
Statistical
Downscaling
Tutorial

Korea Meteorological
Administration

The International Workshop on
Agromet and GIS Applications
for Agricultural Decision Making

Date : December 5(Mon)~9(Fri), 2016
Place : MSTAY Hotel JEJU
Hosted by : Korea Meteorological Administration(KMA)
Organized by : National Institute of Meteorological Sciences(NIMS)
Sponsored by : WMO CAgM / NCAM / APCC / OSGeo / PKNU / DU

2 | Statistical Downscaling Tutorial

2 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 3

contents
1. The Background and Goals

2. Programs

3. Abstracts

4. Participant List

5. Logistic Information

05

11

21

25

50

4 | Statistical Downscaling Tutorial

4 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 5

Introduction to Spatial Data in R

6 | Statistical Downscaling Tutorial

6 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 7

Why spatial data in R?

What is R, and why should we pay the price of using it?

How does the community around R work, what are its shared
principles?

How does applied spatial data analysis fit into R?

But I have a non-standard research question . . .

Spatial Data in R 2 / 72

Introduction to Spatial Data in R

based on work by Roger S. Bivand, Edzer Pebesma and H. Rue

Spatial Data in R 1 / 72

8 | Statistical Downscaling Tutorial

Applied spatial data analysis with R

R can be used to tackle most of these problems, at least initially...

Packages for importing commonly encountered spatial data formats

Range of contributed packages in spatial statistics and increasing
awareness of the importance of spatial data analysis in the broader
community

Current contributed packages with spatial statistics applications (see
R spatial projects):

point patterns: spatstat, VR:spatial, splancs;
geostatistics: gstat, geoR, geoRglm, fields, spBayes, RandomFields,

VR:spatial, sgeostat, vardiag;
lattice/area data: spdep, DCluster, spgwr, ade4.
modelling tools: mgcv, INLA, R2WinBUGS, R2BayesX.

Spatial Data in R 4 / 72

Where do we find spatial problems?

Geography How are settlements located according to the presence of
natural resources, mountains, rivers, etc?

Econometrics Where are flats more expensive in a city?

Ecology How are different species of trees distributed in a forest?

Epidemiology How does the risk of suffering from a particular disease
change with location? Is high risk linked to the presence of
some pollution sources?

Environmetrics How can we produce an estimation of the pollution in the
air from samples obtanied at a set of stations?

Public Pollicy Where is unemployment higher? What regions should
benefit from certain types of pollicies?

Spatial Data in R 3 / 72

8 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 9

Cholera mortalities, Soho

We have read from GRASS into R a point layer of mortalities (counts per
address) called death, the two distance cost raster layers, and the point
locations of the pumps. Overlaying the addresses on the raster, we can
pick off the street distances from each address to the nearest pump, and
create a new variable b_nearer. Using this variable, we can tally the
mortalities by nearest pump:
> deaths <- spTransform(deaths, proj4string(sohoSG))

> o <- over(sohoSG, deaths)

> deaths <- spCbind(deaths, as(o, "data.frame"))

> deaths$b_nearer <- deaths$snowcost_broad < deaths$snowcost_not_broad

> by(deaths$Num_Cases, deaths$b_nearer, sum)

A John Snow example

Even though we know that John Snow already had a working hypothesis
about Cholera epidemics, his data remain interesting, especially if we use a
GIS (GRASS) to find the street distances from mortality dwellings to the
Broad Street pump:

v.digit -n map=vsnow4 bgcmd="d.rast map=snow"

v.to.rast input=vsnow4 output=rfsnow use=val value=1

r.buffer input=rfsnow output=buff2 distances=4

r.cost -v input=buff2 output=snowcost_not_broad \

start_points=vpump_not_broad

r.cost -v input=buff2 output=snowcost_broad start_points=vpump_broad

We have two raster layers of cost distances along the streets, one distances
from the Broad Street pump, the other distances from other pumps.

10 | Statistical Downscaling Tutorial

Cholera mortalities, Soho

Source: Wikipedia

Cholera mortalities, Soho

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●●

●

●●
●
●●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●
●

●●

●

●●

●

●
● ●

●

●
●

●

metres from
Broad Street

pump

200

400

600

Broad Street pump
other pumps

nearer Broad Street pump
nearer other pump

10 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 11

Workshop framework

Workshop infrastructure

Task views are one of the nice innovations on CRAN that help
navigate in the jungle of contributed packages — the Spatial task
view is a useful resource

The task view is also a point of entry to the Rgeo website hosted off
CRAN, and updated quite often; it tries to mention in more detail
contributed packages for spatial data analysis

It also provides a link to the sp development area on Sourceforge,
with CVS access to sp

Finally, it links to the R-sig-geo mailing list, which is the prefered
place to ask questions about analysing spatial/geographical data

Additional resources can be found at web site related to the book by
Bivand et al. (2013):
http://www.asdar-book.org

Spatial Data in R 10 / 72

Workshop framework

Analysing Spatial Data in R

The background for the tutorial is provided in the R News note by
Roger Bivand and Edzer Pebesma, November 2005, pp. 9–13 and the
book by Bivand et al. (2013)

First we’ll look at the representation of spatial data in R, with stress
on the classes provided in the sp package

After that, we’ll see how to read and write spatial data in
commonly-used exchange formats, and how to handle coordinate
reference systems

An introduction to spatial analysis using some spatial econometrics
will be given and disease mapping models will come next

Then we will see how to work with point data and analyse point
patterns

We’ll show how analysis packages for geostatistics are being adapted
to use these representations directly

Finally, we will move on to the spatio-temporal case

9 / 72

12 | Statistical Downscaling Tutorial

Introduction

Let’s start with 3 examples...

Point patterns Location of the starting point of tornados in the US in
2009. Where do tornados tend to appear more often?

Geostatistics Study of the distribution of heavy metals around the Meuse
river (in the border between Belgium and the Netherlands)

Lattice Data Analysis of the cases of sudden infant death syndrome in
North Carolina and its possible link to the ethnic distribution
of the population

Spatial Data in R 12 / 72

Workshop framework

Analysing Spatial Data in R: Representing Spatial Data

Spatial Data in R 11 / 72

12 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 13

Introduction

What type of analysis do we need?

Point patterns Estimates of the spatial distribution of tornados. A surface
with the probability of occurrance is often used.

Geostatistics Methods for predicting the concentration of heavy metals
over the study region (usually, a grid is used). Common
methods include interpolation, kriging, and others.

Lattice Data Estimates of some parameter of interest for each area. These
are often based on linear models (LMs, GLMs, GLMMs,
GAMs, etc.)

Spatial Data in R 14 / 72

Introduction

What type of data do we need?

Point patterns Coordinates of the points and, possibly, a boundary to
bound the study region.
Sometimes a data.frame with more information related to
each tornado (state, date, time, EF scale, Economic Loss,
etc.)

Geostatistics Coordinates of the sampling points plus levels of heavy
metals at those points.
Possibly, several layers describing the type of terrain

Lattice Data Boundaries for each area in the study region.
Attached data to each area may be available as well (for
example, population, etc.)

