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ABSTRACT

A system has been developed to give probabilistic warnings of severe-weather events for the United Kingdom
(UK) on aregional and national basis, based on forecast output from the European Centre for Medium-Range
Weather Forecasts (ECMWEF) Ensemble Prediction System (EPS). The First-Guess Early Warnings (FGEW)
project aims to give guidance to operational forecasters, to help them give earlier warning of severe weather in
support of the UK National Severe Weather Warning Service (NSWWS).

Calibration was applied to the EPS model output to optimize the probabilistic early warnings over an initial
training period of one winter season, and the resulting warnings were then verified over a 16-month period
spanning two winter seasons. The skill of warnings from several versions of FGEW is assessed using a range
of probabilistic skill scores, and is also compared with that of warnings issued by forecasters. Results show that
the system is capable of providing useful warnings 3—-4 days ahead with some probabilistic skill. Most of the
skill is attributable to warnings issued at low probabilities, but when higher probabilities do occur, this provides
avaluable signal that has been used by forecasters on a number of occasions to issue warnings earlier than was
done previously.

Maximum skill of the FGEW warnings is found at a lead time of 4 days, with virtually no skill at shorter
lead times of 1 or 2 days. This behavior is found to also occur in equivalent deterministic forecasts and so is
not attributable to the ensembl e perturbation strategy. Neverthelessit is suggested that while the EPS perturbations
work well for the medium range, alternative perturbation strategies may be required for successful short-range
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ensemble prediction.

1. Introduction

Over recent years numerical weather prediction
(NWP) models have improved to the extent that de-
velopments in weather prediction can now be focused
increasingly on severe or hazardous weather. The de-
velopment of severe weather usually involves strong
nonlinear interactions, often between quite small-scale
features in the atmosphere. Such interactions are inher-
ently difficult to predict since even small errors in the
analysis or timing of such features can lead to large
differences in the forecast evolution. This process is
similar to that which frequently leads to synoptic-scale
uncertainty in medium-range prediction, except that the
rapid evolution typically associated with severe weather
developments can often lead to large uncertainty oc-
curring at shorter lead times than normally expected
(Lorenz 1969). Ensemble prediction systems (EPSs;
Mureau et a. 1993; Molteni et al. 1996; Toth and Kalnay
1997) were introduced in the 1990s to attempt to quan-
tify the uncertainty in medium-range forecasts due to
synoptic-scale baroclinic instabilities. An EPS uses a
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number of runs of an NWP model, differing by small
perturbations to the initial conditions and perhaps the
model physics, to sample the probability distribution of
the forecast, and is therefore normally used to generate
probability forecasts. Operationa medium-range en-
sembles have been run by the European Centre for Me-
dium-Range Weather Forecasts (ECMWF) and the Na-
tional Centers for Environmental Prediction (NCEP)
since 1992, but to date most applications and verifica-
tions have focused on relatively common and less severe
events. This paper describes afirst attempt to apply the
ECMWEF EPS for practical probabilistic prediction of
severe weather in the United Kingdom (UK), and pro-
vides verification over an extended run of forecasts.
The Met Office provides a National Severe Weather
Warning Service (NSWWS) as part of its Public Me-
teorological Service responsibilities to national and lo-
cal government authorities (Hymas 1993). The NSWWS
includes early warnings, which are givenin probabilistic
form and may be issued up to 5 days ahead, and flash
warnings, which are issued when severe weather is ex-
pected within the next few hours with a high degree of
certainty. Historically, the probabilities for the early
warnings have been assessed subjectively by forecast-
ers, and in practice, warnings have rarely been issued
more than 1-2 days ahead. The First-Guess Early Warn-
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TaBLE 1. Definitions of some of the severe-weather events in the NSWWS.*

Event Definition
Severe gale Gusts of 70 mph or more
Heavy snowfall At least 4-cm depth of fresh snow falling within a 2-h period
Blizzard Moderate or heavy snowfall, with mean wind speeds of at least 30 mph
Heavy rainfall At least 15 mm of rainfall occurring within a 3-h period

Prolonged heavy rainfall

At least 25 mm of rainfall occurring within a 24-h period

* |n practice, forecasters issue warnings when weather conditions are expected to endanger or seriously inconvenience human activity, so
absolute values of event thresholds may be lower in heavily populated regions. We will discuss how this is handled in the FGEW system

in section 4b.

ings (FGEW) project was established to estimate prob-
abilities of severe weather objectively fromthe ECMWF
EPS in the form required for the NSWWS, with the aim
of giving forecasters more confidence to issue warnings
more frequently and earlier. Since flash warnings are
issued for the same weather events as early warnings,
and have been shown to have avery high accuracy when
verified against observations (Hymas 1993), they pro-
vide convenient proxy observations for the verification
of FGEW warnings. NSWWS definitions of severe
weather events used by the FGEW system are given in
Table 1. Section 2 of this paper will briefly review the
development and application of ensembles and consider
what we might expect of ensembles in prediction of
severe or extreme events. Section 3 will describe the
predictability of severe weather; section 4 covers the
calculation of probabilities in the form required for the
NSWWS, and introduces several variants of the FGEW
system which have been tested. Section 5 introduces the
probabilistic verification methods used. Section 6 pre-
sents verification results. Results will be discussed in
section 7, and conclusions summarized in section 8.

2. Ensemble prediction for severe weather

Operational EPSs are now well-established for me-
dium-range forecasting, having started at both ECMWF
(Molteni et al. 1996) and NCEP (Toth and Kahay 1997)
in 1992, and also at the Canadian Meteorological Center
(Houtekamer et al. 1996) in 1994. Since then, the
ECMWF EPS has been upgraded (Buizza et al. 2000)
to run with 51 members (an unperturbed control plus
25 pairs of perturbed members generated by adding and
subtracting each perturbation to the analysis) at a res-
olution of T,255L40 (approximately 80 km in midlat-
itudes with 40 vertical levels). Initial condition pertur-
bations are calculated as linear combinations of singular
vectors (SVs; Molteni and Palmer 1993; Mureau et al.
1993). These SVs are calculated using a linearized ad-
joint of the full NWP model with dry physicsat T42L40
resolution, but identify a good approximation to the dy-
namic modes with the fastest linear growth over thefirst
48 h of the forecast. Initial perturbations also include
evolved SVs, calculated 48 h previously and evolved
over that period to provide a better estimate of uncer-
tainty in the early part of the forecast (Buizza et al.

2000; Barkmeijer et a. 1999). Stochastic physics has
been incorporated in an attempt to take some account
of model errorsaswell asinitial condition errors (Buizza
et al. 1999). With these developments the EPS has ma-
tured to become the principa tool for medium-range
forecasting in most European National Meteorological
Services. Applications of the EPS at the Met Office are
described by Legg et al. (2002) and its use by Met Office
medium-range forecasters is described by Young and
Carroll (2002).

