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A new equitable score suitable for verifying precipitation
in numerical weather prediction
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A new equitable score is developed for monitoring precipitation forecasts and for
guiding forecast system development. To accommodate the difficult distribution of
precipitation, the score measures the error in ‘probability space’ through use of the
climatological cumulative distribution function. For sufficiently skilful forecasting
systems, the new score is less sensitive to sampling uncertainty than other established
scores. It is therefore called here the ‘Stable Equitable Error in Probability Space’
(SEEPS). Weather is partitioned into three categories: ‘dry’, ‘light precipitation’
and ‘heavy precipitation’. SEEPS adapts to the climate of the region in question
so that it assesses the salient aspects of the local weather, encouraging ‘refinement’
and discouraging ‘hedging’. To permit continuous monitoring of a system with
resolution increasing in time, forecasts are verified against point observations. With
some careful choices, observation error and lack of representativeness of model
grid-box averages are found to have relatively little impact. SEEPS can identify key
forecasting errors including the overprediction of drizzle, failure to predict heavy
large-scale precipitation and incorrectly locating convective cells. Area averages are
calculated taking into account the observation density. A gain of ∼2 days, at lead
times of 3–9 days, over the last 14 years is found in extratropical scores of forecasts
made at the European Centre for Medium-Range Weather Forecasts (ECMWF). This
gain is due to system improvements, not the increased amount of data assimilated.
SEEPS may also be applicable for verifying other quantities that suffer from difficult
spatio-temporal distributions. Copyright c© 2010 Royal Meteorological Society
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1. Introduction

Routine verifying is crucial in numerical weather prediction
(NWP) for monitoring progress, setting targets, comparing
forecasts by different centres and guiding development
decisions. Through these various roles, verification scores
for the large-scale flow have helped drive impressive
improvements in NWP performance. An example of these
improvements is that an eight-day (D + 8) European Centre
for Medium-Range Weather Forecasts (ECMWF) forecast
for the northern extratropics in 2008 has the same average

spatial anomaly correlation skill (for 500 hPa geopotential
heights, Z500) as a D + 5 1

2 forecast had in 1980.
Contours in Figure 1 show (a) observed (i.e. analyzed)

and (b) D + 4 forecast Z500 verifying at 1200 UTC on
23 August 2008. The correspondence is indicative of the
improvements in large-scale skill. However, it is clear that
Z500 is not sufficient to characterize the entire weather
pattern. Precipitation (shaded), for example, was rather
poorly predicted over Europe on this date. This emphasizes
the need to monitor other aspects of the forecast, for example
aspects of direct relevance to the user community and aspects
representative of diabatic processes. It is difficult, however,
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Figure 1. 500 hPa geopotential height field (Z500, contoured with
interval 50 m) and 24 hour accumulated precipitation (shaded, mm). (a)
‘Observations’: analyzed Z500 and short-range (D + 0 − D + 1) forecast
precipitation centred at time 1200 UTC on 23 August 2008. (b) Forecast:
D + 4 forecast Z500 and D + 3 1

2 − D + 4 1
2 forecast precipitation verified

at the same time.

to make development decisions based on many scores.
Ideally decisions should be based on some minimal set of
scores that concisely summarizes a system’s performance.
Since precipitation is user-relevant and a consequence
of diabatic processes, it would appear to be a natural
choice.

Precipitation is a difficult quantity to verify for numerous
reasons. Firstly, it is rather sparsely observed by surface
observations and imperfectly estimated by radar (where
available) and satellite at present. Secondly, a point
observation may not be representative of a model grid-box
average. Thirdly, precipitation has a difficult spatio-temporal
distribution, often with a large number of dry days and
occasional very extreme events (notice the nonlinear colour
scale in Figure 1). Any precipitation score must contend
with these issues.

Considerable research has focused on developing
precipitation scores. For example, Du et al. (2000), following
Hoffman et al. (1995), partitioned precipitation forecast
error into components associated with large-scale advection,
magnitude and a residual. Casati et al. (2004) partitioned
error by intensity and spatial scale. Using a scale-selective
score, Roberts and Lean (2008) showed persuasively the
scales at which high-resolution forecasts possess useful
information about convection. Such decompositions are
essential to truly understand the nature of forecast error but
are not ideally suited for the present objectives of routine
monitoring and high-level decision-making. For example,
re-calibration within the methodology of Casati et al. (2004)
renders their score insensitive to multiplicative changes
in precipitation, an issue that could be important in the

context of the present study. Other research has centred on
the verification of extreme precipitation (Stephenson et al.,
2008). This is highly desirable from the user’s perspective,
but sampling uncertainties render it a difficult task.

Here the aim is to develop a new score that
concisely quantifies NWP performance in the prediction
of precipitation and steers development in the correct
direction. The desirable attributes of such a score can be
summarized as follows.

(a) Monitoring Progress.

• A single score should be sought that assesses forecast
skill for dry weather and precipitation quantity.

• Verification against point observations is required in
order to permit continuous monitoring of a system
with resolution increasing with time, and to satisfy
the typical user interested in a small geographic area.

• To detect performance changes, sensitivity to
sampling uncertainty should be minimized, while
maintaining the ability to differentiate between ‘good’
and ‘bad’ forecasts.

• For area and temporal averages to be meaningful, it
should be possible to aggregate scores from different
climate regions and different times of the year.

(b) Aiding decision-making.

• To facilitate the identification of model error, it should
be possible to plot a map of scores for a single forecast.

• A score should encourage developments that permit
a forecast system to predict the full range of possible
outcomes.

• A better score should indicate a ‘better forecast
system’.

Two key approaches are used as a starting point for the
present study. The first represents a method discussed by
Ward and Folland (1991). They transformed seasonal-mean
precipitation anomalies into ‘probability space’ through
the application of the observed cumulative distribution
function. This results in a score known as the linear
error in probability space (LEPS). The transformation
handles, in a natural way, the difficult distribution of
precipitation and makes a score much less sensitive to
extreme values. The LEPS approach seems attractive for
the routine scoring of daily precipitation accumulations if
the problem of the existence of dry days can be overcome.
The second approach is the application of ‘equitability’
constraints (Gandin and Murphy, 1992) that place upper
and lower bounds on the expected skill scores for perfect
and unskilful forecasting systems, respectively. Defined
bounds facilitate the comparison and combination of scores
from climatologically different regions and from different
times of the year. If a score is inequitable, it is possible for
an unskilled forecast system to score better than a forecast
system with some skill. This is clearly undesirable.

The data used here are described in section 2. Section 3
reviews some established scores and comments further on
‘equitability’ and ‘error in probability space’. The new score
is developed in section 4. Section 5 compares this score with
other established scores in terms of sampling uncertainty
and susceptibility to hedging. Section 6 discusses some
parameter settings and section 7 gives a summary of the new
score. Section 8 applies the score to some case studies. Area-
mean scores, which take account of observation density, are
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Figure 2. Cumulative distributions for selected SYNOP stations and months based on 1200–1200 UTC 24 hour precipitation accumulations for
1980–2008. The extreme right of each graph corresponds to the 95th percentile of the distribution. Dotted lines indicate the subdivision of the wet days
in the ratios 1:1 and 2:1.

presented in section 9. Section 10 investigates the detection
of system improvements. The impacts of observation error
and lack of representativeness are quantified in section 11.
Conclusions are given in section 12.

2. Data

2.1. Observational data

2.1.1. Daily SYNOP data from the GTS: 1980–2008

The data used for the point verification of precipitation
are ‘SYNOP’ observations. Other sources of data, such
as retrievals from radar or satellite, may be suitable in
the future and could equally be used with the score
developed here. Another alternative is to use short-range

forecasts of precipitation, as shown in Figure 1(a). The
utility of such short-range forecasts can be gauged from the
scores against real observations presented here. The SYNOP
observations used are those that are exchanged in near-real-
time over the Global Telecommunications System (GTS)
and stored at ECMWF in ‘BUFR’ archives. Verification
against these data, which are not assimilated at ECMWF,
should provide an independent evaluation of performance
and a valuable ‘anchor’ to the system (Casati et al., 2008).
Daily observations of 24 hour accumulated precipitation for
the period 1980–2008 are used here. The hope is that a
24 hour temporal average will alleviate to some extent the
problem of the lack of representativity of grid-box spatial
averages.

Since precipitation is an accumulated quantity, it is
generally necessary to derive the required ‘observed’ accu-
mulations from the raw reports. For example, under
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European reporting practices, the six-hour 0000–0600 UTC
accumulation is derived by subtracting the previ-
ous six-hour 1800–0000 UTC accumulation from the
12 hour 1800–0600 UTC accumulation. European 24 hour
0000–0000 UTC accumulations are then deduced by com-
bining this derived six-hour 0000–0600 UTC accumulation
with the subsequent reported 12 hour 0600–1800 UTC and
the six-hour 1800–0000 UTC accumulations.

Because reporting practices vary throughout the World,
a general algorithm has been developed that can produce
almost all derivable 6, 12 and 24 hour accumulations from
the raw observations for periods ending at any hour
of the day, regardless of local reporting practice. The
algorithm dramatically increases the number of available
accumulations. For example, the number of 24 hour
accumulations worldwide is increased from ∼500 to ∼4000
for periods ending at 0000, 0600, 1200 and 1800 UTC.
The results presented here mainly focus on accumulations
ending at 1200 UTC.