Spatial Data in R 13 / 72

14 | Statistical Downscaling Tutorial

Introduction

Spatial objects

The foundation object is the Spatial class, with just two slots
(new-style class objects have pre-defined components called slots)

The first is a bounding box, and is mostly used for setting up plots

The second is a CRS class object defining the coordinate reference
system, and may be set to CRS(as.character(NA)), its default value.

Operations on Spatial* objects should update or copy these values to
the new Spatial* objects being created

Spatial Data in R 16 / 72

Introduction

Object framework

To begin with, all contributed packages for handling spatial data in R
had different representations of the data.

This made it difficult to exchange data both within R between
packages, and between R and external file formats and applications.

The result has been an attempt to develop shared classes to represent
spatial data in R, allowing some shared methods and many-to-one,
one-to-many conversions.

Bivand and Pebesma chosed to use new-style classes (S4) to
represent spatial data, and are confident that this choice was justified.

Spatial Data in R 15 / 72

14 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 15

Tornado Data 2009

We will use some Tornado data
to show the analysis of point
patterns

These data have been obtained
from the Storm Prediction
Centera

Tornado data from 1955 until
2009 are available

In addition to the coordinates,
we have a wealth of related
information for each tornado

ahttp://www.spc.noaa.gov/wcm/index.html#data

Spatial points

Spatial points

The most basic spatial data object is a point, which may have 2 or 3
dimensions

A single coordinate, or a set of such coordinates, may be used to
define a SpatialPoints object; coordinates should be of mode double

and will be promoted if not

The points in a SpatialPoints object may be associated with a row
of attributes to create a SpatialPointsDataFrame object

The coordinates and attributes may, but do not have to be keyed to
each other using ID values

Spatial Data in R 17 / 72

16 | Statistical Downscaling Tutorial

Spatial points

Now we’ll add the original data frame to make a SpatialPointsDataFrame

object. Many methods for standard data frames just work with
SpatialPointsDataFrame objects.
> storn <- SpatialPointsDataFrame(coords, d)

> names(storn)

[1] "Number" "Year" "Month" "Day" "Date"

[6] "Time" "TimeZone" "State" "FIPS" "StateNumber"

[11] "EFscale" "Injuries" "Fatalities" "Loss" "CLoss"

[16] "SLat" "SLon" "ELat" "ELon" "Length"

[21] "Width" "NStates" "SNumber" "SG" "1FIPS"

[26] "2FIPS" "3FIPS" "4FIPS"

> summary(storn$Fatalities)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00000 0.00000 0.00000 0.02538 0.00000 8.00000

> table(storn$Month)

1 2 3 4 5 6 7 8 9 10 11 12

6 38 117 234 201 274 125 60 8 66 3 50

Spatial points

The Tornado data are provided in a cvs file that we can read to make a
SpatialPoints object.
> library(sp)

> d <- read.csv(file = "datasets/2009_torn.csv", header = FALSE)

> names(d) <- c("Number", "Year", "Month", "Day", "Date", "Time",

+ "TimeZone", "State", "FIPS", "StateNumber", "EFscale", "Injuries",

+ "Fatalities", "Loss", "CLoss", "SLat", "SLon", "ELat", "ELon",

+ "Length", "Width", "NStates", "SNumber", "SG", "1FIPS", "2FIPS",

+ "3FIPS", "4FIPS")

> coords <- SpatialPoints(d[, c("SLon", "SLat")], proj4string = CRS("+proj=longlat"))

> summary(coords)

Object of class SpatialPoints

Coordinates:

min max

SLon -158.064 0

SLat 0.000 49

Is projected: FALSE

proj4string : [+proj=longlat +ellps=WGS84]

Number of points: 1182

16 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 17

Spatial polygons

Spatial lines and polygons

A Line object is just a spaghetti collection of 2D coordinates; a
Polygon object is a Line object with equal first and last coordinates

A Lines object is a list of Line objects, such as all the contours at a
single elevation; the same relationship holds between a Polygons

object and a list of Polygon objects, such as islands belonging to the
same county

SpatialLines and SpatialPolygons objects are made using lists of
Lines or Polygons objects respectively

SpatialLinesDataFrame and SpatialPolygonsDataFrame objects are
defined using SpatialLines and SpatialPolygons objects and
standard data frames, and the ID fields are here required to match the
data frame row names

Spatial Data in R 22 / 72

Spatial points classes and their slots

coords
Spatial

coords.nrs
data

SpatialPoints bbox
proj4string

SpatialPointsDataFrame

data.frame

Spatial

SpatialPoints

18 | Statistical Downscaling Tutorial

Spatial polygons: US states boundaries
The Storm Prediction Center also provides maps with the boundaries of
the US states. These can be used to place data into context by displaying
the starting points of the tornados over a map of some of the US states:
> load("datasets/statesth.RData")

> plot(statesth)

> plot(Tl, add = TRUE)

Spatial polygons

Spatial lines: Tornado trajectories

The Tornado data includes starting and ending points of the tornado

Although we know that tornados do not follow a straight line, a line
can be used to represent the path that the tornado followed

> sl <- lapply(unique(d$Number), function(X) {

+ dd <- d[which(d$Number == X), c("SLon", "SLat", "ELon", "ELat")]

+ L <- lapply(1:nrow(dd), function(i) {

+ Line(matrix(as.numeric(dd[i,]), ncol = 2, byrow = TRUE))

+ })

+ Lines(L, ID = as.character(X))

+ })

> Tl <- SpatialLines(sl)

> summary(Tl)

Object of class SpatialLines

Coordinates:

min max

x -158.064 0

y 0.000 49

Is projected: NA

proj4string : [NA]

Spatial Data in R 23 / 72

18 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 19

Spatial Polygons classes and slots

coords
Spatial
lines

plotOrder
Spatial

polygons

bbox
proj4string

LineLines

ID

Polygons

plotOrder
labpt
ID
area

SpatialLines

Spatial

Lines

Polygons

Polygon

coords

labpt
area
hole
ringDir

SpatialPolygons

Spatial lines

There is a helper function contourLines2SLDF to convert the list of
contours returned by contourLines into a SpatialLinesDataFrame object.
This example shows how the data slot row names match the ID slot values
of the set of Lines objects making up the SpatialLinesDataFrame, note
that some Lines objects include multiple Line objects:
> library(maptools)

> volcano_sl <- ContourLines2SLDF(contourLines(volcano))

> row.names(slot(volcano_sl, "data"))

[1] "C_1" "C_2" "C_3" "C_4" "C_5" "C_6" "C_7" "C_8" "C_9" "C_10"

> sapply(slot(volcano_sl, "lines"), function(x) slot(x, "ID"))

[1] "C_1" "C_2" "C_3" "C_4" "C_5" "C_6" "C_7" "C_8" "C_9" "C_10"

> sapply(slot(volcano_sl, "lines"), function(x) length(slot(x,

+ "Lines")))

[1] 3 4 1 1 1 2 2 3 2 1

> volcano_sl$level

[1] 100 110 120 130 140 150 160 170 180 190

Levels: 100 110 120 130 140 150 160 170 180 190

20 | Statistical Downscaling Tutorial

Spatial grids
In a point pattern analysis the intnsity of the underlying process is often
estimated in the study region. This often requires using a grid so that the
spatial intensity is computed. A grid can be defined as follows:
> h <- 1