In addition to the standard 51 members of the EPS,
the ECMWF also run 5 additional ‘“‘multianalysis”
(MA) members. These are the ** control” membersfrom
the larger MA EPS described by Richardson (2001) and
use the same model astherest of the EPS, but are started
from different analyses. Four use the operational anal-
yses of different NWP centers [Met Office, Météo-
France, Deutsche Wetterdienst (DWD) and NCEP]; the
fifth is a ““consensus’ analysis calculated as the mean
of these four and the ECMWF analysis. These MA
members are currently experimental, but may be used
to provide some additional uncertainty information not
contained in the SV perturbations. Since there are only
5 MA members compared to 50 SV-perturbed members,
they are used in this paper with double weighting in
calculation of probabilities. While there is no direct ev-
idence that the MA members should be twice as likely
to be **correct” as the SV members, it is expected that
they may sample slightly different areas of uncertainty
than the SV members, and this double weighting ensures
that they can have a non-negligible impact on the fore-
cast probabilities. Several different weightingswerever-
ified experimentally over an initial trial period. Differ-
ences in performance were quite small but suggested
that a weighting of four provided the best verification.
However, with relatively little evidence to support such
a strong weighting, the more conservative weighting of
two is used operationally.

Despite these numerous devel opments from theinitial
version of the EPS, most of the verification reported in
the literature to date has been based on moderate-se-
verity events and broad-scale parameters, notably 500-
hPa geopotential height. Legg et al. (2002) presented
some verification of site-specific probability forecasts
of surface weather parameters, for which skill wasrather
limited, especially for more extreme event thresholds.
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An ensemble can only attempt to estimate the proba-
bility distribution of forecast states, and, in practice,
ensembles normally show insufficient spread to cover
the full uncertainty in the forecast. Mylne et al. (2002)
corrected this spread to provide calibrated site-specific
probability forecasts from the EPS; they showed that
calibration substantially improved the quality of ensem-
ble probabilities for nonextreme events, but actually de-
graded the skill for extreme events. The initial aim of
the FGEW project, to attempt to predict real severe
weather events from the EPS, was thus ambitious. How-
ever, it was considered important to test the ability of
the EPS to help with severe weather prediction in order
to make full use of the EPS for applications of real
concern to Met Office customers. The NSWWS early
warnings, issued up to 5 days ahead, are well-suited for
prediction with the EPS, which is designed for optimal
performance in forecasting more than 48 h ahead.

3. Predictability of severe weather

The defined requirement for the issue of early warn-
ingsin the NSWWS is a 60% probability of sufficiently
severe weather conditionsto cause danger, or significant
disruption to normal life, somewhere in the United
Kingdom. It is interesting to speculate on how often
severe weather is likely to be predictable at this level
more than about 24 h in advance. As noted in the in-
troduction, the development of severe weather normally
involves the nonlinear interaction of quite small-scale
flow anomalies in the atmosphere. One or more of these
anomalies may individually be climatologically extreme
and therefore difficult to predict, making their interac-
tions more difficult to predict. Small differences in the
position, intensity, or timing of such anomalies in the
model can lead to large differencesin forecast evol ution.
In an ensemble, if we are successful in perturbing the
features to which the forecast is sensitive, then most
members of the ensemble will therefore produce inter-
actions different from the single realization of the at-
mosphere, and the forecast probability of the severe
event will inevitably be low. Evidence from the De-
cember 1999 storms over France and Germany showed
that only a minority of ensemble members (or of de-
terministic forecasts from different centers) succeeded
in predicting severe storms, even at ~24 h ahead (Palm-
er 2002). Of those which did predict storms, there was
variability in both intensity and location of severe con-
ditions, so the local probability of severe weather at any
particular location and time was lower than the prob-
ability of severe weather occurring somewhere within
a larger region over a period of time. Thus we should
not expect an ensemble to generate high probabilities
of severe weather, especially not locally, except on rare
occasions when the atmosphere is in an exceptionally
predictable state.

There is good reason to expect that this sensitivity to
the interactions of flow anomalies is characteristic of
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the real atmosphere as much as of the NWP model. Just
as the model may be in an unstable state where its evo-
lution is sensitive, so may the real atmosphere, so the
forecast uncertainty is an inherent characteristic of the
atmosphere and not just a weakness of NWP models.
There will be exceptions to this, occasions when there
is much severe weather potential and a high probability
of realizing it (although we can never know the true
probability in the real atmosphere). However, even on
these occasions there is likely to be uncertainty about
exactly where and when severe conditions will develop.
Therefore, athough the forecast probability of severe
weather occurring somewhere within alarge region may
be high, local probabilities will still be low. The Eu-
ropean storms of December 1999 were a good example
of this. An exceptionally strong jet stream in the upper
troposphere provided the potential and was itself quite
predictable, but the fine details and resulting cyclogen-
esis were much less certain.

4. The FGEW system
a. Calculation of representative probabilities

A common concern is that end users do not under-
stand what probability forecasts mean. To avoid this it
is vital that probabilities are given for clearly defined
events. For example, awarning of heavy rain in England
must specify exactly how **heavy rain” is defined; also
whether the probability refers to * somewhere in Eng-
land” getting heavy rain, or ‘““any specific location”
within that area—two very different probabilities. For-
tunately, the NSWWS specifies events quite clearly: an
event may be observed anywhere within the area stated
for the forecast to verify. Table 1 gives the definitions
of severe weather events used in the NSWWS. In early
warnings, probabilities are given for these events oc-
curring ‘‘anywhere in the United Kingdom” and also
within each of 12 local areas of the United Kingdom.
In either case, the weather need only occur somewhere
within the area.

Conventionally, ensemble probabilities are often
shown as contoured charts of grid-point values at spe-
cific times. Severe events tend to occur quite locally
over small areas at any fixed time, thus affecting only
a few grid points in each ensemble member. Given the
spread of the ensemble, those EPS members that gen-
erate severe weather are likely to have it in different
locations, and perhaps with differing timing, especially
in forecasts several days ahead. Hence, point probabil-
ities of severe events are almost invariably low. How-
ever, for NSWWS early warnings the defined weather
threshold need only be exceeded at one grid point in a
region for an EPS member to count towards the required
probability. Similarly, early warnings are issued to cover
a stated time period, typically between 12 and 36 h in
length. The precise timing of an event is not critical for
awarning several days ahead, so thethreshold need only
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TABLE 2. Proxy events used to represent NSWWS severe-weather definitions in the EPS model.
Proxy events in EPS model
NSWWS West and Central and

severe-event definitions Northwest UK Eastern UK southwest UK southern England
Severe gales Gusts of 70 mph 77 mph 68 mph 69 mph 67 mph
Heavy snow 4 cm snow within 2 h 25cmin6h 25cmin6h 25cmin6h 25cmin6h
Heavy rain 15 mm rain within 3 h 220 mmin 6 h 120 mmin 6 h 11.5mmin6 h 11.0 mmin 6 h

be exceeded at a single time within a 12-h window for
an EPS member to count toward the probability. In the
early development of FGEW it seemed sensibleto allow
this time window to expand for forecasts further ahead,
astiming uncertainty increases with lead time. However,
this resulted in the probability bias in the forecasts
changing with lead time, which made consistent tuning
of the weather thresholds impossible. Calculating prob-
abilities for regions and for 12-h time windows in this
way results in much higher probabilities of severe
weather than are seen at individual grid points at fixed
times, and also provides the best estimate of the prob-
abilities required for the NSWWS warnings.