Because forecast error will be measured in ‘probability
space’, quality control can be more relaxed than for e.g.
correlation scores or scores for extreme weather. Here,
reported (and derived) 24 hour accumulations are required
to be merely <1 m.

2.1.2. Climatology of daily SYNOP data: 1980–2008

Climatologies for all stations are based on the reported
observations and derived accumulations discussed in
section 2.1.1. At least 150 daily accumulations are required
for a station to be accorded a climatology for a given
month. This equates to ∼5 years of observations (5 × 30 =
150).

With the intention of following the ‘LEPS’ approach
of measuring error in probability space, climatological
cumulative distribution functions are derived for these
stations. Figure 2 shows the cumulative distribution
functions for a range of such stations and months based on
24 hour 1200–1200 UTC accumulations. These cumulative
distribution functions have a different structure from
those presented for seasonal-mean data by Ward and
Folland (1991). In particular, they do not start at zero
probability (y-axis) but rather at a value corresponding to
the fraction of days with zero reported precipitation (for
the month in question). Baoshan, China (Figure 2(a)) is
frequently wet in July, with only 10% of days being ‘dry’.
Formosa, Argentina (Figure 2(f)) is dry 80% of the time
in May. Figure 2 will be referred to further in subsequent
sections.

2.1.3. High-density gridded observations: 2007

Gridded precipitation observations, based on a high-density
network of European stations (Ghelli and Lalaurette, 2000),
are available from 2002. Cherubini et al. (2002) used this
as forecast verification data. Here, point data are required
for verification but the gridded 24 hour 0600–0600 UTC
accumulations for 2007 (the most recent year available)
are used to represent a ‘perfect model’. Scoring this perfect
model will provide an upper bound for a skill score that
takes SYNOP observation error and representativity into
account.

2.2. Forecast data: 1995–2008

The ECMWF operational 1200 UTC high-resolution (‘deter-
ministic’) forecast is used to obtain 24 hour 1200–1200 UTC
accumulated precipitation forecasts for lead times of 1–10
days, for the period 1995–2008. These data are matched to all
available SYNOP stations on any given day using the nearest
grid-point approach. The alternative approach of bilinear
interpolation between the four grid points surrounding an
observation (Cherubini et al., 2002) was thought more likely
to exacerbate the lack of representativity of point data. No
account is made for discrepancies between model orographic
height and station height and no distinction is made between
land points and sea points. This should ensure that trends
in model performance, including the impact of resolution
changes, are not removed from the data.

The operational forecasts are compared with a parallel
set of forecasts (for the same period) made within the ‘ERA
Interim’ re-analysis project (Simmons et al., 2007). ERA-
Interim uses a single model cycle, run at constant resolution.
Comparison is also made against a parallel set of test forecasts
for a (previously) experimental model cycle for the period 1
April–8 September 2009.

2.3. What does ‘dry’ mean?

It is important from the atmospheric physics perspective
to assess a forecast’s ability to distinguish between wet
and dry conditions. However, the definition of ‘dry’ needs
to be applicable to all regions of the world, even where
reporting practices vary, and should allow a consistent
comparison with forecast data. The solution has been to base
the definition on the World Meteorological Organization
(WMO) publication ‘Guide to Meteorological Instruments
and Methods of Observation’ (WMO-No. 8, ISBN 978-
92-63-10008-5). In part I, chapter 6, the guide states the
following.

• ‘Daily amounts of precipitation should be read to the
nearest 0.2 mm and, if feasible, to the nearest 0.1 mm’.

• ‘Less than 0.1 mm (0.2 mm in the United States) is
generally referred to as a trace’.

Based on the second statement, the definition of ‘dry’ must
clearly include all forecast (and reported) values strictly less
than 0.2 mm. However, with the possibility of rounding,
an observation of 0.16 mm could be recorded as 0.2 mm in
some parts of the world and simply recorded as a ‘trace’
in other regions. Hence the definition of ‘dry’ used here
is all accumulations � 0.2 mm. Note that, for rounding to
the nearest 0.1 mm, an observation of 0.24 mm would be
recorded as 0.2 mm and thus now classified as ‘dry’. For
compatibility, forecast data are therefore also rounded here
to the nearest 0.1 mm prior to classification.

There is a potential caveat in this definition of ‘dry’.
For regions where rounding is to the nearest 0.2 mm,
observations in the interval [0.25, 0.3) mm will be classified
as ‘dry’, while forecast values in this interval will be
classified as not ‘dry’. Other definitions of ‘dry’ (‘any value
< 0.05 mm’, ‘any value < 0.1 mm’) have also been tried,
but the chosen definition seems preferable in that it is as
compatible as possible with WMO standards and has a higher
(more easily observable) threshold. However, it appears that
there is little difference in the trends in area-mean scores,
whichever definition is used.
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3. Review of previous scores

3.1. Continuous scores

Continuous (as opposed to categorical) scores of precipi-
tation have previously been considered. For example, the
spatial correlation of normalized precipitation (Rodwell,
2005) shows a clear trend of improvement in the predic-
tion of extratropical precipitation at ECMWF. However the
contributions to the score from different regions within the
area of interest are difficult to assess. In addition, the corre-
lation is sensitive to extreme values, whether real or due to
erroneous observations, and this increases the score’s uncer-
tainty. Ward and Folland (1991) applied the LEPS approach
to continuous (as well as categorical) seasonal-mean precipi-
tation anomalies. The method greatly reduces the sensitivity
to extreme values, but it is unclear how this continuous
version can be made compatible with the existence of dry
weather.

3.2. Categorical scores

3.2.1. Equitability

The ‘Hit-Rate’, or ‘Probability of Detection’ is a two-category
score defined as H/(H + M) where H is the number of
correctly forecast events (hits) and M is the number of
observed events that were not predicted (misses). Note that
H + M is the total number of events that actually occurred.
For a perfect forecasting system, Hit-Rate= 1. However, the
converse is not true. A trivial forecast that always predicted
the event would have Hit-Rate= 1 but is clearly not a perfect
forecasting system. Development decisions made on the
basis of the Hit-Rate alone could lead to a forecasting system
that issued far too many forecasts that the event would
happen. What is missing from this score is a penalty for
predicting the event when it did not happen (a false alarm)
or a bonus for correctly predicting that the event would not
occur (a correct negative).

Before discussing methods of constructing scores that
can ensure that they do not suffer in the way that the
Hit-Rate does, it is useful to convert to a more useful
notation. The sample can be thought of as consisting of
a set of observation/forecast pairs (v, f ), where f is the
forecast category and v is the verifying observation category.
Using tilde ( ˜ ) to denote sample-mean values, as opposed
to expected (i.e. population-mean or climatological-mean)
values or constants, one can write the joint sample
distribution as {p̃vf } and the observed sample distribution
as {p̃v}. With this notation, the sample-mean Hit-Rate, for
hits of category 1, can be written as

S̃HR = p̃11

p̃1
. (1)

Following previous attempts (Gringorten, 1967; Jolliffe
and Foord, 1975), Gandin and Murphy (1992) formalized
some ‘equitability’ constraints that can be used to construct
more useful scores. Firstly, they highlighted the desirability
of separating the forecasting and scoring tasks by writing a
score (with n categories) in the form

S̃ =
∑
v,f

p̃vf svf , (2)

Table I. Scoring matrix for the Hit-Rate score (for hits
of category 1). ‘FC’ refers to the forecast, ‘Obs’ refers to
the verifying observations and the values {p̃v} refer to the

observed sample frequencies of the categories.

Obs
Freq p̃1 p̃2

Cat v
1 2

FC f 1
1

p̃1
0

2 0 0

where {svf } is an n × n scoring matrix independent of {p̃vf },
but possibly dependent on the observed sample distribution
{p̃v}. Although considered unnecessarily restrictive by
Hogan et al.. (2010), such a separation would appear to
be particularly useful when comparing two forecast systems
and investigating why one system scores better than the
other on any particular day. For the Hit-Rate, an obvious
way to represent (sHR

vf ) is given in Table I.
Secondly, Gandin and Murphy (1992) prescribed

constraints to ensure that all systems that predict a constant
category (such as the climatologically most likely category
for example) are awarded the same score, Sc say, and a
perfect forecasting system is awarded a score Sp (�= Sc):

Perfect FC:
∑

v p̃vsvv = Sp,

Constant FC:
∑

v p̃vsvf = Sc ∀f ,

}
(3)

where ‘∀’ means ‘for all’. In (3), the perfect forecast constraint
is a sum along the diagonal of {svf }, and the constant forecast
constraints are sums along the rows, all weighted by the
observed sample distribution. A score that is separated from
the forecasting task in the manner described by (2) and which
satisfies the constraints (3) is known here as ‘equitable’.

As Gandin and Murphy (1992) point out, the constant
forecast constraints imply that the expected score for any
random forecasting system, with climatological distribution
{qf } (where

∑
f qf = 1), is also Sc since

∑
v,f

qf p̃vsvf =
∑

f

qf

(∑
v

p̃vsvf

)
= Sc. (4)

It will be assumed from now on that, for a skill score,
Sp = 1 and Sc = 0.