> xrange <- diff(bbox(statesth)[1,])

> yrange <- diff(bbox(statesth)[2,])

> nx <- ceiling((xrange/h))

> ny <- ceiling(yrange/h)

> grdtop <- GridTopology(cellcentre.offset = bbox(statesth)[, 1],

+ cellsize = c(h, h), cells.dim = c(nx, ny))

> grd <- SpatialGrid(grdtop, proj4string = CRS("+proj=longlat"))

> plot(grd)

> plot(statesth, add = TRUE)

Spatial grids and pixels

Spatial grids and pixels

There are two representations for data on regular rectangular grids
(oriented N-S, E-W): SpatialPixels and SpatialGrid

SpatialPixels are like SpatialPoints objects, but the coordinates
have to be regularly spaced; the coordinates are stored, as are grid
indices

SpatialPixelsDataFrame objects only store attribute data where it is
present, but need to store the coordinates and grid indices of those
grid cells

SpatialGridDataFrame objects do not need to store coordinates,
because they fill the entire defined grid, but they need to store NA

values where attribute values are missing

Spatial Data in R 27 / 72

20 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 21

Spatial grid and pixels classes and their slots

SpatialPixelsDataFrame

data
SpatialPixels

SpatialGrid
data grid

grid.index
SpatialPoints

grid
grid.index
SpatialPoints

cellcentre.offset
cellsize
cells.dim

coords
Spatial

bbox
proj4string

data.frame

Spatial

GridTopology

SpatialPoints

SpatialGridDataFrame
SpatialGrid

SpatialPixels

Spatial pixels
Although this is a convenient way of creating and using grids, some of the
points fall in the middle of the ocean, far from any US state. We could
combine the US boundaries and the grid to keep only the points that are
inside the US boundaries in a SpatialPixels object:
> grdidx <- over(grd, statesth)[, 1]

> grd2 <- SpatialPixels(SpatialPoints(coordinates(grd))[!is.na(grdidx),

+])

> proj4string(grd2) <- CRS("+proj=longlat")

> plot(grd2)

> plot(statesth, add = TRUE)

22 | Statistical Downscaling Tutorial

Methods provided by sp

This table summarises the methods provided by sp:

method what it does
[select spatial items (points, lines, polygons, or

rows/cols from a grid) and/or attributes variables
$, $<-, [[, [[<- retrieve, set or add attribute table columns
spsample sample points from a set of polygons, on a set of

lines or from a gridded area
bbox get the bounding box
proj4string get or set the projection (coordinate reference sys-

tem)
coordinates set or retrieve coordinates
coerce convert from one class to another
over combine two different spatial objects

Spatial classes provided by sp

This table summarises the classes provided by sp, and shows how they
build up to the objects of most practical use, the Spatial*DataFrame

family objects:

data type class attributes extends
points SpatialPoints none Spatial

points SpatialPointsDataFrame data.frame SpatialPoints

pixels SpatialPixels none SpatialPoints

pixels SpatialPixelsDataFrame data.frame SpatialPixels

SpatialPointsDataFrame

full grid SpatialGrid none SpatialPixels

full grid SpatialGridDataFrame data.frame SpatialGrid

line Line none
lines Lines none Line list
lines SpatialLines none Spatial, Lines list
lines SpatialLinesDataFrame data.frame SpatialLines

polygon Polygon none Line

polygons Polygons none Polygon list
polygons SpatialPolygons none Spatial, Polygons list
polygons SpatialPolygonsDataFrame data.frame SpatialPolygons

22 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 23

Spatial grids and pixels

Using Spatial family objects

Very often, the user never has to manipulate Spatial family objects
directly, as we have been doing here, because methods to create them
from external data are also provided

Because the Spatial*DataFrame family objects behave in most cases
like data frames, most of what we are used to doing with standard
data frames just works — like "[" or $ (but no merge, etc., yet)

These objects are very similar to typical representations of the same
kinds of objects in geographical information systems, so they do not
suit spatial data that is not geographical (like medical imaging) as
such

They provide a standard base for analysis packages on the one hand,
and import and export of data on the other, as well as shared
methods, like those for visualisation we turn to now

Spatial Data in R 34 / 72

Spatial grids and pixels

Overlying tornados and US states

The Tornado data comprises tornados occurred in Puerto Rico, Alaska and
other regions or states. In order to select only those tornados found in the
main continental region of the US, we can do an overlay:
> sidx <- over(storn, statesth)[, 1]

> storn2 <- storn[!is.na(sidx),]

> plot(storn2)

> plot(statesth, add = TRUE)

Spatial Data in R 33 / 72

24 | Statistical Downscaling Tutorial

Introduction

Vizualising Spatial Data

Displaying spatial data is one of the chief reasons for providing ways
of handling it in a statistical environment

Of course, there will be differences between analytical and
presentation graphics here as well — the main point is to get a usable
display quickly, and move to presentation quality cartography later

In general, maintaining aspect is vital, and that can be done in both
base and lattice graphics in R (note that both sp and maps display
methods for spatial data with geographical coordinates“stretch” the
y-axis)

We’ll look at the basic methods for displaying spatial data in sp;
other packages have their own methods, but the next unit will show
ways of moving data from them to sp classes

Spatial Data in R 36 / 72

Spatial grids and pixels

Analysing Spatial Data in R: Vizualising Spatial Data

Spatial Data in R 35 / 72

24 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 25

Plotting a SpatialPoints object

120°W 110°W 100°W 90°W 80°W 70°W

20
°N

30
°N

40
°N

50
°N

While plotting the SpatialPoints
object would have called the plot
method for Spatial objects internally
to set up the axes, we start by doing
it separately:
> library(sp)

> plot(as(storn2, "Spatial"), axes = TRUE)

> plot(storn2, add = TRUE)

> plot(storn2[storn2$EFscale == 4,], col = "red",

+ add = TRUE)

Then we plot the points with the
default plotting character, and
subset, overplotting points with EF
scale of 4 in red, using the [method

Just spatial objects

Just spatial objects

There are base graphics plot methods for the key Spatial* classes,
including the Spatial class, which just sets up the axes

In base graphics, additional plots can be added by overplotting as
usual, and the locator() and identify() functions work as expected

In general, most par() options will also work, as will the full range of
graphics devices (although some copying operations may disturb
aspect)

First we will display the positional data of the objects discussed in the
first unit

Spatial Data in R 37 / 72

26 | Statistical Downscaling Tutorial

Plotting a SpatialPixels object

102°W 100°W 98°W 96°W 94°W

36
°N

37
°N

38
°N

39
°N

40
°N

41
°N

Both SpatialPixels and SpatialGrid
objects are plotted like SpatialPoints
objects, with plotting characters
> library(sp)

> kansas <- statesth[statesth$NAME ==

+ "Kansas",]

> plot(statesth, axes = TRUE, xlim = c(-103,

+ -94), ylim = c(36, 41))

> plot(statesth[statesth$NAME == "Kansas",

+], col = "azure2", add = TRUE)