b. Definition of severe-weather thresholds

In calculating probabilities for FGEW it was neces-
sary to specify the severe weather events carefully from
the EPS fields. Considering the weather eventsin Table
1, it isclear that these cannot be identified directly from
the EPS output fields. For example the heavy rainfall
definitionis* 15 mmin 3 h.”” EPSfields are only output
every 6 h so it is immediately necessary to define a
“proxy event” that can be identified from 6-h rainfall
accumulations. The definition of severe gales is given
in terms of gusts, but the standard EPS product is mean
wind speed, so empirically based ““gust factors,” dif-
fering over land and sea grid points, were used to es-
timate gusts from mean speeds. (Note: ECMWF does
now also offer a parameterized gust product from the
EPS. FGEW experiments have been conducted using
this product, but no overall benefit was found and it is
not used in the current implementation of FGEW.) As
well as the basic mismatch between model output fields
and the real-world warning definitions, an NWP model
with 80-km grid length cannot resolve the locally ob-
served extremes in a severe-weather event. Thus the
thresholds defined to represent severe-weather eventsin
the model are expected to be less extreme than the real -
world events in Table 1. It was noted in Table 1 that,
in practice, slightly different warning thresholds are
used in different parts of the United Kingdom, depend-
ing on the sensitivity of the region. Hence, for FGEW
purposes, the United Kingdom was divided into four
regions and the thresholds are calibrated separately for
each.

The initial specification of the proxy events was nec-
essarily somewhat arbitrary, but the precise thresholds

used were subsequently calibrated to optimize perfor-
mance over an initial training period from 17 October
2000 to 4 May 2001. For an unbiased probability fore-
cast system the mean forecast probability should equal
the sample climatology. Thresholds were calibrated to
minimize the bias in event probabilities over this train-
ing period. Because the FGEW proxy events were cal-
ibrated against forecaster-issued flash warnings (seever-
ification details in section 5), this process automatically
made allowance for any variations in the weather sen-
sitivity of the four regions. Since the forecasters issue
flash warnings according to the severe weather that ac-
tually occurs, it also made allowance for any difference
in frequency of severe weather in the training period
from normal climatology. Calibrated proxy event
thresholds used in the operational FGEW system are
presented in Table 2.

c. An alternative approach—Climatol ogy-based
severe-weather thresholds

One way around the problem of having to calibrate
the model output in terms of sensitivity is to look for
extreme forecasts relative to the model climatology. We
use an approximate climatology of the EPS model gen-
erated by Lalaurette (2003). To calculate probabilities
of severe weather as required for FGEW, we relate the
model climatology to thereal climatologiesat observing
sites to obtain an objective calibration of warning
thresholds. Compared to the standard FGEW method
described above, this method avoids the need for tuning
over along training period as the relationship between
the model and site observations can be established from
pre-existing statistical data. This approach could thus
be used to calibrate the system for any warning threshold
required, and any location for which site climatology is
available.

Warning probabilities are based on forecasts for ap-
proximately 50 UK observing sites, using corresponding
model grid points (compared with around 200 grid
points used in the standard FGEW approach). For each
observing site, the warning threshold is calibrated using
the processillustrated in Fig. 1. First, the real NSWWS
warning threshold (Table 1) is compared with the ob-
served site climatology (for the time of year) to deter-
mine the percentile point it represents on the climato-
logical distribution. The same percentile point on the
model climate distribution for the representative grid
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Fic. 1. An illustration of how model and site climatologies may
be used to determine event probabilities. The horizontal axisislabeled
in arbitrary units of weather severity. The vertical scale represents
cumulative probability, so the probability of exceeding a cumulative
value cis 1 — c. Model Warning Threshold (MWT), Real Warning
Threshold (RWT), Warning Percentile (WP).

point then defines the warning threshold for the model
forecasts. For a single point this threshold can then be
used to determine a forecast probability P, directly
from the EPS forecast distribution as illustrated in Fig.
1. For FGEW, the warning thresholds defined in this
way are used to calculate area probabilities in the same
way as in the standard FGEW system, using severa
sites to represent each area. This method is used only
for wind and heavy rain warnings, as suitable clima-
tologies for snowfall are not available.

d. FGEW system versions

Verification results will be presented from the current
operational version of FGEW, plus three experimental
versions, asfollows. Version letterswill be used to iden-
tify them in the remainder of the paper:

» Operational FGEW system (version A). The opera-
tional system uses the 51-member operational EPS;
plus the five MA members, doubly weighted com-
pared to the regular EPS members (section 2).

* 51-member EPS (version B). The standard operational
51-member EPS initialized at 1200 UTC each day.

» 102-member EPS (version C). 102-member EPS ob-
tained using the 1200 UTC operational 51-member
EPS plus a second 51-member EPS run from 0000
UTC each day.

* Climatology method (version D). As version A, but
calibrated using the climatology-based method de-
scribed in section 4c.
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TaBLE 3. Verification statistics from postevent analysis of NSWWS
Flash Warnings issued between Apr 1994 and Mar 1998 (Hymas
1995, 1996, 1997, 1998).

Flashes  Missed False
Year Events issued events adarms  Incorrect
1994/95 92 90 2 2 4
1995/96 111 109 2 4 6
1996/97 69 68 1 2 3
1997/98 116 116 0 2 2
Total 388 383 5 10 15

Also, NSWWS *‘issued” warnings will be referred to
as ‘“N” in some of the comparisons that follow. These
versions are labeled on all of the figures and referred
to throughout the text.

5. Verification methodology

As stated above, early warnings are verified against
the issue of flash warnings. Flash warnings are issued
for the same severe events as early warnings but within
avery few hours of the event, when confidence s high.
Verification of flash warnings has shown a very high
correspondence with actual severe weather. Hymas
(1993) reported only two misleading messages out of
83 flash warnings issued in the first 2 yr of the service.
In subsequent years the numbers of flash warnings is-
sued by forecasters increased. Table 3 summarizes ver-
ification figures for flash warnings issued between April
1994 and March 1998 from postevent analysis published
in reports to Met Office customers (Hymas 1995, 1996,
1997, 1998). Out of 388 identified events, there were 5
missed events for which no flash warning was issued
(1.3%) and 10 false alarms (2.6%), so warnings were
assessed as incorrect on less than 4% of occasions. Giv-
en this high level of accuracy, flash warnings make con-
venient proxy observations for verification of early
warnings, avoiding the need for complex analysis of
several types of real observations.