The implications of equitability, as discussed by Hogan
et al. (2010), can be summarized as follows. If a score
is inequitable, and it accords different scores to two
unskilful (e.g. random) forecast systems, then adding
some skill to the system with the poorer score could still
leave it apparently worse than the other unskilful system.
Equitability removes this undesirable possibility. It is also
noted here that, by heavily penalizing systems that produce
a constant forecast (such as for the climatologically most
likely category), equitability also encourages ‘refinement’
(whereby the forecast distribution becomes equal to the
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observed distribution, {qf } = {pv}: Murphy and Winkler,
1987). Refinement is discussed further in subsequent
sections.

Notice that the Hit-Rate (as defined in Table I) does not
satisfy the constant constraint for f = 1 in (3) and, thus, is
not equitable. For a two-category equitable score, the three
equations in (3) (one perfect and two constant) are not
enough to constrain the four elements of the 2 × 2 scoring
matrix {svf }. Nevertheless, it is interesting to note that the
score value calculated using (2) is uniquely determined. It
can be written as

S̃P = p̃11

p̃1
− p̃21

p̃2
. (5)

To show this, write each svf in terms of s11 and use the
relations p̃11 + p̃12 = p̃1, p̃21 + p̃22 = p̃2 and p̃1 + p̃2 = 1.
This score is the Hit-Rate minus the False-Alarm-Rate,
first defined by Peirce (1884). It is called here the Peirce
skill score, although it has been named differently over
the years (for example the ‘Hanssen–Kuipers discriminant’,
‘Kuipers’ performance index’ and ‘true skill statistic’). It is
thus the only equitable two-category score (to within linear
transformations) according to the definition of Gandin and
Murphy (1992). Unlike the Hit-Rate alone, the Peirce skill
score does include a penalty for false alarms and is less easily
increased by overpredicting the event.

For ‘small’ but realistic sample sizes, there is a chance that
p̃1 = 0 or p̃2 = 0 in (5). For example if the climatological
probability p1 = 0.05, the chance that p̃1 = 0 for a sample
size of 30 is (1 − 0.05)30 = 0.21. Hence there is a strong
possibility that a score such as the Peirce skill score in (5)
will not be defined for realistic sample sizes. In addition,
it is unclear how a coherent set of daily scores could be
produced and augmented if the scoring matrix were based
on the observed sample distribution (as, e.g., in Table I).
One approach to solving this issue, envisaged by Gringorten
(1967), is to base the scoring matrix on a climatological
observed distribution, {pv} rather than the sample observed
distribution, {p̃v}. The 29 year climatology developed here
makes this feasible for global scores of precipitation. One
valid scoring matrix for the Peirce skill score (based on the
climatological distribution, and after imposing symmetry as
the fourth constraint) is given in Table II.

Table II. Symmetric scoring matrix for the Peirce skill score
based on the climatological distribution.

Obs
Prob p1 p2

Cat v
1 2

FC f 1
p2

p1
−1

2 −1
p1

p2

Unlike the case for the sample-based equitable two-
category scores, finite sample means of the climatology-
based Peirce skill score do depend on the choice of svf ({pv})

and the equitability constraints (3) only strictly apply in the
limit as the sample size tends to infinity (i.e. in terms of
expectation rather than realized scores):

Perfect FC:
∑

v pvsvv = 1,

Constant FC:
∑

v pvsvf = 0 ∀f .
(6)

Note that if the two observed categories have equal
climatological probabilities (p1 = p2), then the diagonal
elements of the scoring matrix in Table II satisfy what will
be called here the ‘strong perfect forecast constraints’:

Strong Perfect FC: svv = 1 ∀v, (7)

and the sample-mean score of 1 for a perfect forecast system
is effectively re-imposed, not just in an expected sense but
for any finite sample. Satisfying (7), even in situations of
unequal {pv}, is found here to be a desirable attribute and
will be discussed further.

3.2.2. Linear error in probability space

For a categorical score that assesses both the prediction of
dry weather and precipitation quantity, more than two
categories are required. Below, the attributes of some
established equitable n-category scores are discussed. In
all cases, scores will be considered to be defined by the
climatology, with equitability defined in terms of expectation
(6) rather than sample-mean scores (3).

A simple n-category score is the Heidke skill score
(Heidke, 1926). This score is based on the identity matrix,
In, and therefore rewards a hit in any category equally and
penalizes all misses equally, regardless of the class of category
error. The Heidke skill-scoring matrix for the three-category
score is shown in the form (3I3 − 1)/2 in Table III.

The Heidke skill-scoring matrix satisfies the strong perfect
forecast constraints (7) and, for equiprobable categories
(pv = 1

3 ∀v in the case of three categories), it also satisfies
the equitability constraints (6).

Barnston (1992) modified the Heidke skill score for
equiprobable climatological categories so that the penalty for
an incorrect forecast was linearly dependent on the class of
the category error. Barnston then made further adjustments
to restore equitability. The three-category scoring matrix
is given in Table IV. Its dependence on the class of

Table III. Scoring matrix for a three-category Heidke skill
score.

Obs
Prob p1 p2 p3

Cat v
1 2 3

FC f 1 1 − 1
2 − 1

2

2 − 1
2 1 − 1

2

3 − 1
2 − 1

2 1
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Table IV. Scoring matrix for a three-category Barnston skill
score with equiprobable climatological categories.

Obs

Prob 1
3

1
3

1
3

Cat v
1 2 3

FC f 1 9
8 0 − 9

8

2 − 3
8

3
4 − 3

8

3 − 9
8 0 9

8

error is apparent, although linearity and symmetry are
compromised by the equitability adjustment. Note that the
scoring matrix does not satisfy the strong perfect forecast
constraints (7).

The LEPS approach of measuring error in ‘probability
space’ (Ward and Folland, 1991) was introduced in section 1.
The dotted lines in Figure 2 show how the climatological
cumulative distribution, P, is used to calculate this error.
For example, if it rained 5.0 mm at Balmoral, Belgium
in October (Figure 2(d)) when the forecast was for
2.5 mm, then the linear error in probability space would
be P(5.0) − P(2.5) = 0.82 − 0.73 = 0.09. The aim was to
define a categorical score that is approximately proportional
to the absolute error in probability space:

sL
vf = |f − v|, (8)

where v and f are the observed and forecast categories,
respectively (defined by terciles, quintiles, etc) and L refers
to ‘LEPS’. After subsequent adjustments including those
for equitability, the scoring matrix for the three-category
LEPS skill score (Potts et al., 1996) with equiprobable
climatological categories is given in Table V. Notice that
the final scoring matrix is not entirely linear.

It could be argued that the motivation behind the
Barnston skill score was also to measure error in probability
space, and the main difference between the two scores is in
the method by which equitability is achieved. (Potts et al.,

Table V. Scoring matrix for a three-category LEPS skill score
with equiprobable climatological categories.

Obs

Prob 1
3

1
3

1
3

Cat v
1 2 3

FC f 1 4
3 − 1

6 − 7
6

2 − 1
6

1
3 − 1

6

3 − 7
6 − 1

6
4
3

1996) note that the LEPS score is ‘doubly equitable’ in that
the equation

Constant Obs:
∑

f pf svf = 0 ∀v (9)

is also satisfied. This means that the expected skill score for a
constant observation is also 0. However, this is only realized
in general for a model with no skill, but which still manages
to produce a perfect distribution of categories ({qf } = {pv}).
The apparent benefit of ‘double equitability’ is that the LEPS
scoring matrix is symmetric although it does not satisfy the
strong perfect forecast constraints (7). Note that, for daily
precipitation, it is not possible to make categories equiprob-
able if ‘dry’ weather is to be defined as a category in itself.

Gerrity (1992) demonstrated how, for unequal probabili-
ties, an equitable n-category score with a symmetric scoring
matrix could be constructed as the mean of n − 1 Peirce skill
scores with 2 × 2 symmetric scoring matrices of the form
given in Table II. The three-category Gerrity skill-scoring
matrix, {sG

vf }, for any {pv} is given by

{sG
vf } =

1
2




1−p1

p1
+ p3

1−p3

p3

1−p3
−1 −2

p3

1−p3
−1

p1

1−p1
+ p3

1−p3

p1

1−p1
−1

−2
p1

1−p1
−1

p1

1−p1
+ 1−p3

p3




.

(10)

This score would allow ‘dry’ days to be defined as a single
category. The scoring matrix in (10) for variable {pv} will
be discussed later. Substituting p1 = p2 = p3 = 1

3 into (10)
gives the three-category scoring matrix for equiprobable
climatological categories (Table VI). As with the Barnston
and LEPS skill scores, the Gerrity scoring matrix does not
satisfy the strong perfect forecast constraints (7).

4. Stable equitable error in probability space

The aim here is to construct a score that possesses the
desirable attributes listed in section 1. Measuring errors
in probability space and ensuring equitability (in terms

Table VI. Scoring matrix for a three-category Gerrity skill
score with equiprobable climatological categories.

Obs

Prob 1
3

1
3

1
3

Cat v
1 2 3

FC f 1 5
4 − 1

4 −1

2 − 1
4

1
2 − 1

4

3 −1 − 1
4

5
4
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of expectation) should help in this regard. To allow
‘dry’ weather to be a category in itself, the score must
accommodate categories with variable probabilities. To aid
in the detection of performance trends, a score’s sensitivity
to sampling uncertainty needs to be minimized, while
maintaining its ability to differentiate between good and
bad forecasts. With the aim of minimizing this sampling
uncertainty, the stronger perfect forecast constraints will also
be imposed. This is the starting point for the development
here of a new categorical equitable score for verifying
precipitation in NWP. Since the proposed score is based
on the error in probability space, it is formulated as an ‘error
score’ rather than a ‘skill score’.