> box()

> plot(grd2, add = TRUE)

While points, lines, and polygons are
often plotted without attributes, this
is rarely the case for gridded objects

Plotting a SpatialPolygons object

102°W 100°W 98°W 96°W 94°W

36
°N

37
°N

38
°N

39
°N

40
°N

41
°N

In plotting the SpatialPolygons
object, we use the xlim= and ylim=
arguments to restrict the display area
to match the soil sample points.
> library(sp)

> kansas <- statesth[statesth$NAME ==

+ "Kansas",]

> plot(statesth, axes = TRUE, xlim = c(-103,

+ -94), ylim = c(36, 41))

> plot(statesth[statesth$NAME == "Kansas",

+], col = "azure2", add = TRUE)

> box()

If the axes= argument is FALSE or
omitted, no axes are shown — the
default is the opposite from standard
base graphics plot methods

26 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 27

Points of the grid inside kansas

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●
●●
●●
●●
●●●
●●
●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●● ●●●●

●●●●● ●
●●● ●●●
●● ●

●

●

●

OFF KANSAS
IN KANSAS

We will usually need to get the
category levels and match them to
colours (or plotting characters) “by
hand”
> kidx <- over(grd2, kansas)[, 1]

> grd2df <- SpatialPointsDataFrame(grd2,

+ data.frame(KANSAS = as.factor(!is.na(kidx))))

> plot(grd2df, col = grd2df$KANSAS,

+ pch = 19)

> labs <- c("OFF KANSAS", "IN KANSAS")

> cols <- 1:2

> legend("topleft", legend = labs, col = cols,

+ pch = 19, bty = "n")

It is also typical that the legend()
involves more code than everything
else together, but very often the
same vectors are used repeatedly and
can be assigned just once

Including attributes

Including attributes

To include attribute values means making choices about how to
represent their values graphically, known in some GIS as symbology

It involves choices of symbol shape, colour and size, and of which
objects to differentiate

When the data are categorical, the choices are given, unless there are
so many different categories that reclassification is needed for clear
display

Once we’ve looked at some examples, we’ll go on to see how class
intervals may be chosen for continuous data

Spatial Data in R 41 / 72

28 | Statistical Downscaling Tutorial

Including attributes Class intervals

Class intervals

Class intervals can be chosen in many ways, and some have been
collected for convenience in the classInt package

The first problem is to assign class boundaries to values in a single
dimension, for which many classification techniques may be used,
including pretty, quantile, natural breaks among others, or even simple
fixed values

From there, the intervals can be used to generate colours from a
colour palette, using the very nice colorRampPalette() function

Because there are potentially many alternative class memberships
even for a given number of classes (by default from nclass.Sturges),
choosing a communicative set matters

Spatial Data in R 44 / 72

Coloured contour lines

Here again, the values are
represented as a categorical variable,
and so do not require classification
> library(maptools)

> volcano_sl <- ContourLines2SLDF(contourLines(volcano))

> volcano_sl$level1 <- as.numeric(volcano_sl$level)

> pal <- terrain.colors(nlevels(volcano_sl$level))

> plot(volcano_sl, bg = "grey70",

+ col = pal[volcano_sl$level1],

+ lwd = 3)

Using class membership for colour
palette look-up is a very typical
idiom, so that the col= argument is
in fact a vector of colour values

28 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 29

Class interval plots

−10 −5 0 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Quantile

●
● ●●●

●●●●

●●●●●
●●●●
●●
●●●
●●●
●●

●●●●●
●●●●
●●●●●●●

●●●●●●●●●
●●●●●
●●●●
●●●●●
●●●●●●●●

●●●●●●●●●●●●
●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●● ●●●● ● ●●

−10 −5 0 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fisher−Jenks natural breaks

●
● ●●●

●●●●

●●●●●
●●●●
●●
●●●
●●●
●●

●●●●●
●●●●
●●●●●●●

●●●●●●●●●
●●●●●
●●●●
●●●●●
●●●●●●●●

●●●●●●●●●●●●
●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●● ●●●● ● ●●

Class intervals

We will try just two styles, quantiles and Fisher-Jenks natural breaks for
five classes, among the many available. They yield quite different
impressions, as we will see:
> storn2$LLoss <- log(storn2$Loss + 1e-04)

> library(classInt)

> library(RColorBrewer)

> pal <- brewer.pal(3, "Blues")

> q5 <- classIntervals(storn2$LLoss, n = 5, style = "quantile")

> q5

style: quantile

one of 8,495,410 possible partitions of this variable into 5 classes

[-9.21034,-9.21034) [-9.21034,-9.21034) [-9.21034,-3.907035)

0 0 697

[-3.907035,-2.301586) [-2.301586,4.867535]

210 261

> fj5 <- classIntervals(storn2$LLoss, n = 5, style = "fisher")

> fj5

style: fisher

one of 8,495,410 possible partitions of this variable into 5 classes

[-9.21034,-8.011393) [-8.011393,-4.705556) [-4.705556,-2.771788)

504 116 245

[-2.771788,-0.5023957) [-0.5023957,4.867535]

218 85

> plot(q5, pal = pal)

> plot(fj5, pal = pal)

30 | Statistical Downscaling Tutorial

Lattice graphics

Lattice graphics

Lattice graphics will only come into their own later on, when we want
to plot several variables with the same scale together for comparison

The workhorse method is spplot, which can be used as an interface
to the underlying xyplot or levelplot methods, or others as suitable;
overplotting must be done in the single call to spplot — see gallery

It is often worthwhile to load the lattice package so as to have direct
access to its facilities

Please remember that lattice graphics are displayed on the current
graphics device by default only in interactive sessions — in loops or
functions, they must be explicitly print’ed