Verifications presented herein mostly use standard
probabilistic verification scores, including Relative Op-
erating Characteristic (ROC; Stanski et al. 1989), Re-
liability and Brier score (Wilks 1995), and Relative Eco-
nomic Vaue (Richardson 2000). Much of this verifi-
cation isevent-based, using contingency tablesof ** hits”
H, “misses” M, ‘‘false alarms’ F, and *‘ correct rejec-
tions” R (Table 4). For probability forecasts, contin-
gency tables are determined for each of arange of prob-
ability thresholds, with the event deemed to be forecast

TaBLE 4. Two-by-two contingency table of events for forecast

verification.
Forecast Not forecast Totals
Observed H M H+ M
Not observed F R F+R
Totals H+F M+ R H+M+F+R
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if the probability exceeds the threshold. The event is
defined to be observed when a flash warning is issued.

Creation of contingency tables for the types of warn-
ings considered hereis complicated by the fact that both
warnings and events may span any time period. It is
thus necessary to define a set of rules by which aforecast
may be considered sufficiently accurate to be a hit, and
how to define a nonevent for a correct rejection. The
basic unit used is a calendar day, but rules were devised
to avoid double counting where awarning or event spans
2 days.

* An early warning is judged to be a hit if any part of
its validity period overlaps the period of a verifying
flash warning. However, where an early warning spans
more than 24 h and only one day is validated, the
second will record a false alarm to penalize exces-
sively long warnings.

* Where either an early warning or the verifying flash
warning spans 2 calendar days it will be counted on
the first day of validity only (regardless of which day
they actually overlap). Both warnings are then ignored
for the second day. The only exception is where the
early warning spans more than 24 h and flash warnings
are valid on both days, in which case two hits are
recorded.

Since the forecast probabilities are expected to be low
for warnings of rare events, it isimportant to design the
verification such that it resolves information about low-
probability warnings. To achieve this an irregular set of
probability thresholdsisused for the contingency tables,
with extra thresholds at low probabilities: 0.01, 0.03,
0.05, 0.09, 0.13, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.

In the NSWWS early warning probabilities are gen-
erated both for the United Kingdom as awhole, and for
each of 12 individual areas. Verification results were
produced for both, and a mixture are presented below.
As expected from the discussion above, issued proba-
bilities are generally lower for the individual areas, but
the sample sizes are larger (although not fully indepen-
dent).

One aim of the FGEW project was to encourage ear-
lier issue of warnings. Results will concentrate on the
performance of the FGEW system at 2-5 days ahead
compared to NSWWS warnings issued one day ahead,
the only range at which sufficient NSWWS warnings
are issued for meaningful verification. Note that oper-
ationally FGEW warnings based on 1200 UTC data
reach forecasters around 0600 UTC the following day,
so a 3-day (D + 3) FGEW warning can only be used
two days ahead.

A major problem with verifying severe weather warn-
ings is small sample sizes due to the rarity of events.
This problem is particularly acute when verifying prob-
ability forecasts. Results are presented here for a veri-
fication period from 1 October 2001 to 12 February
2003. (Tuning of the system was performed on a prior
verification period from 17 October 2000 to 4 May
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2001.) During the verification period there were flash
warnings issued on only 16 days for severe gales, 17
days for heavy snowfall, and 62 days for heavy rainfall.
Correspondingly, most of the results presented here will
be for heavy rainfall, with fewer for severe gales and
heavy snowfall. Inevitably, the effects of small samples
will be apparent in the results presented. Nevertheless
we believe that there are a number of consistent mes-
sages in the results, and that some useful conclusions
can be drawn.

6. Verification results
a. Relative Operating Characteristic

ROC (Stanski et al. 1989) explores the hit rate HR
= H/(H + M) and false-alarm rate FAR = F/(F + R)
(using the notation in Table 4) together. Because both
HR and FAR are stratified by the observations (there
areH + M eventsand F + R nonevents), ROC measures
the forecast system'’s ability to discriminate between oc-
currences and nonoccurrences of an event. Hit rate and
FAR are evaluated for a range of probability thresholds
from the contingency tables described above, and plot-
ted in a graph of HR against FAR, giving the ROC
curve. For lower probability thresholdsthe event isfore-
cast more frequently, resulting in higher values of both
HR and FAR; corresponding points on the graph there-
fore appear toward the top right. A perfect forecast
would have HR = 1 and FAR = 0, so for a skillful
system the curve is bowed toward the upper-left part of
the graph, indicating useful probabilistic information
that can be applied to decision-making. Forecasts with
no discriminating power have HR = FAR. A useful
summary measure of skill is the area under the ROC
curve, which is 0.5 for a skill-less system and 1.0 for
perfect forecasts.

ROC curves for heavy-rainfall probabilities over the
whole United Kingdom are shown in Fig. 2. FGEW
probabilities show clear evidence of skill, with the great-
est ROC area at D + 4, showing that the ensemble is
best able to discriminate heavy rain events at thisrange.
Thisresult isremarkable, given that for most forecasting
systems skill is greatest at short range and decreases at
increasing range. However, it is worth noting that this
result was very robust, and did not, for example, depend
on the calibration thresholds used. Altering the calibra-
tion affected the area under the ROC curves at al rang-
es, but did not ater the fact that it was maximised at
D + 4. There is no significant difference between the
different versions of FGEW. Also included in Fig. 2 are
ROC points showing the HR and FAR for deterministic
FGEW forecasts based on (i) the EPS control and (ii)
the T, 511L 60 high-resol ution deterministic model. (The
latter forecast is generated at twice the horizontal res-
olution of the EPS and with extra vertical levels, no
separate FGEW calibration has been conducted for this
model and the higher resolution allows it to resolve
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Fic. 2. ROC curves for probabilities of heavy-rainfal events occurring anywhere in the United Kingdom (plotted for all probabilities). Forecasts
for 1-6 days ahead. Data period: 1 Oct 2001-12 Feb 2003. Letter codes denote versions of the FGEW system as defined in section 4d.

severe weather more frequently, with the result that both
HR and FAR are higher for the T, 511L 60 than for the
EPS control.) It can be seen that these deterministic
FGEW forecasts also display the same behavior, that
the ROC point is closer to the top-left corner of the
graphat D + 4thanat D + 2 or D + 1. This behavior
is therefore associated with the ability of the models to
forecast this type of severe weather, and is not specific
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Fic. 3. ROC curves for probabilities of heavy-rainfall events oc-
curring anywhere in the United Kingdom (plotted for probabilities
=0.6 only). FGEW probabilities for (left) 2 and (right) 4 days ahead
are plotted, with issued probabilities 1 day ahead overlaid for com-
parison. Data period: 1 Oct 2001-12 Feb 2003.

to the ensemble methodology. This effect and its im-
plications will be discussed in section 7.