The lack of perfect linearity (of the error in probability
space) in the LEPS scoring matrix indicates that such
linearity is not possible for an equitable score. Hence a
less constrained structure than (8) is initially proposed here
for an n-category error score. The first category represents
‘dry’ weather and has climatological probability p1. The
remaining categories represent bins with successively heavier
precipitation and have equal climatological probabilities
pi = (1 − p1)/(n − 1) ∀i > 1. The proposed structure is
given by

svf =



|f − v| a + δ1f (c − a) if v > f ,
|f − v| b + δv1(d − b) if v < f ,
0 if v = f ,


 (11)

where δij = 1 if i = j and 0 otherwise. If v > f (v < f ),
the error increases linearly by a value a > 0 (b > 0) for
each extra category separating the forecast, f , and verifying
observation, v. It is not imposed that a should be equal to
b, so this represents a form of ‘semi-linearity’ in probability
space. Note that since p1 is not necessarily equal to the other
pi a different increment is used between categories 1 and 2.
This increment is c > 0 if v > f and d > 0 if v < f . Again,
c and d are not specified to be equal. Note that (11) is
consistent with the strong perfect forecast constraints for an
error score:

Strong Perfect FC (error): svv = 0 ∀v. (12)

The equitability constraints for an error score can be written
as

Perfect FC (error):
∑

v pvsvv = 0,

Constant FC (error):
∑

v pvsvf = 1 ∀f .
(13)

The perfect forecast constraint in (13) is automatically
satisfied because (12) is. However, it is not possible to
satisfy the constant forecast constraints in (13) if n > 3.
This is because the combination of constant forecast
constraints

∑
v pvsv2 − 2

∑
v pvsv3 + ∑

v pvsv4 implies that
(a + b)p3 = 0, and this is not possible since a, b, p3 > 0.

A three-category score is possible (see below) and
this will be the focus of the study. The structure of
the error matrix for this score, consistent with (11), is
given in Table VII. The climatological probability for the
(‘dry’) category, p1 ∈ (0, 1), will be dependent on location
and month of year. The two remaining categories are
termed here ‘light precipitation’ and ‘heavy precipitation’.
Their climatological probabilities, p2 and p3 respectively,
will define the precipitation threshold (in mm) between

Table VII. Error-matrix structure for a new three-
category score. Here p1, p2, p3 represent the climatological
probabilities of ‘dry weather’, ‘light precipitation’ and ‘heavy

precipitation’, respectively.

Obs
Prob p1 p2 p3

Cat v
1 2 3

FC f 1 0 c c+a
2 d 0 a
3 d+b b 0

them (through application of the climatological cumulative
distribution function).

The three constant forecast constraints in (13) are used
to write b, c and d in terms of a:

b = p3a

1 − p3
,

c = 1 − p3a

1 − p1
,

d = 1 − p3a

p1
.

(14)

Notice that, in general, b �= a and c �= d. The initial
concept of ‘semi-linearity’ is no-longer evident when n = 3
although there is some clear consistency between error
and probability differences. For example, in Table VII,
(s31 − s21) = (s32 − s22) = a, both of which relate to
the same difference in probability space between observed
categories 3 and 2. Similarly, (s12 − s22) = (s13 − s23) = d,
both of which relate to the difference in probability
space between observed categories 1 and 2. There is also
consistency in terms of differences in probability space
between forecast categories: (s21 − s22) = (s31 − s32) = c
and (s13 − s12) = (s23 − s22) = b. Note that (in the case
of three categories) this consistency is not contingent on
constraining p2 and p3 to be equal, and so this is no longer
required. By increasing the ratio p2/p3 (discussed later), the
threshold between ‘light’ and ‘heavy’ precipitation can be
raised. This has the advantage of setting a harder challenge
for the forecasting system but, in the limit, will lead to a
two-category score rather than a three-category score.

Since b, c and d must all be greater than 0, (14) requires
0 < a < 1/p3. Which value of a is it best to use? It is worth
examining the error matrices that would arise if a were
allowed to take its extreme values. For a = 0 (upper error
matrix in Table VIII), a forecast for category 2 or 3 lead to the
same score, regardless of the observed outcome. Moreover
it is possible, with this error matrix, for a forecast system
that only predicts categories 1 and 2 to obtain a perfect
score. This means that there is still a limit to how much the
score can encourage refinement ({qf } → {pv}: Murphy and
Winkler, 1987). Similarly for a = 1/p3 (lower error matrix
in Table VIII), there is no score difference whether category 1
or 2 is predicted. Hence a value for a strictly within the range
(0, 1/p3) is required. Here, the optimal value for a is found
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Table VIII. Error matrices for the two sets of extreme values
of a, b, c and d. See the main text for more details.

Obs
Prob p1 p2 p3

Cat v
1 2 3

FC f 1 0
1

1 − p1

1

1 − p1

2
1

p1
0 0

3
1

p1
0 0

FC f 1 0 0
1

p3

2 0 0
1

p3

3
1

1 − p3

1

1 − p3
0

by defining a ‘refinement constraint’ that maximizes the
lower bound on the expected error for any forecast system
that never predicts category 1 or category 3. Before deducing
this value of a, it is worth noting that it is less important
to penalize a forecast system for never predicting category
2. Such a system would either predict the discontinuous
categories 1 and 3, which is unrealistic for a dynamic model,
or it would predict a single category, which is already heavily
penalized by equitability (13).

The lowest expected score for a system that never predicts
category 3 (1) is achieved when it always correctly predicts
the occurrence of categories 1 and 2 (2 and 3) and it
additionally predicts category 2 for the fraction p3 (p1) of
times that category 3 (1) occurs. This leads to an expected
score of p3s32 = p3a (p1s12 = p1d = 1 − p3a, from (14)).
The lower bound for the expected error for a two-category
system is therefore min(p3a, 1 − p3a), which is maximized at
1
2 when a = 1/(2p3). Choosing this value of a should reward
a system for attempting to predict the full range of possible
outcomes. Using this value of a and the corresponding values
of b, c and d (all at their mid-range values), the final error
matrix for the new score, {sS

vf }, is given by

{sS
vf } =

1
2




0
1

1 − p1

1

p3
+ 1

1 − p1

1

p1
0

1

p3

1

p1
+ 1

1 − p3

1

1 − p3
0




.
(15)

In anticipation of its reduced sensitivity to sampling error,
this score will be called here the ‘stable equitable error in
probability space’ (SEEPS).

Table IX. Scoring matrix for a three-category SEEPS skill
score with equiprobable climatological categories.

Obs

Prob 1
3

1
3

1
3

Cat v
1 2 3

FC f 1 1 1
4 − 5

4

2 − 1
2 1 − 1

2

3 − 5
4

1
4 1

5. Comparison with other scores

Here a comparison is made with the skill scores reviewed
in section 3.2.2 (all assumed to be defined in terms of
the climatological observed distribution {pv} rather than
the sample observed distribution {p̃v}). The comparison
requires a SEEPS ‘skill score’. This can readily be produced by
calculating 1−SEEPS, which clearly satisfies the equitability
constraints (6). For three equiprobable categories (as is the
case for Isle De Sable, Figure 2(c), with p2/p3 = 1), the
scoring matrix for the SEEPS skill score is given in Table IX.

5.1. Refinement

The maximum skill possible for a forecast system that never
predicts category 1 or never predicts category 3 can readily be
calculated for the (equiprobable category) scoring matrices
in Tables III, IV, V, VI and IX. Interestingly, this maximum
is the same ( 1

2 ) for all scores. As with SEEPS, the three-
category Gerrity skill score has this maximum value for all
{pv}.

5.2. Sensitivity to sampling uncertainty

If a score remains sensitive to sampling uncertainty as the
expected skill score of the system approaches its upper
bound, then it will become increasingly difficult to detect
further operational performance gains (from finite samples
of forecasts). Since SEEPS satisfies the strong perfect forecast
constraints (12), it is insensitive to sampling uncertainty for
a hypothetical perfect forecast system (unlike the Barnston,
Gerrity and LEPS skill scores). Here the aim is to determine
whether the strong perfect forecast constraints make a
material difference to sampling uncertainty for a less-than-
perfect system. To do this, the standard deviation of each
score is calculated as a function of expected skill.

To obtain a deterministic forecast system with variable
skill, a conditional distribution pv|f , the probability of
verifying observation category v given a forecast for category
f , is defined by

pv|f = (1 − γ )pv + γ δvf , (16)

where γ is a ‘forecast-system performance’ parameter (see
below). Note that the forecast distribution {qf } is assumed to
be the same as that of the observed climatology {pv} and thus
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written as {pf }. The definition of pv|f in (16) is consistent
with this assumption, since∑

f pv|f pf = ∑
f

[
(1 − γ )pv + γ δvf

]
pf

=
[

(1 − γ )pv
∑

f pf

]
+ γ pv

= (1 − γ )pv + γ pv

= pv.