Spatial Data in R 48 / 72

Two versions of the (log)-losses caused by tornadoes

●

●

●●
●

●

●

●●●●
●

●●●●
●

●

● ●

●

●

●

●●
●●●●● ●●● ●

●●●

●●● ●●●

●●●●
●●●●

●●●
●●
●●

●●●●
●
●●●●

●

●●●

●●

●

●

● ●

●●

●

● ●●●

●●●●●

●●●●

●

●
●●●●

●

● ●● ●●●●

●
●
●

●●

●

●

●

●
●

●●

●●●● ●●

●●

●

●

●

●●

●

●●●●

●
● ● ●

●

●

●●

●●
●

●●● ●
●

●

●

●

●
●●

●

●
●
●●●

●●
●

●

●

●●
●●

●

●●●

●

●

●

●

●

●●●●●●

●
●●
●
●
●

●

●
●●
●

●●●●●
●●●●●

●

●●●
●●●●

●
●
●●●

●

●

●

●
●

●
●●●
●●●●●●●

●

●●

●

●
●●

●●●●●●
●

●
●

●
●●●●●

●●
●

●
●

●
●

●
●●●●

●

●

●

●
●●●

●

●● ●

●
●●●
●●

●

●

●
●

●●
●●●●

●
●

●

●●●●●

●
●

●

●●

●

●

●
●
●

●

●
●
●

●●

●

●

●
●●●

●●●

●

●

●●●

●

●●●●
●●

●●

●

●

●

●

●

●

●●

●
●

●●

●

●●●●●●
●

●●●●●

●

●●
●●●
●●
●

●●●●●

●●

●
●●
●●

●●●

●●
●●●●

● ● ●●●●●

●

●
●●●●●●●●●

●
●●●●
●

●
●

●●

●

●
●

●●

●

●●●
●●●●●

●●●
● ●●●

●
●
●

●●

●
●●●●●

●●

●

●

●●
●

●

●●●●●●●●●
●●●●●
●
●●●
●●●●●●●●●

●

●
●

●

●
●

●

●●●●●●
●

●

●●●●●

●●

●

●
●

●

●●

●

●

●

●

●●

●●●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●●

●

●

●

●

●

●

●●●

●●●

●
●

●

●

●
●

●● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●●

●●●

●

●

●●

●

●●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●●●

●

●●

●

●

●●●●

●●

●

●

●●●●

●●

●●●

●

●●●●●

●
●

●
●

●
●

●●
●

●

●

●

●

●●

●●●●

●
●

●●●

●●●●
●●

●●

● ●●

●●

●

●●

●●●

●

●●
●●

●

●

●

●

●

●

●

●

● ●●● ● ●

●●●
●

●

●●●●●●●

●

●●●●●●●●● ●●

●●

●

●●●

●

●

●

●
●●●

●

●

●●

●

●

●

●●

●

●●

●
●

●

●

●●●

●●

●●●●

●

●

●

●●

●●

●

●

●●●

●
● ●

●●

● ●●●

●●

●●

●
●● ●● ●●●●

●●

● ●
●

●●●●●●●

●●●●

●●

●

●

●
●

●
●

●

●●

●
●

●●●●●●●
●

●

●

●

●

● ●●●●
●

●
●

●●

●●

●●●
●●

●
●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●●

●
●

●

●●●●

●●

●

●

●

●

●

●
●

●●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●●
●●

●

●

●
●

●●
●

●
●

●

●

●

●
●

●●

●
●●

● ●

●

●
●

●

●

●

●
●

●●
●●●●

●

●

●

●

● ●●

●
●●●●●

●

●●
●●●

●●

●

●●●●

●●

●●●●

●

●●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●●
●

●

●●●
●●

● ●

●

●

●●●●

●

●●

●

●●

●

●●
●●

●

●
●●●

●●
●

●
●

●●

●
●

●●●

●

●
●

●
●●●●

●
●
● ●

●

●

●

●●●

●●●
●

●
●●●

●

●

●

●

●●●
●
●
●

●●●
●●●●●●
●
●●
●●●●●●●●●
●●●●

●

●

Quantile

[−9.21034,−9.21034)
[−9.21034,−9.21034)
[−9.21034,−3.907035)
[−3.907035,−2.301586)
[−2.301586,4.867535]

●

●

●●
●

●

●

●●●●
●

●●●●
●

●

● ●

●

●

●

●●
●●●●● ●●● ●

●●●

●●● ●●●

●●●●
●●●●

●●●
●●
●●

●●●●
●
●●●●

●

●●●

●●

●

●

● ●

●●

●

● ●●●

●●●●●

●●●●

●

●
●●●●

●

● ●● ●●●●

●
●
●

●●

●

●

●

●
●

●●

●●●● ●●

●●

●

●

●

●●

●

●●●●

●
● ● ●

●

●

●●

●●
●

●●● ●
●

●

●

●

●
●●

●

●
●
●●●

●●
●

●

●

●●
●●

●

●●●

●

●

●

●

●

●●●●●●

●
●●
●
●
●

●

●
●●
●

●●●●●
●●●●●

●

●●●
●●●●

●
●
●●●

●

●

●

●
●

●
●●●
●●●●●●●

●

●●

●

●
●●

●●●●●●
●

●
●

●
●●●●●

●●
●

●
●

●
●

●
●●●●

●

●

●

●
●●●

●

●● ●

●
●●●
●●

●

●

●
●

●●
●●●●

●
●

●

●●●●●

●
●

●

●●

●

●

●
●
●

●

●
●
●

●●

●

●

●
●●●

●●●

●

●

●●●

●

●●●●
●●

●●

●

●

●

●

●

●

●●

●
●

●●

●

●●●●●●
●

●●●●●

●

●●
●●●
●●
●

●●●●●

●●

●
●●
●●

●●●

●●
●●●●

● ● ●●●●●

●

●
●●●●●●●●●

●
●●●●
●

●
●

●●

●

●
●

●●

●

●●●
●●●●●

●●●
● ●●●

●
●
●

●●

●
●●●●●

●●

●

●

●●
●

●

●●●●●●●●●
●●●●●
●
●●●
●●●●●●●●●

●

●
●

●

●
●

●

●●●●●●
●

●

●●●●●

●●

●

●
●

●

●●

●

●

●

●

●●

●●●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●●

●

●

●

●

●

●

●●●

●●●

●
●

●

●

●
●

●● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●●

●●●

●

●

●●

●

●●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●●●

●

●●

●

●

●●●●

●●

●

●

●●●●

●●

●●●

●

●●●●●

●
●

●
●

●
●

●●
●

●

●

●

●

●●

●●●●

●
●

●●●

●●●●
●●

●●

● ●●

●●

●

●●

●●●

●

●●
●●

●

●

●

●

●

●

●

●

● ●●● ● ●

●●●
●

●

●●●●●●●

●

●●●●●●●●● ●●

●●

●

●●●

●

●

●

●
●●●

●

●

●●

●

●

●

●●

●

●●

●
●

●

●

●●●

●●

●●●●

●

●

●

●●

●●

●

●

●●●

●
● ●

●●

● ●●●

●●

●●

●
●● ●● ●●●●

●●

● ●
●

●●●●●●●

●●●●

●●

●

●

●
●

●
●

●

●●

●
●

●●●●●●●
●

●

●

●

●

● ●●●●
●

●
●

●●

●●

●●●
●●

●
●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●●

●
●

●

●●●●

●●

●

●

●

●

●

●
●

●●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●●
●●

●

●

●
●

●●
●

●
●

●

●

●

●
●

●●

●
●●

● ●

●

●
●

●

●

●

●
●

●●
●●●●

●

●

●

●

● ●●

●
●●●●●

●

●●
●●●

●●

●

●●●●

●●

●●●●

●

●●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●●
●

●

●●●
●●

● ●

●

●

●●●●

●

●●

●

●●

●

●●
●●

●

●
●●●

●●
●

●
●

●●

●
●

●●●

●

●
●

●
●●●●

●
●
● ●

●

●

●

●●●

●●●
●

●
●●●

●

●

●

●

●●●
●
●
●

●●●
●●●●●●
●
●●
●●●●●●●●●
●●●●

●

●

Fisher−Jenks natural breaks

[−9.21034,−8.011393)
[−8.011393,−4.705556)
[−4.705556,−2.771788)
[−2.771788,−0.5023957)
[−0.5023957,4.867535]