NSWWS warnings issued by forecasters (solid line)
clearly have skill at 1 day ahead, and there is a small
amount of skill at 2 days; beyond this, there have been
too few warnings issued to allow meaningful results. At
first sight D + 4 skill of FGEW warnings appears better
than the D + 1 issued warnings, but in fact much of
this skill comes from the low end of the probability
range, represented by points closer to the top-right part
of the graphs. Since the NSWWS warnings are only
issued when the UK probability is 60% or more, a fair
comparison can only be made by excluding points cor-
responding to FGEW probabilities below 60%. Thisis
shown in Fig. 3, comparing FGEW 2- and 4-day fore-
casts with D + 1 issued warnings; it can be seen that
at both 2 and 4 days FGEW is able to discriminate a
small number of events at the 60% level, but the D +
1 issued warnings are more skilful. Version D of FGEW,
using the climatology calibration method, appears to
perform slightly better than the other versions at this
60% threshold. Overall skill at the 60% threshold re-
quired for the NSWWS is very limited, but there may
be some scope for issuing alimited number of warnings
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Fic. 4. ROC curves for FGEW probabilities of heavy-rainfall

events occurring in individual areas (plotted for all probabilities) at
(left) 2 and (right) 4 days ahead. Data period: 1 Oct 2001-12 Feb
2003.

Do

earlier than has been done in the past, based on FGEW
D + 4 products.

ROC curves for 2- and 4-day FGEW forecasts of
heavy rain in the 12 individual UK areas are shown in
Fig. 4, and are similar to those for the whole United
Kingdom (Fig. 2). Results for severe gales are shown
in Fig. 5, for 2 and 4 days ahead for the whole United
Kingdom, and at 4 days for the individual areas; D +
1 issued warnings are overlaid. In each case the prob-
abilistic FGEW skill is greatest at D + 4, but with most
of the skill coming from the low probability thresholds.
Results for the EPS control and T, 511L 60 deterministic
forecasts are also included. For heavy rain in individual
areas (Fig. 4), the discriminating skill of the forecasts
isagain clearly greatest at D + 4. In the case of severe
galesthisislessclear. ROC points are close to the lower
left of the diagram and there is no consistent pattern.
This is probably due to the smaller data samples avail-
able for severe gale warnings, as the ROC point for a
deterministic forecast is sensitive to the model behavior
in individual forecasts when the sample size is small.
Results for heavy snow warnings are not shown, but are
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very similar with the best performance at D + 4 for
both probabilistic and deterministic forecasts.

b. Reliability

For an ideal probabilistic forecasting system, of all
occasions when a probability of x% is assigned to an
event, that event will occur on x% of occasions. A re-
liability diagram, in which the frequency of occurrence
of an event is plotted against the forecast probability
(binned into a series of finite ranges), illustrates the
extent to which thisideal is met (Wilks 1995). An ideal
forecasting system will produce a straight diagonal line
along y = x. A reliability diagram that strays below the
y = X line indicates overestimation of forecast proba-
bilities. A near-horizontal curve would indicate a lack
of event resolution in the forecasts, related to the ability
to discriminate whether an event will or will not happen.
Sharpness diagrams, histograms that indicate how often
each probability bin was forecast, are normally plotted
alongside to aid interpretation. In the reliability and
sharpness diagrams presented here we have used the
same set of thresholds to separate the bins as used for
the ROC contingency tables above, focusing on low
probabilities, except that we have merged the bins for
highest forecast probabilities (above 60%) to reduce the
effects of small sample sizes.

Figures 6-9 present a selection of reliability and
sharpness diagrams for heavy rain and severe gale warn-
ings. Each diagram includes the various versions of the
FGEW system at 2 or 4 days ahead, overlaid with the
issued NSWWS forecasts at D + 1 for comparison. All
the reliability diagrams show a high level of statistical
noise (jagged graphs) for higher probabilities, above
20%—40%. This is characteristic of small samples, and
is unavoidable in forecasts of rare events, but does not
prevent some useful conclusions being drawn.

Included in each diagram is a horizontal line indi-
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Fic. 5. ROC curves for probabilities of severe-gale events (plotted for all probabilities). (Ieft) Probabilities for events occurring anywhere
in the United Kingdom; FGEW 2 days ahead and issued 1 day ahead. (Center) Probabilities for events occurring anywhere in the United
Kingdom; FGEW 4 days ahead and issued 1 day ahead. (right) FGEW probabilities for events occurring in individual areas 4 days ahead.

Data period: 1 Oct 2001-12 Feb 2003.
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FiG. 6. (top) Reliability and (middle) sharpness for versions N and
A; (lower) for versions B, C and D; note logarithmic vertical scales),
for probabilities of heavy-rainfall events anywhere in the United
Kingdom for FGEW warnings 4 days ahead and issued warnings 1
day ahead. Data period: 1 Oct 2001-12 Feb 2003. The reliability
diagram plots the observed frequency of occurrence of severe weather
as a function of forecast probability. Sharpness diagrams show the
corresponding sample sizes for each category of forecast probability.
Letter codes denote versions of the FGEW system as defined in sec-
tion 4d.

cating the sample climatological frequency, and mean
probabilities are given for each forecast system for com-
parison. For an unbiased probability forecast system the
mean forecast probability should equal the sample cli-
matology. This requirement was used in the calibration
of the FGEW warning event thresholds, using a prior
set of verification data from the previous year (17 Oc-
tober 2000—4 May 2001).

Figure 6 shows reliability curves for heavy rainfall,
for probabilities of eventsin the United Kingdom, com-
paring the performances of different versions of the
FGEW system at D + 4 with that of issued warnings
at D + 1. The FGEW reliability curvesfor D + 4 show
excellent reliability for probabilities up to about 30%,
wherethe samplesizesare quitelarge. At higher forecast
probabilities the samples are noisy. Occurrence of se-
vere weather is substantially above the climatological
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Fic. 7. Asiin Fig. 6, but for FGEW warnings 2 days ahead and
issued warnings 1 day ahead.

frequency and higher than for lower forecast probabil-
ities, providing useful forecast information, but thereis
a clear tendency to overestimate the probability, indi-
cated by the curves falling below the ideal diagonal.
Looking at the D + 1 issued NSWWS warnings, aflash
warning was clearly more likely to be issued after an
early warning than when no such warning had been
issued. However, a large proportion of flash warnings
were not preceded by early warnings, as shown by the
point for an issued probability of zero which lies only
dlightly below the sample frequency. Thisis partly due
to therestriction which preventsforecastersfromissuing
warnings when the probability is less than 60%.

There is no clear difference in performance between
the different FGEW versions. There is some indication
that the 102-member version C performs better at the
higher probabilities, though no statistical significance
can be placed on this.