(17)

The range of γ in (16) is 0 � γ � 1. It can be seen that,
for γ = 0, pv|f = pv ∀(v, f ) so that the forecast system
is completely unskilful (Murphy and Winkler, 1987). For
γ = 1, it can be seen that pv|f = 1 if v = f and pv|f = 0
otherwise. This corresponds to a perfect forecast system.

Scores for this forecast system can be compared for the
case of three equiprobable categories (Tables III, IV, V, VI
and IX). With the conditional distribution defined in (16),
the expected skill for all these scores (indeed any equitable
skill score satisfying (6)) is simply γ :

S = ∑
v,f pvf svf

= ∑
v,f pv|f pf svf

= ∑
v,f

[
(1 − γ )pv + γ δvf

]
pf svf

= (1 − γ )
∑

f

(
pf

∑
v pvsvf

) + γ
∑

v pvsvv

= (1 − γ )
∑

f

(
pf × 0

) + (γ × 1)

= γ ,

(18)

where the equitability constraints (6) have been invoked in
the penultimate line. The expected standard deviation of an
equitable score with scoring matrix {svf } can thus be written
as

σ (γ ) =
√∑

v,f

({svf } − γ
)2

pv|f pf . (19)

Figure 3 shows σ (γ ) for each score. (To obtain the standard
deviation, and thus confidence intervals, of a sample mean
with finite sample size n, simply divide σ by

√
n). The

standard deviation of SEEPS is less than the standard
deviation of the Gerrity skill score for γ > 1

2 . It is less
than that of LEPS for γ > 1

9 and less than that of the

Barnston skill score for γ > 3
4 . It is never less than that

of the Heidke skill score, but this reflects the fact that the
Heidke skill score does not differentiate between class 1
and class 2 category errors. Since the Gerrity skill score
is the only other score defined and equitable for all {pv},
it is the comparison with this score that is most relevant.
Since the present mean-forecast skill is already better than
1
2 at short lead times (see later), SEEPS would appear to
be preferable. The higher standard deviation of SEEPS for
γ < 1

2 is less relevant and will become even more so in
future.

5.2.1. Relationship between SEEPS and Gerrity scores

It can be seen that in each of the columns of the Gerrity and
SEEPS skill-scoring matrices for equiprobable categories
(Tables VI and IX) the values differ only by a constant
(dependent only on v). By comparing (10) and (15) it can

Figure 3. Expected standard deviation of a range of three-category forecast
scores as a function of expected skill, γ . Equiprobable categories are used
for each score indicated in the key.

Table X. The two-category equitable error matrix for a score
that SEEPS can be built from.

Obs
Prob p1 p2

Cat v
1 2

FC f 1 0
1

p2

2
1

p1
0

readily be shown that this is true in general, for any given
{pv}, so that

sG
vf = (1 − sS

vf ) + λ(v) ∀v, f ,

S̃G = S̃S + ∑
v p̃vλ(v)

≡ S̃S + �({p̃v}),

(20)

where S̃G and S̃S are sample-mean Gerrity and SEEPS skill
scores calculated as in (2). Equation (20) implies that both
skill scores respond identically to the forecast system’s
performance and only differ by a term �, dependent on
the observed sample distribution {p̃v}.

It can be shown that �({pv}) = 0 and so, for an infinite
sample size, the two skill scores have identical expected
values: SG = SS. The similarity between the two scores
extends further, since SEEPS can also be written as the
mean of two two-category error scores, each with an error
matrix of the form shown in Table X. The first of these
has its two categories defined by the dry/light threshold,
the other by the light/heavy threshold. As with the two-
category scoring matrix used to generate the Gerrity skill
score sequence, (1−Table X) is also a valid choice for
representing a scoring matrix for the Peirce skill score
(based on the climatology).
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Figure 4. Standard deviation of scores as a function of (γ , p1) for p2/p3 = 1 when the forecast system is defined by (16). (a) SEEPS. (b) Gerrity skill score.

The difference between the Gerrity and SEEPS skill scores
lies in their sensitivity to sampling uncertainty for finite
sample sizes. Figure 4(a) and (b) shows σ (γ , p1) for the
SEEPS and Gerrity skill scores respectively (when the forecast
system is defined by (16) and p2/p3 = 1). As the system’s
performance improves, the Gerrity skill score becomes even
more sensitive to sampling uncertainty when p1 diverges
from 1

3 , while SEEPS’ uncertainty smoothly converges to
zero for all p1. It can be shown that, for any {pv} (not just
when p2/p3 = 1), the Gerrity skill score is more sensitive
to sampling uncertainty than SEEPS when assessing systems
that have expected skill > 1

2 . SEEPS is more sensitive when
the expected skill is < 1

2 , but this is less relevant for the reason
discussed above. Numerical investigation shows that these
results are valid (approximately) for all realistic forecasting
systems, not just those defined by (16).

It is interesting to discover that the derivation of SEEPS
here, which addresses key requirements for the monitoring
of precipitation forecasts, produces a score very similar to
the rather elegantly constructed Gerrity skill score. The only
difference is in the choice of climatological scoring matrix
for the Peirce skill score on which they are based. Gerrity
(1992) constrained the last degree of freedom of this two-
category equitable score by imposing symmetry. The results
presented here demonstrate that symmetry is not a useful
attribute (in this situation) and the last degree of freedom
is, instead, constrained by requiring all perfect forecasts to
have zero error. This difference is considered important
and should render SEEPS more stable for assessing forecast
systems with sufficient expected skill.

It is possible that Table X could be used to define a series
of n-category scores with reduced sensitivity to sampling
uncertainty, although not possessing the structure originally
proposed in (11) for n > 3.

The comparison of uncertainty in section 5.2 (and 5.2.1) is
valid for comparing the scores’ abilities to detect operational
performance trends, but not for assessing their abilities to
detect performance differences when two forecast systems
are used to predict the same set of observations. For example,
taking a difference will eliminate the �({p̃v}) term in (20).

5.3. Hedging

While the concept of ‘hedging’ has been investigated by
previous authors (Stephenson, 2000; Hogan et al., 2009), a
somewhat different approach is attempted here. Hedging is
said to have occurred whenever a forecaster’s judgement
and forecast differ (Murphy, 1978). In the context of
system development, the prevention of hedging should
mean that there is always a physical basis for any change
in a forecasting system, so that ‘judgement’ and forecast
both change in unison. Changes in a forecast system alter
the joint distribution {pvf } (= {pv|f qf }). A score will inhibit
hedging if it cannot be improved by making changes to {pvf }
in the absence of additional physical insight. Changes to
{pvf } can be broken down into a number of steps in which a
fraction of forecasts for one given category, f1, are changed
to another category, f2. Hence, to determine whether a score
can be hedged, it is only necessary to assess whether it can
be improved by making a single such step. Fundamental
to the hedging assessment here is the recognition that, in
the absence of physical insight, it is not possible to choose
which forecasts for category f1 will be changed and so those
changed must have the distribution of the original system;
{pv|f1}. Using (15), the change in SEEPS error that occurs
when a fraction δq/q1 (> 0) of the forecasts for category 1
are changed to category 2 (‘1→2’) is given by

δSEEPS = δq
∑

v pv|f =1(sv2 − sv1)

= δq

2

(
pv=1|f =1

p1
− pv=2|f =1 + pv=3|f =1

1 − p1

)

= δq

2

(
pv=1|f =1

p1
− 1 − pv=1|f =1

1 − p1

)

= δq

2p1(1 − p1)
(pv=1|f =1 − p1).

(21)

Hence SEEPS is reduced only if pv=1|f =1 < p1, and thus only
if the original forecasting system is worse in its prediction
of dry weather than a climatological forecast. Using similar
mathematics, the change 2→1 only decreases SEEPS if
pv=1|f =2 > p1, and thus again only if the original forecasting
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Figure 5. As Figure 4(a) but for p2/p3 = 2.

system is unrealistically poor. Similarly, 3→2 only reduces
SEEPS if pv=3|f =3 < p3 and 2→3 only reduces SEEPS if
pv=3|f =2 > p3. Changes between non-adjacent categories
(1→3 and 3→1) are less plausible for a dynamical forecast
model. Ignoring this possibility, it has therefore been shown
that SEEPS can only be hedged if the forecast system is very
poor in the first place. Note that this result is true for all {pv}
and is not dependent on the refinement constraint (similar
mathematics holds for any a with 0 < a < 1/p3).

Similarly, the three-category Gerrity skill score cannot
be hedged for any {pv} and, for p1 = p2 = p3 = 1

3 , neither
can the Barnston skill score. Numerical experimentation
(for p1 = p2 = p3 = 1

3 ) shows that SEEPS and these two
scores cannot be hedged, even when non-adjacent changes
are included, if the conditional distribution is constrained
by pv|f =v � pv and pv|f �=v � pv ∀v. However, LEPS can be
hedged even under these constraints.

Other approaches to hedging, particularly associated
with dynamically unconstrained post-processing of model
output, may allow selection from within a forecast category
and are not precluded by the above analysis. While post-
processing is not relevant to the present study, further
investigation of the susceptibility of scores to hedging is
warranted.