30 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 31

Level plots

●

●

●●
●

●

●

●●●●
●

●●●●
●

●

● ●

●

●

●

●●
●●●●● ●●● ●

●●●

●●● ●●●

●●●●
●●●●

●●●

●●
●●

●●●●
●
●●●●

●

●●●

●●

●

●

● ●

●●

●

● ●●●

●●●●●

●●●●

●

●
●●●●

●

● ●● ●●●●

●
●

●

●●

●

●

●

●
●

●●

●●●● ●●

●●

●

●

●

●●

●

●●●●

●
● ● ●

●

●

●●

●●
●

●●● ●
●

●

●

●

●
●●

●

●
●
●●●

●●
●

●

●

●●
●●

●

●●●

●

●

●

●

●

●●●●●●

●
●●
●
●
●

●

●
●●
●

●●●●●
●●

●●●

●

●●●
●●●●

●
●
●●●

●

●

●

●
●

●
●●●
●●●●●●●

●

●●

●

●
●●

●●●●●●
●

●
●

●
●●●●●

●●
●

●
●

●
●

●
●●●●

●

●

●

●
●●●

●

●● ●

●
●●●
●●

●

●

●
●

●●
●●●●

●
●

●

●●●●●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●●●

●●●

●

●

●●●

●

●●●●

●●

●●

●

●

●

●

●

●

●●

●
●

●●

●

●●●●●●
●

●●●●●

●

●●

●●●

●●

●

●●●●●

●●

●
●●
●●

●●●

●●

●●●●
● ● ●●●●●

●

●
●●●●● ●●●●

●
●●●●
●

●

●

●●

●

●
●

●●

●

●●●
●●●●●

●●●
● ●●●

●

●

●
●●

●
●●●●●

●●

●

●

●●
●

●

●●●●●●●●●
●
●●
●●
●
●●●
●●

●●●●●●●

●

●
●

●

●
●

●

●●●●●●
●

●

●●●●●

●●

●

●
●

●

●●

●

●

●

●

●●

●●●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●●

●

●

●

●

●

●

●●●

●●●

●
●

●

●

●
●

●● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●●

●●●

●

●

●●

●

●●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●●●

●

●●

●

●

●●●●

●●

●

●

●●●●

●●

●●●

●

●●●●●

●
●

●
●

●
●

●●

●

●

●

●

●

●●

●●●●

●
●

●●●

●●●●
●●

●●

● ●●

●●

●

●●

●●●

●

●●
●●

●

●

●

●

●

●

●

●

● ●●● ● ●

●●●

●

●

●●●●●●●

●

●●●●●●●●● ●●

●●

●

●●●

●

●

●

●
●●●

●

●

●●

●

●

●

●●

●

●●

●
●

●

●

●●●

●●

●●●●

●

●

●

●●

●●

●

●

●●●

●
● ●

●●

● ●●●

●●

●●

●
●● ●● ●●●●

●●

● ●
●

●●●●●●●

●●●●

●●

●

●

●
●

●
●

●

●●

●
●

●●●●●●
●
●

●

●

●

●

● ●●●●
●

●
●

●●

●●

●●●
●●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●●

●
●

●

●●●●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●●
●●

●

●

●
●

●●
●

●
●

●

●

●

●
●

●●

●
●●

● ●

●

●
●

●

●

●

●
●

●●
●●●●

●

●

●

●

● ●●

●

●●●●●

●

●●
●●●

●●

●

●●●●

●●

●●●●

●

●●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●●
●

●

●●●
●●

● ●

●

●

●●●●

●

●●

●

●●

●

●●
●●

●

●
●●●

●●
●

●
●

●●

●
●

●●
●

●

●
●

●
●●●●

●
●
● ●

●

●

●

●●●

●●●

●

●
●●●

●

●

●

●

●●●
●
●
●

●●●

●●
●●●●
●

●
●
●●
●●●●●●●
●
●
●●

●

●

●

●

●

●

●

[−9.21,−6.395]
(−6.395,−3.579]
(−3.579,−0.7636]
(−0.7636,2.052]
(2.052,4.868]

The use of lattice plotting methods
yields easy legend generation, which
is another attraction
> bpal <- colorRampPalette(pal)(6)

> print(spplot(storn2, "LLoss",

+ col.regions = bpal, cuts = 5))

Here we are showing the distances
from the river of grid points in the
study area; we can also pass in
intervals chosen previously

Bubble plots

Loss

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

● ●

●● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●

●
●

●

●

●

●●

●

● ●●

●

●

●

●
● ●

●

●
● ●

●

● ● ●

●
●

● ●

●

●

●

●

●

●● ●

● ●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●●
●

●

●

●

●●

●

●●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

25
50
100
200
400

Bubble plots are a convenient way of
representing the attribute values by
the size of a symbol
> library(lattice)

> print(bubble(storn2, "Loss",

+ maxsize = 2, key.entries = 25 *

+ 2^(0:4)))

As with all lattice graphics objects,
the function can return an object
from which symbol sizes can be
recovered

32 | Statistical Downscaling Tutorial

Lattice graphics

Analysing Spatial Data in R: Accessing spatial data

Spatial Data in R 52 / 72

Lattice graphics

More realism

So far we have just used canned data and spatial objects rather than
anything richer

The vizualisation methods are also quite flexible — both the base
graphics and lattice graphics methods can be extensively customised

It is also worth recalling the range of methods available for sp objects,
in particular the overlay and spsample methods with a range of
argument signatures

These can permit further flexibility in display, in addition to their
primary uses

Spatial Data in R 51 / 72

32 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 33

Introduction

Creating objects within R

As mentioned previously, maptools includes ContourLines2SLDF() to
convert contour lines to SpatialLinesDataFrame objects

maptools also allows lines or polygons from maps to be used as sp objects

maptools can export sp objects to PBSmapping

maptools uses gpclib to check polygon topology and to dissolve polygons

maptools converts some sp objects for use in spatstat

maptools can read GSHHS high-resolution shoreline data into
SpatialPolygon objects

Spatial Data in R 54 / 72

Introduction

Introduction

Having described how spatial data may be represented in R, and how
to vizualise these objects, we need to move on to accessing user data

There are quite a number of packages handling and analysing spatial
data on CRAN, and others off-CRAN, and their data objects can be
converted to or from sp object form

We need to cover how coordinate reference systems are handled,
because they are the foundation for spatial data integration

Both here, and in relation to reading and writing various file formats,
things have advanced a good deal since the R News note

Spatial Data in R 53 / 72

34 | Statistical Downscaling Tutorial

Introduction Coordinates

Coordinate reference systems

Coordinate reference systems (CRS) are at the heart of geodetics and
cartography: how to represent a bumpy ellipsoid on the plane

We can speak of geographical CRS expressed in degrees and
associated with an ellipse, a prime meridian and a datum, and
projected CRS expressed in a measure of length, and a chosen
position on the earth, as well as the underlying ellipse, prime meridian
and datum.