Figure 7 shows results for D + 2 FGEW forecasts.
In this case there is virtually no resolution. The only
positive feature isthat in the lowest two probability bins
(p < 3%) the probability of occurrence is substantially
below the sample frequency, while for all other forecast
probabilities it is, on average, dlightly above. This is
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consistent with the ROC results that indicated that there
was much better discrimination, which isclosely related
to resolution, at D + 4 than at D + 2. Comparing the
sharpness diagrams of Figs. 6 and 7 reveals that the
main difference isthat at D + 2 the EPS forecasts the
highest (and lowest) probabilities more frequently than
at D + 4 but with no corresponding increase (decrease)
in the occurrence of severe weather. Thiswould suggest
that poor performance of the ensemble at D + 2 could
be related to lack of ensemble spread, athough this
cannot explain the better performance of the determin-
istic forecasts at D + 4 seen in the ROC results.
Figure 8 presents reliability diagrams for heavy rain-
fall in the individual areas of the United Kingdom at D
+ 4for FGEW and at D + 1 for issued warnings. FGEW
reliability curves show good resolution, with a strong
positive slope, although this is slightly less than the
ideal, indicating slight overconfidence (i.e., high prob-
abilities are too high, low probabilities too low). The
issued warnings have to be interpreted with care, re-
membering that the sample is selective because warn-
ingsfor individual areas can only beissued on occasions
when the UK probability isestimated to be 60% or more,
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but given this restriction the issued probabilities appear
quitereliable. Thereisno clear distinction between most
FGEW versions, except that the climatol ogy-based ver-
sion D is overforecasting more severely at higher prob-
abilities. This version appeared in Fig. 3 to offer better
discrimination of events at high probability, but it can
now be seen that this is at the cost of significant ov-
erforecasting, which indicates that the true resolution is
at lower probabilities as with the other versions of the
system. Results for other lead times are not shown, but,
as with the ROC assessments, the FGEW system con-
sistently performs best at D + 4.

Figure 9 presents results for severe-gale events for
the whole United Kingdom at D + 4. These are broadly
similar to therainfall results, although subject to smaller
sample sizes. FGEW warnings at D + 4 show reason-
ablereliability at the lower probability thresholds. There
were no occurrences of an event following any FGEW
probability below 3% for D + 4 forecasts, and few such
cases at other forecast ranges, so the system shows good
discrimination of a severe weather risk, at least at low
probability. Issued warningsat D + 1 again have afairly
high success rate when high probabilities are issued, but
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FiG. 10. BSS (left-hand axisis skill w.r.t. null forecasts, right-hand
axisis skill w.r.t. climate forecasts) for probabilities of heavy-rainfall
events occurring anywhere in the United Kingdom for FGEW warn-
ings 1-6 days ahead. Data period: 1 Oct 2001-12 Feb 2003. Letter
codes denote versions of the FGEW system as defined in section 4d.

many events are missed due to the 60% threshold. Re-
sults for heavy-snowfall events (not shown) are similar
with a reasonable degree of resolution at D + 4, much
lessat D + 3and D + 5 and no skill for other forecast

days.

c. Brier skill scores

The Brier score (BS) is a measure of mean square
error for probability forecasts (Wilks 1995):

BS = 2 (P — P @

where p; and p, are the forecast and observed proba-
bilities, respectively, and N is the sample size; note that
p, can only be 1 (event occurred) or O (nonevent). The
Brier scoreis bounded by the values 0.0 and 1.0; alower
value represents better forecasts.

Comparing Brier scores for different events can be
misleading if their climatological probabilities are dif-
ferent, so it is more meaningful to calculate the Brier
skill score (BSS), obtained by comparing the Brier score
of the forecasting system BS,. with that obtained by
some reference forecast BS.:

BS.
BS,. ()

Typical reference forecasts used are climatology or per-
sistence. Skilful forecasts have positive BSS; anegative
BSS indicates a forecast worse than the reference fore-
casting system. For early warnings, no prior climato-

BSS=1—
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Fic. 11. Asin Fig. 10, but for probabilities of severe-gale events
anywhere in the United Kingdom.

logical probability was available, and sincethey arerare
events we chose to use a null forecast (always fore-
casting the probability to be zero) for the reference. This
shows whether the forecasts are better than the easy
“fall-back’ option of never issuing warnings. In ad-
dition, a crude estimate of the climatological frequency
of flash warnings was taken from the initial training
period used for tuning. In Figs. 10-12, BSS is plotted
relative to null forecasts, but scores relative to thiscrude
climatological forecast are also marked on the axes on
the right side of the graphs.

Figure 10 shows BSS for FGEW warnings of heavy-
rainfall events anywhere in the United Kingdom. BSS
are positive relative to both null forecasts and the crude
climatological forecasts throughout D + 1to D + 6,
except for the climatol ogy-based version D, whose skill
declines with lead time. The current operational version
of the system (A) appearsto perform slightly better than
version B excluding the MA members. The 102-member
ensemble (C) performs slightly better still, although it
is unlikely that the differences are statistically signifi-
cant. The climatology-based system (D) is relatively
poor, because, unlike the other methods, it has not been
tuned explicitly to provide reliable probabilities. The
skill of FGEW warning probabilities for events in in-
dividual areas (not shown) is lower than for anywhere
in the United Kingdom. BSS are not shown for NSWWS
issued warnings as the 60% threshold prevents valid
calculation.

BSS for severe-gale events (Fig. 11) are also positive
for al lead times out to D + 6, surprisingly increasing
at the longest lead times. Reliability and sharpness di-
agrams for D + 5and D + 6 (not shown) reveal that
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Fic. 12. Asin Fig. 10, but for probabilities of heavy-snowfall
events anywhere in the United Kingdom.

this skill comes entirely from low-probability warnings.
The current operational version of FGEW performs at
least as well as any other version. Except at D + 4,
version D again performs less well than other versions
of FGEW.

For heavy-snowfall events (Fig. 12) BSS is highest
at 2-3 days ahead, and declines at longer range. Note
here that BSS w.r.t. climate forecasts is higher than that
w.r.t. null forecasts, because the sample-mean frequency
during the training period was significantly higher
(0.100) than during the assessment period (0.034).

Overall, BSS results show that the FGEW system has
positive skill relative both to null forecasts and to the
crude estimate of climatology available. Details of the
variation in behavior with respect to forecast lead time
are not consistent, and the marked trends seen for severe
gales and heavy snowfall are probably not reliable due
to the small sample sizes available.

d. Cost-loss analysis

To get the full benefit of probability forecasts, users
need to make decisions at a probability threshold ap-
propriate to their cost-ossratio C/L. A user with alow
C/L is one who can take some protective action against
severe weather at relatively low cost, but who stands to
suffer a large loss in the event of severe weather oc-
curring without protection. Such a user should take pro-
tective action when the probability of severe weather is
quite low, whereas a user with a large C/L should only
act when the probability is high (Mylne 2002; Richard-
son 2000). Using this simple decision model, ROC ver-
ification scores can be used to estimate the relative eco-
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FiG. 13. Cost-loss diagrams for heavy-rainfall events anywhere in
the United Kingdom. Issued warnings for 1 day ahead, compared
with FGEW probabilities for 4 days ahead; line styles are used ac-
cording to legend. Data period: 1 Oct 2001-12 Feb 2003. L etter codes
denote versions of the FGEW system as defined in section 4d.

nomic value of a forecast system for a range of user
C/L (Richardson 2000).