6. SEEPS parameter settings

Equation (15) shows that, as the probability of ‘dry’ weather
p1 (or ‘wet’ weather 1 − p1) gets close to 0, elements of the
SEEPS error matrix become extreme (because they involve
reciprocals of p1 and 1 − p1). This necessitates the need
for bounds on the acceptable range of p1. There is also a
need to define p2/p3. Figure 2 shows how the threshold
between ‘light’ and ‘heavy’ precipitation rises when p2/p3

is increased from 1 to 2. For Grenoble, France in June
(Figure 2(e)), for example, the threshold increases from 2.4
to 6.0 mm. These higher thresholds set a more challenging
task for a forecasting system.

Using the conditional distribution (16), Figure 4(a)
showed the standard deviation of SEEPS as a function
of (γ , p1) for p2/p3 = 1. Uncertainty increases sharply for
extreme values of p1 and the limiting range p1 ∈ [0.10, 0.85]
is suggested. Precipitation in more arid climates (p1 > 0.85)

Table XI. SEEPS error matrices for a range of dry-
day probabilities (indicated in bold type) and with the
probability of ‘light precipitation’ being double that of

‘heavy precipitation’.

Obs
dry light heavy

prob 0.10 0.60 0.30

dry 0.00 0.56 2.22
FC light 5.00 0.00 1.67

heavy 5.71 0.71 0.00

prob 0.33 0.44 0.22

dry 0.00 0.75 3.00
FC light 1.50 0.00 2.25

heavy 2.14 0.64 0.00

prob 0.50 0.33 0.17

dry 0.00 1.00 4.00
FC light 1.00 0.00 3.00

heavy 1.60 0.60 0.00

prob 0.67 0.22 0.11

dry 0.00 1.50 6.00
FC light 0.75 0.00 4.50

heavy 1.31 0.56 0.00

prob 0.85 0.10 0.05

dry 0.00 3.33 13.33
FC light 0.59 0.00 10.00

heavy 1.11 0.53 0.00

is effectively considered as ‘extreme weather’ and will be
neglected here to reduce uncertainty in area-mean scores.
Note that no (trustworthy) SYNOP station has a climatology
with p1 < 0.10. The benefits of p2/p3 = 2 are considered
important enough to sacrifice a small increase in uncertainty
(c.f. Figure 4(a) and Figure 5). Unless otherwise specified,
these are the settings used from now on. Section 10.1
tabulates real forecast results that tend to confirm these
choices.

7. SEEPS: summary of the score

Table XI shows SEEPS error matrices for a set of climate
regimes where the probability of a ‘dry’ day (p1) varies
within its desired range [0.10,0.85] and ‘light’ precipitation
is defined to occur twice as often as ‘heavy’ precipitation
(p2/p3 = 2). Although Table XI shows individual SEEPS
scores as large as 13.33, equitability ensures that time-
mean scores (averaged over a sufficient number of forecasts)
should lie within [0, 1].

Notice that a prediction for wet conditions when it turns
out to be dry is more heavily penalized in climatologically
wet regions than in climatologically dry regions (c.f. top
and bottom panels in Table XI). In general, a forecast for a
climatologically likely category that turns out to be incorrect
is penalized more heavily than a forecast for an unlikely
category that turns out to be incorrect. This is a desirable
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Figure 6. (a) Probability of a ‘dry’ day for January. (b) As (a) but for July. (c) Precipitation amount (in mm) marking the threshold between ‘light’ and
‘heavy’ precipitation for January. (d) As (c) but for July. By definition, ‘light precipitation’ occurs twice as often as ‘heavy precipitation’. Results are based
on 24 hour precipitation accumulations (1200 UTC–1200 UTC) from the 1980–2008 climatology.

attribute, since it should encourage developments that allow
the model (physics) to represent all categories, whatever
their climatological frequency.

For European stations, p1 is shown in Figure 6(a) and (b)
for January and July, respectively. As would be expected,
summer has more ‘dry’ days than winter. Northwestern
Europe has the fewest ‘dry’ days throughout the year.
Southern Europe in high summer (July and August) is
particularly arid with probabilities of a ‘dry’ day in excess
of 0.85. The threshold (in mm) between the ‘light’ and
‘heavy’ precipitation categories is shown in Figure 6(c)
and (d) for January and July, respectively. For Europe,
this threshold is generally between 3 and 10 mm, but can
be higher over mountainous regions such as the Alps.
Hence the category known as ‘heavy precipitation’ also
incorporates what may be considered to be more ‘moderate’
events.

By adapting to the underlying climate, SEEPS assesses the
pertinent aspects of the local weather. It is stable in the face
of sampling uncertainty (for fairly skilful forecasts) because
it satisfies a strong perfect forecast constraint. It is equitable
and, because it measures error in probability space, it is robust
with respect to the skewed distribution of precipitation.
SEEPS rewards systems that predict all categories and it
also inhibits hedging. SEEPS should, therefore, be useful
for monitoring performance and for guiding development
decisions.

8. Case studies: precipitation errors identified by SEEPS

Before attempting to diagnose trends in area-mean SEEPS
scores, it is worth demonstrating some of the precipitation
errors that the SEEPS score can identify. Improvements in
such errors will, therefore, be reflected in reductions in the
SEEPS score.

Figure 7(a) shows observed 24 hour accumulated
precipitation (in mm) on 16 December 2008, and Figure 7(b)
shows the corresponding D + 4 forecast precipitation.
(D + 4 is chosen because of ECMWF’s mandate to improve
medium-range forecasts). Notice that large parts of northern
Europe were predicted to have drizzle ahead of a frontal
system but were actually ‘dry’ (pink). In this case, recorded
values were 0.0 mm rather than 0.1 or 0.2 mm. Since this
region is generally wet in December (Figure 7(c)) and an
incorrect forecast for a likely category is strongly penalized,
the differences in precipitation categories (c.f. Figure 7(d)
and (e)) lead to relatively large SEEPS scores (Figure 7(f)).
Large SEEPS scores along the southern coast of France
(Figure 7(f)) reflect unpredicted heavy precipitation (c.f.
Figure 7(d) and (e)) associated with a Mediterranean
low-pressure system in this relatively dry climate region
(Figure 7(c)). These issues explain why the mean European
score for this forecast was one of the worst in 2008.

Note that the station scores in Figure 7(f) are plotted
with variable sizes to indicate their relative weight within an

Copyright c© 2010 Royal Meteorological Society Q. J. R. Meteorol. Soc. 136: 1344–1363 (2010)



New Equitable Score for Precipitation in NWP 1357

0 0.2

(a)

(d) (e) (f)

(b) (c)Observation

Dry Light Heavy Dry Light Heavy

Observed Category Forecast Category SEEPS

Forecast Probability Dry

1 2 5 10 20 89 0 0.2 1 2 5 10 20 96.8

0 0.3 0.6 0.9 1.2 1.5 10.8

0.1 0.4 0.5 0.6 0.7 0.85 0.9 1

Figure 7. (a) Observed precipitation accumulated over 24 hours for 15 December 2008 at 1200 UTC to 16 December 2008 at 1200 UTC. (b) Forecast
precipitation accumulated over lead times of 72–96 h and valid for the same period as the observations. (c) Probability of a ‘dry’ day in December, based
on the 1980–2008 climatology. (d) Observed precipitation category. (e) Forecast precipitation category. (f) SEEPS. Units in (a) and (b) are mm. Squares
in (f) are plotted with areas proportional to the weight given to each station in the area-mean score.

0 0.2 1 2 5 10 20 57 0 0.2 1 2 5 10 20 66 0.1 0.4 0.5 0.6 0.7 0.85 0.9 1

0 1 2 3 4 5 10

(a) (b) (c)Observation Forecast Probability Dry

Dry Light Heavy Dry Light Heavy

(d) (e) (f)Observed Category Forecast Category SEEPS

Figure 8. As Figure 7 but for the prediction of precipitation accumulated over the 24 hour period from 22 August 2008 at 1200 UTC to 23 August 2008 at
1200 UTC.

Copyright c© 2010 Royal Meteorological Society Q. J. R. Meteorol. Soc. 136: 1344–1363 (2010)



1358 M. J. Rodwell et al.

0 0.2 1 2 5 10 20 105 0 0.2 1 2 5 10 20 28.1 0.1 0.4 0.5 0.6 0.7 0.85 0.9
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(d) (e) (f)Observed Category Forecast Category SEEPS

Dry Light Heavy Dry Light Heavy

Figure 9. As Figure 7 but for the prediction of precipitation accumulated over the 24 hour period from 8 June 2008 at 1200 UTC to 9 June 2008 at
1200 UTC.

area-mean score. These weights, which depend on the local
station network density, are explained in section 9.1.

Another poor European-mean SEEPS score occurred on
23 August 2008. This is the synoptic situation presented
in Figure 1. The SYNOP observations (Figure 8(a)) show
northeast Europe received over 10 mm, and up to 57 mm, of
precipitation associated with a low-pressure system centred
over Germany. The D + 4 forecast (Figure 8(b)) had less
than 5 mm (often less than 1 mm) in this region and
instead predicted convective outbreaks along a front to
the south. The category maps (Figure 8(d) and (e)) clearly
show these issues. SEEPS also highlights both the errors
(Figure 8(f)) but, since even northern Europe is generally
dry in August (Figure 8(c)), it is the category difference
indicating underprediction that leads to the largest scores.

Note that no SEEPS scores are plotted in Figure 8(f)
for the southern Iberian peninsula, northern Africa and
Turkey. This is the unfortunate consequence of avoiding
arid climates by insisting that p1 ∈ [0.10, 0.85].