Most countries have multiple CRS, and where they meet there is
usually a big mess — this led to the collection by the European
Petroleum Survey Group (EPSG, now Oil & Gas Producers (OGP)
Surveying & Positioning Committee) of a geodetic parameter dataset

Spatial Data in R 56 / 72

Using maps data: Illinois counties

92°W 90°W 88°W 86°W

37
°N

38
°N

39
°N

40
°N

41
°N

42
°N

There are number of valuable
geographical databases in map
format that can be accessed directly
— beware of IDs!
> library(maptools)

> library(maps)

> ill <- map("county", regions = "illinois",

+ plot = FALSE, fill = TRUE)

> IDs <- sub("^illinois,", "",

+ ill$names)

> ill_sp <- map2SpatialPolygons(ill,

+ IDs, CRS("+proj=longlat"))

> plot(ill_sp, axes = TRUE)

34 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 35

Here: neither here nor there

In a Dutch navigation example, a chart position in the ED50 datum has to be compared

with a GPS measurement in WGS84 datum right in front of the jetties of IJmuiden,

both in geographical CRS. Using the spTransform method makes the conversion, using

EPSG and external information to set up the ED50 CRS. The difference is about 124m;

lots of details about CRS in general can be found in Grids & Datums.

> library(rgdal)

> ED50 <- CRS(paste("+init=epsg:4230", "+towgs84=-87,-96,-120,0,0,0,0"))

> IJ.east <- as(char2dms("4d31 00\"E"), "numeric")

> IJ.north <- as(char2dms("52d28 00\"N"), "numeric")

> IJ.ED50 <- SpatialPoints(cbind(x = IJ.east, y = IJ.north),

+ ED50)

> res <- spTransform(IJ.ED50, CRS("+proj=longlat +datum=WGS84"))

> spDistsN1(coordinates(IJ.ED50), coordinates(res),

+ longlat = TRUE) * 1000

[1] 124.0994

Introduction Coordinates

Coordinate reference systems

The EPSG list among other sources is used in the workhorse PROJ.4
library, which as implemented by Frank Warmerdam handles
transformation of spatial positions between different CRS

This library is interfaced with R in the rgdal package, and the CRS

class is defined partly in sp, partly in rgdal

A CRS object is defined as a character NA string or a valid PROJ.4
CRS definition

The validity of the definition can only be checked if rgdal is loaded

Spatial Data in R 57 / 72

36 | Statistical Downscaling Tutorial

Reading vectors

Reading vectors

GIS vector data are points, lines, polygons, and fit the equivalent sp
classes

There are a number of commonly used file formats, all or most
proprietary, and some newer ones which are partly open

GIS are also handing off more and more data storage to DBMS, and
some of these now support spatial data formats

Vector formats can also be converted outside R to formats that are
easier to read

Spatial Data in R 60 / 72

Introduction Coordinates

CRS are muddled

If you think CRS are muddled, you are right, like time zones and
daylight saving time in at least two dimensions

But they are the key to ensuring positional interoperability, and
“mashups”— data integration using spatial position as an index must
be able to rely on data CRS for integration integrity

The situation is worse than TZ/DST because there are lots of old
maps around, with potentially valuable data; finding correct CRS
values takes time

On the other hand, old maps and odd choices of CRS origins can
have their charm . . .

Spatial Data in R 59 / 72

36 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 37

Reading vectors Reading shapefiles

Reading shapefiles

The ESRI ArcView and now ArcGIS standard(ish) format for vector
data is the shapefile, with at least a DBF file of data, an SHP file of
shapes, and an SHX file of indices to the shapes; an optional PRJ file
is the CRS

Many shapefiles in the wild do not meet the ESRI standard
specification, so hacks are unavoidable unless a full topology is built

Both maptools and shapefiles contain functions for reading and
writing shapefiles; they cannot read the PRJ file, but do not depend
on external libraries

There are many valid types of shapefile, but they sometimes occur in
strange contexts — only some can be happily represented in R so far

Spatial Data in R 62 / 72

Reading vectors

Reading vectors

GIS vector data can be either topological or spaghetti — legacy GIS
was topological, desktop GIS spaghetti

sp classes are not bad spaghetti, but no checking of lines or polygons
is done for errant topology

A topological representation in principal only stores each point once,
and builds arcs (lines between nodes) from points, polygons from arcs
— GRASS 6 has a nice topological model

Only RArcInfo tries to keep some traces of topology in importing
legacy ESRI ArcInfo binary vector data (or e00 format data) — maps
uses topology because that was how things were done then

Spatial Data in R 61 / 72

38 | Statistical Downscaling Tutorial

Reading vectors: rgdal

> US1 <- readOGR(dsn = "datasets", layer = "s_01au07")

OGR data source with driver: ESRI Shapefile

Source: "datasets", layer: "s_01au07"

with 57 features

It has 5 fields

> cat(strwrap(proj4string(US1)), sep = "\n")

+proj=longlat +datum=NAD83 +no_defs +ellps=GRS80

+towgs84=0,0,0

Using the OGR vector part of the

Geospatial Data Abstraction Library lets us

read shapefiles like other formats for which

drivers are available. It also supports the

handling of CRS directly, so that if the

imported data have a specification, it will

be read. OGR formats differ from platform

to platform — the next release of rgdal will

include a function to list available formats.

Use FWTools to convert between formats.

Reading shapefiles: maptools

> library(maptools)

> getinfo.shape("datasets/s_01au07.shp")

Shapefile type: Polygon, (5), # of Shapes: 57

> US <- readShapePoly("datasets/s_01au07.shp")

There are readShapePoly, readShapeLines,

and readShapePoints functions in the

maptools package, and in practice they now

handle a number of infelicities. They do

not, however, read the CRS, which can

either be set as an argument, or updated

later with the proj4string method

38 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 39

Reading rasters: rgdal
> getGDALDriverNames()$name

[1] AAIGrid ACE2 ADRG AIG AirSAR

[6] ARG BAG BIGGIF BLX BMP

[11] BSB BT CEOS COASP COSAR

[16] CPG CTable2 CTG DIMAP DIPEx

[21] DODS DOQ1 DOQ2 DTED E00GRID

[26] ECRGTOC EHdr EIR ELAS ENVI

[31] EPSILON ERS ESAT FAST FIT

[36] FujiBAS GenBin GFF GIF GMT

[41] GRASSASCIIGrid GRIB GS7BG GSAG GSBG

[46] GSC GTiff GTX GXF HDF4

[51] HDF4Image HDF5 HDF5Image HF2 HFA

[56] HTTP IDA ILWIS INGR IRIS

[61] ISIS2 ISIS3 JAXAPALSAR JDEM JP2OpenJPEG

[66] JPEG JPEG2000 KMLSUPEROVERLAY KRO L1B

[71] LAN LCP Leveller LOSLAS MAP

[76] MBTiles MEM MFF MFF2 MSGN

[81] NDF netCDF NGSGEOID NITF NTv2

[86] NWT_GRC NWT_GRD OGDI OZI PAux

[91] PCIDSK PCRaster PDF PDS PNG

[96] PNM PostGISRaster R Rasterlite RIK

[101] RMF RPFTOC RS2 RST SAGA

[106] SAR_CEOS SDTS SGI SNODAS SRP

[111] SRTMHGT Terragen TIL TSX USGSDEM

[116] VRT WCS WEBP WMS XPM

[121] XYZ ZMap

122 Levels: AAIGrid ACE2 ADRG AIG AirSAR ARG BAG BIGGIF BLX BMP BSB BT CEOS COASP COSAR ... ZMap

> list.files()