Figure 13 shows the relative economic value of
FGEW warnings of heavy rainfall over the whole UK
at D + 4, asafunction of C/L. For areliable forecasting
system, V is greatest for C/L equal to the sample-mean
frequency of the event, in this case around 0.12 con-
sistent with Fig. 6. Also shown is the value curve for
the issued warnings at D + 1. The FGEW warnings
clearly have much greater value to users with lower
CIL, because the restriction preventing the issue of
warnings with probability below 60% prevents such us-
ers from optimizing their decision-making. The maxi-
mum value of D + 4 FGEW forecasts is much greater
than for the D + 1 issued warnings, and D + 4 FGEW
warnings have more user value than the D + 1 issued
warnings for all except a few users with C/L around
0.45. This is because the peak value, at C/L ~ 0.12, is
not well-matched to the 60% threshold limit. (One un-
usual feature of the cost-loss value curvesin Fig. 13 is
that some of them do not fall to zero at the extreme
high and low C/L values, but reach a fixed nonzero
value. Thisis an effect of the small sample sizes avail-
ablein the verification data, because thereisinsufficient
data to fully specify the ROC HR and FAR at every
probability threshold.)

Differences in the value of the different versions of
FGEW are mostly quite small. The 102-member version
C has marginally the greatest value toward the lowest
C/L ratios, as the larger ensemble size improves the
chance of capturing events at low probabilities.

Figure 14 shows the same cost—oss curves for heavy-
rainfall warnings over the whole United Kingdom given
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by the operational version A of FGEW at lead times of
1-5 days, and also issued warningsat D + 1 and D +
2. This supports the results from other diagnostics, in-
dicating that the D + 4 warnings from FGEW have the
greatest user value, both in the absolute value of the
forecasts and aso in the range of different users (C/L
ratios) who can benefit. The greatest-value issued warn-
ings are those issued at D + 1, but the sample size at D
+ 2isvery small which makes comparison difficult. Peak
value of the FGEW warnings is higher than the D + 1
issued warnings for all lead times except D + 1.

Figure 15 is similar to Fig. 13, but for severe gales.
The effects of small sample sizes are more severe, so
conclusions may not bereliable. The operational version
A of FGEW appears to give the best performance. All
versions are better than the D + 1 issued warnings for
lower C/L values, but unlike the rainfall warnings, the
issued warnings have more value for users with higher
CIL.

7. Discussion

A consistent result obtained throughout the FGEW
verification described above is that the forecasts have
greatest skill at D + 4, with much lessat D + 2. This
result has proved extremely robust for all the weather
types verified (heavy rainfall, severe gales, and heavy
snowfall) and is not affected by the calibration described
in section 4b. Calibration, performed by balancing the
forecast bias so that the mean forecast probability is
close to the climatology of the training sample, alters
the absolute values of the area under the ROC curves
but not the fact that D + 4 forecasts provide the largest
ROC area. As shown in Figs. 6 and 7, once the cali-
bration has been performed the D + 4 forecasts also
come closest to providing reliable probability forecasts.
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Fic. 15. Asin Fig. 13, but for severe-gale events.

While this result is most apparent in the probability
forecasts from the EPS, it was shown in Figs. 2, 4, and
5 that it also applies to deterministic forecasts based on
either the EPS control or the high-resolution T, 511L 60
model. It therefore appears to be characteristic of the
ECMWF NWP system for the type of extreme weather
events being predicted by FGEW, and not caused by
anything specific to the EPS, such as the perturbation
methodology. T. Palmer (2003, personal communica-
tion) has noted that for some previous extreme weather
events, notably the 16 October 1987 storm over southern
England, numerical forecasts initiated several days
ahead have been better than shorter-range forecasts. A
possible explanation of the consistency between deter-
ministic and probabilistic resultsisthat when the control
forecast is inclined to evolve in a particular direction,
either toward or away from severe weather, the ensemble
perturbations are not strong enough to divert it from this
path in the early part of the forecast, and it is only by
allowing the perturbations to evolve nonlinearly over a
longer period of around 4 days that the ensemble be-
comes able to produce a more realistic sampling of the
likelihood of severe weather. It isimportant to note that
this should not be seen as a criticism of the EPS per-
turbations, which perform well at the medium-range for
which they are designed.

By verifying forecasts of severe events over a sus-
tained period of time, the FGEW verification may thus
provide some quantification of a problem with short-
range NWP which has not previously been documented.
Most previous verifications have been for less extreme
weather events and have not shown such behavior. For
example Barkmeijer et al. (1999) showed that for EPS
forecasts of 500-hPa height anomalies the ROC area
decreased steadily onwards from D + 2, the optimi-
zation time of the SV perturbations. Buizza et al. (2000)
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showed similar results for precipitation forecasts. One
of the few independent EPS verifications carried out for
similarly extreme events, and which provides some sup-
port for the current results, was by Mullen and Buizza
(2001, 2002) who verified rainfall forecasts over the
United States. They reported a significant dip in per-
formance at day 2 for the heavier rainfall thresholds (20
and 50 mm per day) only, athough this was most ap-
parent in the BSS, specifically in the reliability term.

Although performance is better at D + 4 than D +
2 for deterministic as well as probabilistic forecasts, the
extra verification information available from the ensem-
ble forecasts may offer some help in identifying the
cause. Mullen and Buizza (2001) showed that the EPS
is underdispersive for precipitation forecasts, more so
a D + 2 than at D + 5. Underdispersive ensemble
forecasts typically result in overconfident probability
forecasts, with reliability diagrams having a slope of
less than 45°, as observed in the FGEW verification.
Thusitislikely that the better probabilistic performance
of FGEW at D + 4thanat D + 2 isdueto an improved
ensemble spread. Some evidence to support thisis pro-
vided by the sharpness diagrams included alongside the
reliability diagramsin Figs. 6 (D + 4) and 7 (D + 2).
High probabilities are forecast on far more occasions at
D + 2 than a D + 4. However, the corresponding
reliability diagrams show that these additional forecasts
are almost entirely false alarms, as the high probabilities
are not related to a higher occurrence of observations.
The numbers of forecasts of zero probability are also
reduced, from around 200 at D + 2 to around 130 at
D + 4. Most of these zeroes become only low proba-
bilities, but the effect isgreatly to improve thereliability
curve between 0 and 30% probabilities, almost elimi-
nating events occurring when forecast probability is
zero. Thus the spread of the forecasts at D + 4 appears
to capture the uncertainty better than that at D + 2,
which is consistent with the hypothesis above that the
EPS perturbations are not strong enough to divert the
model from its deterministic path in the early days of
the forecast.

This hypothesis can explain why the ensemble be-
haves in the same way as the deterministic forecast, but
not why the deterministic forecast is poorer at short
range. This may be related to the ability of the model
to spin up severe weather developments. It was noted
above that the improvement in the forecastsat D + 4
compared to D + 2 came from a reduction in the num-
bers of both missed events and false alarms. This aso
applies to the deterministic forecasts from the control
and T,511L 60 model. Thus any spinup issue relates not
just to an ability to develop severe weather (missed
events), but also on occasions to develop less-severe
weather (false alarms). Thus, this suggests that it is by
evolving over a longer period of time, when nonlinear
effects have more opportunity to significantly change
the forecast evolution, that the model is better able to
simulate thereal probability of an extreme development.
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Why this should be is not clear and requires further
research. Oneinteresting question would be whether this
behavior is specific to the ECMWF NWP system, or
whether any other models behave similarly for extreme
events.