The final example of a particularly poor European-mean
SEEPS score is that of 9 June 2008 (Figure 9). This case
demonstrates that SEEPS can highlight the mislocation of
summertime convection over southern Europe. Although
it will be difficult to improve such errors at D + 4, it may
be possible at shorter lead times through better forecast
initialization, better model physics and higher resolution.

9. Area-mean scores

9.1. Taking account of station network density

SYNOP stations are not evenly spaced out over the globe.
When area-mean scores are required, it is useful to take the
station network density into account in order to prevent

subregions with high station density dominating the score.
Following a methodology used in other areas of meteorology
and elsewhere, the station density, ρk, in the vicinity of
station k is calculated by applying a Gaussian kernel to the
network:

ρk =
∑

l

e−(αkl/α0)2
, (22)

where
∑

l is over all the stations used in the score (on the
particular day in question), αkl is the angle subtended at
the centre of the Earth between stations k and l, and α0

is a reference angle. Stations l for which αkl > 4α0 have
negligible contribution and are disregarded. Since αkk = 0,
we have that ρk � 1 ∀k. The value of α0 = 0.75◦ (83 km)
is chosen because it is the smallest possible that ensures
approximately equal representation of all subregions of
Europe.

Writing Sk for the (unweighted) SEEPS score for station
k, then the weighting applied to this station, wk, and the
weighted area-mean score, S, are defined by

wk = 1
ρk

,

S =
∑

k wkSk∑
k wk

.

(23)

As mentioned in section 8, the areas of the squares
in Figures 7(f), 8(f) and 9(f) are proportional to the
weights applied to each station. The fact that Europe is
reasonably evenly covered with colour demonstrates that,
with this density weighting, no subregion is favoured over
any other. Density weighting also ensures that Europe will
not dominate a score of the extratropics so heavily in general.
The methodology is currently being developed to utilize
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Figure 10. Extratropical mean SEEPS results. (a) Annual mean of daily operational scores as a function of lead time. 70% confidence intervals for these
annual means are indicated. (b) Time series of operational scores at D + 4 with running means as indicated. (c) Annual mean lead time at which the
score rises to 0.6 based on the operational forecasts and on the forecasts made during the production of the ERA-Interim re-analysis, as indicated. The
extratropical average is over the combined region north of 30◦N and south of 30◦S, taking account of observation density.

observations at all times of the day within the verification.
This will mean that, for example, eastern Europe will be
much better represented in area-mean scores than indicated
in Figure 7(f), for example.

Weighting could also help reduce sampling uncertainty
for area-mean scores associated with the spatial correlation
of precipitation (and thus scores) in high network-density
areas.

By construction, there is an upper limit to the weight any
individual station can have. This ensures, for example, that
island and coastal stations do not have undue influence on
the score.

9.2. The extratropics

Area-mean scores have been produced, taking the station
network density into account, for the period 1995–2008.
Plots for the extratropics (north of 30◦N and south of 30◦S),
based on ∼2000 stations per day, are shown in Figure 10.
Figure 10(a) shows the annual mean scores based on the
1200 UTC operational forecasts as a function of lead time.
The colours indicate the years. There is a general progression
to lower errors over these 14 years. The black curve shows
the most recent year (2008).

The 70% confidence intervals plotted in Figure 10(a)
show the degree of uncertainty in the annual means. They
are deduced from the daily scores taking autocorrelation
into account following the Student’s t-test methodology of

von Storch and Zwiers (2001). If one mean lies within the
confidence interval of another, then there is no significant
difference. If confidence intervals just touch, then mean
scores are significantly different at the 14% level, assuming
equal variances. It can be seen that it is generally not possible
in year y to demonstrate that forecasts are better than in the
previous year y − 1: it takes a few years for improvements
to become unequivocal.

Although there have been clear improvements, forecasts
are still far from perfect. At D + 1 (which is the score for the
precipitation accumulated over the first day of the forecast),
errors are above 0.4 (skill below 0.6), even for 2008. The
poor scores at D + 1 indicate that short-range forecasts (like
that shown in Figure 1(a)) cannot be considered as reliable
daily observations at present. Nevertheless, current mean
SEEPS skill scores for D + 1 and D + 2 are greater than the
critical value of 1

2 required for SEEPS sensitivity to sampling
uncertainty to be less than that of the Gerrity skill score
(see Figures 3 and 4) and for the refinement constraint
(section 4) to benefit development decisions.

It can be seen that by D + 10 the SEEPS score is tending
towards 1. Evidently, imposing equitability in terms of
expectation (13) is sufficient to ensure that annual-mean
extratropical-mean error scores converge to 1 in the situation
of no skill. Equitability makes the aggregation of all the
stations within an area a meaningful and useful concept
(despite subregions having very different climates).
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Figure 10(b) shows (light green) daily SEEPS scores
at D + 4 for the same operational forecasts. The general
improvement over the years is clearly apparent when a
365 day running mean is applied (black). The 31 day running
mean (dark green) highlights an annual cycle in SEEPS
scores. This feature is common to many precipitation scores
and reflects the fact that large-scale precipitation (in winter)
is generally easier to predict than convective precipitation (in
summer). (Note that the vast majority of the stations used
each day are in the Northern Hemisphere and weighting
is not sufficient to accord equal influence to the southern
extratropical observations).

Figure 10(c) shows the annual mean of the lead time
at which the SEEPS score for each daily forecast first
reaches a value of 0.6. The value of 0.6 was chosen
because it corresponds approximately to the present
annual-mean score at D + 4. The red curve relates to
the operational forecast data shown in Figure 10(a) and
(b). The gains in lead time amount to ∼2 days over the
14 year period. The graph is annotated to show when
the model’s resolution was changed during this period
and also to show when one key model cycle (25R4)
was introduced. This model cycle had many updates that
could have directly affected the forecast of precipitation.
However, there were 40 packages of updates applied to the
operational data assimilation and forecasting system over
this period and many of these will have contributed to the
improvement.

The blue curve in Figure 10(c) shows comparable results
for re-forecasts made within the ERA-Interim re-analysis
project. ERA-Interim is based on a single model cycle
(31R2) and a single model resolution (T255). The date
that this cycle was first used in the operational forecast
system (12 December 2006) is also indicated on the graph.
The differences between the red and blue curves at this
date highlight the impact of resolution. The flatness of
the ERA-Interim SEEPS curve is striking. It indicates that
inevitable changes over the years to the network of SYNOP
stations have not had a major impact on scores. More
controversially, it also indicates that the increase in available
sources and volume of data used to initialize the forecast (a
100× increase over this period) has had almost no lasting
impact on the prediction of precipitation. Instead, the lasting
improvements in the extratropical operational scores must
be due to improvements to model physics, increases in model
resolution and the way the data assimilation system has
improved to make better use of the available observations.
New data sources will target the hydrological cycle more
directly, so the conclusions from the 1995–2008 period may
not hold in future.

9.3. Europe

The SEEPS time series for Europe [12.5◦W–42.5◦E,
35◦N–75◦N] at D + 4 (Figure 11(a)) show a similar
improvement to that of the extratropics, but with more
variability (for comparison, the plot has the same axes
as Figure 10(b) and thus daily scores often extend
outside the region shown). There is an oscillation in
the one-year running-mean score around 2003. This is
also apparent, but less prominent, in the extratropical
time series (Figure 10(b)). Since ERA-Interim results for
Europe also display this oscillation (not shown), it is
not associated with changes in model cycle or resolution.

Table XII. Ability to detect trends in operational perfor-
mance, and its sensitivity to SEEPS parameter settings.
Values are based on daily forecasts for the years 1995–2008.

Probabilities Trend/StDev (yr−1)

Dry
Light

Heavy
ExTrop Europe

[0.10, 0.85] 1 −1.31 −0.88
[0.10, 0.85] 2 −1.25 −0.70
[0.10, 0.90] 1 −1.23 −0.80
[0.10, 0.90] 2 −1.10 −0.65
[0.10, 0.95] 1 −1.13 −0.63
[0.10, 0.95] 2 −0.95 −0.52

Instead it is an artefact of the flow itself. From close
inspection of Figure 11(a), it would appear that the
dry weather during the European summer heatwave of
2003 was anomalously easy to predict and that the
precipitation in the preceding year was anomalously hard to
predict.

9.4. South America

The SEEPS scores for the South American region
[70◦W–35◦W, 40◦S–10◦N] at D + 4 (Figure 11(b)) show
an improving trend although with a lot of variability. Close
inspection of the data reveals an alarming annual cycle in
the number of precipitation observations used in the score.
Up to 200 observations are used during the wet season but
as few as 50 are used during the dry season. It is possible that
this is due to non-reporting of zero rain. The small sample
size leads to more uncertainty and this should be taken into
account when making development decisions.

10. Detecting improvements

10.1. Trends in operational forecasts: sensitivity to SEEPS
parameter settings

The confidence intervals in Figure 10(a) indicate that a
few years are required before improvements are detectable
above the level of sampling uncertainty. Here the choice
of bounds for p1 and the value of p2/p3 are assessed in
relation to the ability of SEEPS to detect improvements.
Since the improving trends in Figures 10(b) and 11(a)
appear to be quite linear, this ‘ability to detect’ is estimated
by dividing the linear trend by the standard deviation of
departures (of the one-year mean curve) from it. Table XII
shows ‘Trend/StDev’ at D + 4 for the extratropics and
Europe. The smaller sampling uncertainty associated with
the larger, extratropical, region makes trends easier to
detect.

