that have long been 
the norm in the United States. Many journals and 
funding agencies now insist on open data policies 
as a condition for publication or financial support. 
Political pressure associated with the climate change 
debate has started to lead to national meteorological 
agencies releasing additional station records to the 
public, beyond those already available on the global 
telecommunications system (GTS). Climate mod-
eling undertakings that are assessed by the IPCC 
have been open access since inception and since the 
Fifth Assessment Report have included coordinated 
experiments regarding decadal prediction. Leading 
operational centers from around the world have 
submitted their short- to medium-range forecasts 
in near–real time to the open-access The Observ-
ing System Research and Predictability Experiment 
(THORPEX) Interactive Grand Global Ensemble 
(TIGGE; Bougeault et al. 2010) database for a num-
ber of years, which has recently been emulated from 
2015 by the subseasonal to seasonal (S2S; Vitart et 
al. 2016) database.

The CHFP database therefore represents another 
piece of the meteorological open-access puzzle, mak-
ing a vast set of seasonal forecasts freely available to 
the research community, facilitating the move toward 

of variables should not be too large to ensure that 
data volumes do not become too excessive and the 
submission process too onerous for contributing 
centers, which is particularly important for voluntary 
undertakings. On the other hand, many research 
questions or applications modeling undertakings 
require noncore model variables or data with daily 
frequency and must therefore make recourse to the 
subset of models for which such data are available. 
Additional noncore fields are submitted on an ad 
hoc, center-by-center basis, with the result that the 
available model set changes according to the scientific 
question posed. The database would be more robust 
for research purposes if it adhered to a more rigid 
protocol of a core set of variables, supplemented by 
additional dataset tiers for modeling centers willing to 
provide them. Ideally, these additional variables and 
their respective archiving frequency would evolve in 
time in response to requests from database users, and 
feedback from the user community is thus strongly 
desirable and encouraged.

OUTLOOK. We are presently experiencing an un-
deniable and inexorable evolution toward open data 
policies in support of research institutions and their 
undertakings. Open access ensures the scientific 
potential of data is maximized for the full benefit of 
society, increases scientific feedback concerning the 
strengths and drawbacks of the data, and allows fair 
and equal access to the scientific community, which 
is of particular importance to scientists in develop-
ing countries who face difficulties in participating 
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seamless prediction. As the present limitations in the 
database are addressed, the prospects for a growing 
and active user base and long-term sustainability of 
the undertaking are bright. We hope that the CHFP 
database will continue to grow and will chart the 
improvements in initialized seasonal climate predic-
tions as they increase in skill. We invite all readers 
and users to actively communicate their experiences 
with the database to the WGSIP working group so 
that this prospect becomes a reality.
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