The finding that ensemble forecasting may require a
longer period of perturbation growth to provide reliable
probabilities for more extreme events could have con-
siderable implications for future developments of en-
semble prediction. Most current operational ensembles,
such as the ECMWF EPS, are designed for medium-
range prediction, but current research is moving toward
short-range ensembles, and a major aim of thiswork is
to provide probabilities for severe-weather events. If the
hypothesis above is correct, this would suggest that al-
ternative perturbation strategies having more impact
early in the forecast period may be required for suc-
cessful short-range ensemble prediction. A simple am-
plification of the EPS perturbations would not be ap-
propriate as this would result in overdispersion of the
ensemblein medium-range predictions and possibly also
at the short-range for nonsevere events. Various alter-
native strategies are under investigation, for example
moist SV's optimized over a shorter period (Coutinho et
al. 2004) or the Ensemble Transform Kaman Filter
(Bishop et a. 2001; Wang and Bishop 2003), and some
of these may prove more effective for short-range pre-
diction of severe weather. Alternatively, it could be that
to provide useful probabilities of severe weather re-
quires a longer period of ensemble growth regardliess
of the perturbation strategy employed. If thisisthe case
then it may severely limit the potential for use of en-
semble prediction in the short range, at least until it is
possible to run models at sufficiently high resolution to
fully resolve the nonlinear processes, such as convec-
tion, which are most important at the short range.

8. Conclusions

Probabilistic prediction of severe weather has for
some time been seen as an ideal application of ensemble
prediction, but few attempts have yet been made to ap-
ply ensembles operationally in this way. We have de-
scribed a system built in support of the UK NSWWS,
to aid forecasters in issuing warnings earlier, and with
greater confidence in probabilities. Severe weather
thresholds for the ECMWF ensemble model were cal-
ibrated by tuning the probability bias over an initia
training period. Verification results were then obtained
over a subsequent period which included two winter
seasons. Despite this long verification period, sample
sizesare small dueto therare nature of the severe weath-
er events concerned, which is alimitation especially for
probabilistic verification techniques. Neverthel ess some
useful conclusions can be drawn.

Predictability arguments suggested that we should not
expect to be able to predict severe weather with high
probabilities on many occasions, and thiswas confirmed
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in the results. On most occasions when severe weather
occurred it was only possible to predict it at low prob-
abilities. This is considered to be a predictability char-
acteristic of severe weather, and not just a limitation of
the prediction method. Development of severe weather
often requires the nonlinear combination of several fac-
tors, and so the probability of occurrence has a fun-
damental low probability in the atmosphere as well as
in amodel. In fact, on those occasions when the FGEW
system forecast higher probabilities of severe weather,
above about 30%, the reliability diagrams showed that
these forecasts were over-confident and the actual per-
cent occurrence was considerably lower than forecast.
Nevertheless the actual percent occurrence was sub-
stantially higher than climatology on these occasions,
and this therefore still represented useful forecast in-
formation which could potentially be calibrated before
issue to end users.

The FGEW system has been shown to have a con-
siderable capability in discriminating occasions when
severe weather is possible or likely. This capability is
mostly at low probabilities and therefore is of greatest
benefit to userswith lower cost—lossratiosfor protective
action. By contrast the warnings currently issued
through the UK NSWWS are restricted to high proba-
bilities (60% or more) which does not allow users who
can make use of low-probability alerts to obtain all the
benefit potentialy available from the EPS. Ensemble
prediction systems offer great opportunities for im-
proved warnings of severe weather events, and these
will improve further as ensembles are developed to fo-
cus more on severe weather on both medium and short
time scales. However, to pass on the full benefit of the
improved forecast information offered by ensembles to
end users requires some fundamental changesin theway
many forecast services are structured, interpreted and
used.

The EPS provides the most reliable probabilities of
severe weather at D + 4, while forecastsat D + 2 are
virtually useless. Deterministic forecasts based on asin-
gle model forecast display this same characteristic, so
thisis not related to the EPS perturbation methodol ogy.
This behavior has not been observed for less extreme
events where the best performance has been around 2
days or less. This clearly illustrates that we cannot as-
sume that, because an EPS performs well for one fore-
cast range or event threshold, it will do so at another.
It is important to verify the performance at all ranges
and thresholds of interest, and then only apply theresults
operationally where appropriate according to the veri-
fication results.

Since the difference in performance at D + 4 and D
+ 2isobserved in deterministic as well as probabilistic
forecasts, the root cause clearly lies in the basic NWP
system, either the data assimilation or the ability of the
model to spin up severe weather correctly. This merits
further investigation. While Mullen and Buizza (2001,
2002) observed some similar behavior with extreme
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rainfall thresholds, we are not aware of any other ver-
ification showing such a strong improvement in per-
formance at D + 4 compared to D + 2. Similar inde-
pendent verification of other forecast systems for ex-
treme or rare events would be of great interest to confirm
whether similar behavior is seen, or whether thisis pe-
culiar to the FGEW method of diagnosing and verifying
severe weather.

Although the root cause of this behavior does not lie
in the EPS perturbations, we would ideally hope that
an ensemble would provide perturbed forecasts span-
ning the uncertainty better. Results suggest that the EPS
perturbations may not be strong enough to sample the
full uncertainty at D + 2. Alternative perturbation meth-
ods, providing more impact in the short range, may be
required for successful short-range ensemble prediction.
However we cannot discount the possibility that for ex-
treme events, when we are sampling in the tail of the
forecast distribution, a longer period of nonlinear evo-
lution may always be required before the ensemble can
provide a random sampling of the pdf.

Alongside the operational version of FGEW (A) we
also tested a number of experimental versions. The dif-
ferences between these systems were in fact relatively
small, and the resulting differencesin performance were
also small and not statistically significant. The opera-
tional version performed as well as any of the test sys-
tems. For users with very small C/L ratios the 102-
member ensemble (C), created by combining the stan-
dard 1200 UTC EPS run with the experimental 0000
UTC run, which provides an additional 51 members,
provides a little extra information by improving the
chance of capturing events at very low probability. The
version calibrated objectively using model and site cli-
matologies (D) was the least skillful, particularly in
terms of Brier score for severe gales. This is not sur-
prising since the thresholds in the other versions have
been tuned using a previous training set to optimize the
probabilities, but the climatology method offers a useful
approach for setting up an initial calibration that can
subsequently be tuned in the light of experience.

Operationally, the FGEW system provides some use-
ful extra information for Met Office forecasters in is-
suing NSWWS early warnings. Occasionswhen D + 4
forecasts reach the 60% probability threshold required
for issue of early warnings are rare, but when they do
occur they provide auseful signal. The number of warn-
ingsissued around 3 days ahead (forecasters have access
to D + 4 FGEW warnings in time for issue of 3-day
warnings) has increased significantly. However, to get
the maximum value out of ensemble predictions of se-
vere weather in the future will require changes in the
way warning services are structured, to provide warn-
ings at lower probabilities so that users can make de-
cisions appropriate to their own cost-loss ratios and
exploit the ahility of the EPS to predict low probabil-
ities.
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