The results tend to confirm the choices made in section 6
(shown in bold in Table XII). The higher threshold between
‘light’ and ‘heavy’ precipitation usefully sets a harder
forecasting challenge, with only a slight deterioration in
ability to detect extratropical trends. Additionally, increasing
the upper bound on p1 to 0.90 permits the use of very
few extra stations in arid climates (for Europe, those
coloured orange in Figure 6(a) and (b)) with a more
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Figure 11. As Figure 10(b) but for (a) Europe [12.5◦W–42.5◦E, 35◦N–75◦N] and (b) South America [70◦W–35◦W, 40◦S–10◦N].

Figure 12. Mean extratropical SEEPS scores for two cycles of the ECMWF
forecasting system as a function of lead time: 35R2 (solid) and 35R3
(dashed). A filled circle on a given curve indicates that the mean score for
that model cycle is statistically significantly better than that of the other
cycle at the 5% level using a two-sided, paired Student’s t-test, taking
autocorrelation into account. Results for both cycles are based on all 320
forecasts initiated at 0000 and 1200 UTC between 1 April 2009 at 1200 UTC
and 8 September 2009 at 0000 UTC. On average, 1901 extratropical station
observations are used in the score on any given day. The extratropics are
defined as everywhere north of 30◦N combined with everywhere south of
30◦S.

marked deterioration in ability to detect extratropical
trends.

10.2. Differences between forecast system cycles

When an experimental forecast suite (or ‘cycle’) is being
assessed, a set of forecasts is compared with those of
the operational system, using the same set of start dates.
Sampling uncertainty is greatly reduced by using the same
start dates but it is not completely eliminated. Hence the
optimization of SEEPS parameters is still relevant. Figure 12
shows a comparison of extratropical SEEPS scores for two
consecutive ECMWF forecast cycles (35R2 and 35R3) based
on 320 start dates. The newer cycle (dashed) is better than
the older cycle (solid) at all lead times. It is statistically
significantly better at the 5% level (indicated by the filled
circles) for six of these lead times. Clearly it is much easier to
detect incremental improvements to the forecast system
using these parallel experimental-suite tests than from
the operational forecasts alone. With these tests, SEEPS
should provide useful information with which to make
developmental decisions.

11. Observation error and representativeness

The SYNOP precipitation observations contain errors, and
they are also not necessarily representative of any grid-box
average produced by a forecast model. These issues impose
a non-zero lower limit on the SEEPS score, which even a
perfect forecasting system can never surpass. The impact is
likely to be ameliorated by verifying 24 hour accumulations,
using the nearest grid point for matching model data
to observations (rather than bilinear interpolation) and
measuring forecast error in probability space. However, the
severity of the remaining problem remains to be determined.
An achievable lower limit for SEEPS is estimated here
by adapting the method of Göber et al. (2008). Gridded
(0600–0600 UTC) accumulations from the European high-
density observation network (Ghelli and Lalaurette, 2000)
are used as truth (to represent the output from a perfect
forecasting system) and scored against the corresponding
SYNOP observations. Scores are produced for a range of
‘model’ resolutions.

For the high-density data to represent the truth at a given
resolution, there needs to be sufficient observations in each
grid box. For the grid resolutions of ∼80, 40 and 25 km
assessed here, minima of 40, 18 and 6, respectively, are
specified. Groisman and Legates (1994) point out that area-
mean precipitation can be biased in mountainous regions
as most (US) stations are located at low elevations. This
possibility is not addressed here, although averages of scores
over the whole of Europe should reduce any impact.

Table XIII shows that the lower bound for SEEPS is
reasonably small for all resolutions and gets smaller with
increasing resolution. The implication is that the present
operational forecast score is not limited by observation
error or lack or representativity of a grid-box average.

12. Conclusions

The aim of this study has been to develop a tailor-made
precipitation score for monitoring progress in NWP and
accurately comparing one model (cycle) with another. The
outcome is an error score called here the ‘stable equitable
error in probability space’ (SEEPS). It is a three-category
error score that incorporates four key principles.

(1) Error measured in ‘probability space’ (Ward and
Folland, 1991). The climatological cumulative dis-
tribution function (Figure 2) is used to transform
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Table XIII. Mean SEEPS scores and their 70% confidence
intervals for a ‘perfect model’. Results are based on the daily
verification of gridded high-density observations against
SYNOP observations. The gridded data are considered to
represent a perfect model forecast. Results are shown for a

range of ‘model’ resolutions.

Resolution Min Mean SEEPS
Spec. Grid high SYNOP Mean 70% Conf.

density used

T255 80 km 40 239 0.278 0.014
T511 40 km 18 242 0.242 0.011
T799 25 km 6 198 0.204 0.009

errors into probability space. This allows the difficult
distribution of precipitation to be accommodated
in a natural way and reduces sampling uncertainty
associated with extreme (possibly erroneous) data.

(2) Equitability (Gandin and Murphy, 1992). By applying
the equitability constraints (13), a forecast system with
skill will have a better expected score than a random
or constant forecast system. In addition, scores from
different climate regions can be readily combined.

(3) Refinement (Murphy and Winkler, 1987). A con-
straint is devised to encourage a forecast system to
predict all possible outcomes, thereby promoting a
better distribution of forecast categories.

(4) Reduction of sensitivity to sampling uncertainty by
applying ‘strong perfect forecast’ constraints (12).
These constraints differentiate SEEPS from the skill
score of Gerrity (1992), figure 4, rendering scores
more stable for forecasts (such as current ECMWF
D + 1 and D + 2 forecasts) that have SEEPS error
< 1

2 .

The categorical approach permits a strong link between
the score and model error. The first category represents
‘dry weather’. Here, ‘dry’ is defined with reference to WMO
guidelines in order to be as compatible as possible with the
varying reporting practices over the world and with model
output. The other two categories, representing ‘light’ and
‘heavy’ precipitation, are defined in terms of climatological
probabilities and are therefore dependent on the location
and time of the year. Here, it is suggested that ‘light’
precipitation should be defined to occur twice as often
as ‘heavy’ precipitation (Figure 6).

The SEEPS error matrix naturally adapts to the climate
of the location in question so that it can assess the salient
aspects of the local weather. The score penalizes most heavily
forecasts for a climatologically likely category that turn out to
be incorrect. This should encourage system developments
that permit the model to represent all categories of local
weather, whatever their climatological frequency.

Except for very poor forecast systems, some physical
understanding of forecast error is required to improve
SEEPS. Randomly changing a forecast category can only
deteriorate the score. In this sense, SEEPS cannot be ‘hedged’.

Verification is against point data (here ‘SYNOP’ data
are used) so that it is possible to continuously monitor a
system with resolution changing in time. With this point
verification, the last remaining requirement in the list of
desirable attributes (section 1) is satisfied.

Case studies demonstrate that SEEPS is sensitive to
key forecasting errors, including the overprediction of
drizzle (Figure 7), failure to predict heavy large-scale
precipitation (Figure 8) and incorrectly locating convective
cells (Figure 9).

The density of the observation network is taken into
account when calculating area-mean scores. This implies,
for example, that each subregion of Europe will contribute
approximately equally to the European mean score. Area-
mean results show an improving trend over the last 14 years
(Figures 10 and 11). For the extratropics, this amounts
to ∼2 days gain in forecast skill at lead times of 3–9 days.
If this long-term trend is maintained, SEEPS will have a
good chance of detecting improvements in new forecast
cycles when compared over the same observational periods
(Figure 12).

By using gridded high-density observations for Europe
to represent a ‘perfect forecast’, it has been shown that
SYNOP observation error and lack of representativity of a
grid-box average have relatively little impact on the score.
This is probably because 24 hour accumulations are being
verified, the nearest grid point is used when matching
model output to point observations (rather than bilinear
interpolation) and forecast error is measured in probability
space.

Experiments are under way to investigate whether SEEPS
can be used to verify six-hour accumulations from higher
resolution, limited-area model output. If feasible, this would
partially resolve the important diurnal cycle in precipitation.
It is possible that limited-area model scores could be used
to set realistic targets for global NWP. Separate experiments
will apply SEEPS to ECMWF’s probabilistic (ensemble)
prediction system.

SEEPS scores for forecasts made within ‘ERA-Interim’
(which, unlike the operational system, uses a fixed model
cycle and resolution) show almost no trend over the last
14 years (Figure 10(c)). This indicates, strikingly, that
the ∼hundredfold increase in observations assimilated
over this period has had no lasting impact on the
operational forecast scores for precipitation. However,
new observations that directly target the hydrological
cycle may have more success. Future forecast system
improvements could also arise from the better assimilation
of existing observations (e.g. ‘cloud-affected’ radiances), a
more prognostic treatment of precipitation and increasing
model resolution.

Detailed and multifaceted precipitation verification,
beyond the abilities of SEEPS, will continue to be required
but it is hoped that SEEPS can play a useful role in monitoring
overall progress and in guiding developments in the right
direction. Further, it is possible that SEEPS could be more
widely applicable, and would be especially useful whenever
the verification parameter has a difficult spatial or temporal
distribution.
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