[1] "SP27GTIF.TIF"

> SP27GTIF <- readGDAL("SP27GTIF.TIF")

SP27GTIF.TIF has GDAL driver GTiff

and has 929 rows and 699 columns

Reading rasters

Reading rasters

There are very many raster and image formats; some allow only one
band of data, others think data bands are RGB, while yet others are
flexible

There is a simple readAsciiGrid function in maptools that reads
ESRI Arc ASCII grids into SpatialGridDataFrame objects; it does not
handle CRS and has a single band

Much more support is available in rgdal in the readGDAL function,
which — like readOGR — finds a usable driver if available and
proceeds from there

Using arguments to readGDAL, subregions or bands may be selected,
which helps handle large rasters

Spatial Data in R 65 / 72

40 | Statistical Downscaling Tutorial

Reading rasters: rgdal

> summary(SP27GTIF)

Object of class SpatialGridDataFrame

Coordinates:

min max

x 681480 704407.2

y 1882579 1913050.0

Is projected: TRUE

proj4string :

[+proj=tmerc +lat_0=36.66666666666666 +lon_0=-88.33333333333333 +k=0.9999749999999999

+x_0=152400.3048006096 +y_0=0 +datum=NAD27 +units=us-ft +no_defs +ellps=clrk66

+nadgrids=@conus,@alaska,@ntv2_0.gsb,@ntv1_can.dat]

Grid attributes:

cellcentre.offset cellsize cells.dim

x 681496.4 32.8 699

y 1882595.2 32.8 929

Data attributes:

band1

Min. : 4.0

1st Qu.: 78.0

Median :104.0

Mean :115.1

3rd Qu.:152.0

Max. :255.0

Reading rasters: rgdal

680000 685000 690000 695000 700000 705000

18
85

00
0

18
95

00
0

19
05

00
0

This is a single band GeoTiff, mostly
showing downtown Chicago; a lot of data is
available in geotiff format from US public
agencies, including Shuttle radar
topography mission seamless data — we’ll
get back to this later
> image(SP27GTIF, col = grey(1:99/100),

+ axes = TRUE)

40 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 41

Writing objects GIS interfaces

GIS interfaces

GIS interfaces can be as simple as just reading and writing files — loose
coupling, once the file formats have been worked out, that is

Loose coupling is less of a burden than it was with smaller, slower machines,
which is why the GRASS 5 interface was tight-coupled, with R functions
reading from and writing to the GRASS database directly

The GRASS 6 interface spgrass6 on CRAN also runs R within GRASS, but
uses intermediate temporary files; the package is under development but is
quite usable

Use has been made of COM and Python interfaces to ArcGIS; typical use is
by loose coupling except in highly customised work situations

Carson Farmer has developed a plug-in for QGis (manageR) to provide a
bridge between R and QGis

Spatial Data in R 70 / 72

Writing objects

Writing objects

In rgdal, writeGDAL can write for example multi-band GeoTiffs, but
there are fewer write than read drivers; in general CRS and
geogreferencing are supported — see gdalDrivers

The rgdal function writeOGR can be used to write vector files,
including those formats supported by drivers, including now KML —
see ogrDrivers

External software (including different versions) tolerate output objects
in varying degrees, quite often needing tricks - see mailing list archives

In maptools, there are functions for writing sp objects to shapefiles
— writePolyShape, etc., as Arc ASCII grids — writeAsciiGrid, and
for using the R PNG graphics device for outputting image overlays for
Google Earth

Spatial Data in R 69 / 72

42 | Statistical Downscaling Tutorial

Using Google Maps

●

●

●
●

●

●

●

●●●
●
●

●●●●

●

●

●
●

●

●

●

●●

●
●●
●

● ●●● ●

●●●

●●
● ●●●

●●●●

●●●●

●●
●

●●

●
●

●●●●

●

●●●●

●

●●●

●●

●

●

●
●

●●

●

●
●●●

●●●●
●

●●●●

●

●

●●
●●

●

● ●
●

●●●●

●
●

●

●
●

●

●

●

●
●

●●

●● ●● ● ●

●●

●

●

●

●●

●

●●●
●

●
●

● ●

●

●

●●

●
●
●

●●● ●
●

●

●

●●

●

●●

●

●
●

●●●

●●

●

●

●

●●
●●

●

●● ●

●

●

●

●

●

●
●
●
●●●

●

●●
●
●

●

●

●

●●

●

●●●●
●
●

●●
●● ●

●

●●●
●
●●●

●
●
●●●

●

●

●

●
●

●

●●●

● ● ●
●● ●●

●

●●

●

●
●●

●●●● ●●

●

●

●

●

●●●●●

●●

●

●

●

●

●

●

●●●●

●

●

●

●
● ● ●

●

●

●● ●

●
●●●
●●

●

●

●
●

●●

●● ●●

●
●

●

●●●●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●●

●

●●●

●

●

●●
●

●

●●●●

●●

●●

●

●

●

●

●

●

●●

●
●

●●

●

●●●●●●

●

●
●●

●●

●

●
●

●●●

●●

●

●●●●●

●●

●

●●

●●

●●●

●●

●●●●

● ● ●●
●●●

●

●
●●● ●● ●●●●

●

●●●●

●

●

●

●
●

●

●
●

●●

●

●●●
●● ●● ●

●●●
●

●●●

●

●

●

●●

●

●●●●●

● ●

●

●

●●
●

●

●●●
●●
●
●●●
●
●●
●●
●
●●●
● ●

●●●●●
●●

●

●

●
●

●

●

●

●●●●● ●

●

●

●●●
●●

●●

●

●
●

●

●●

●

●

●

●

●●

●●●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●●

●

●

●

●

●

●

●●●

●●●

●
●

●

●

●
●

●● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●●

●●●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●●

●

●●

●

●

●●●●

●●

●

●

●●●●

● ●

●●●

●

●
●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●●●

●
●

●●
●

●●●●
●●

●●

● ●●

●●

●

●●

●●●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●● ●
●

●●●

●

●

●●●●●●●

●

●●●●●●●●
● ●●

●●

●

●●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●●

●
●

●

●

●●●

●●

●●●●

●

●

●

●
●

●●

●

●

●●●

●

●
●

●●

● ●●●

●●

●●

●
●

●
●● ● ●●●

●●

●
●

●

●●●●●●●

●●●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●
●

●

●

●

●

●

● ●●●
●

●

●

●
●●

●●

●●●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●●●

●●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●●●

●●

●

●

●

●

●

●●

●
●

●

●

●
●

●●

●

●
● ●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●●
●
●●

●

●

●

●

●

●

● ●●

●

●●●●●

●

●●
● ●●

●
●

●

●●●●

●●

●●●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●●
●●

● ●

●

●

●●
●●

●

●●

●

●●

●

●
●
●●

●

●

●●●
●●

●
●

●

●
●

●
●

●●
●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●●
●

●●●

●

●

●●●

●

●

●

●

●

●●
●
●

●
●

●●●

●●
●
●
●
●
●

●
●
●●
●●●●●●
●
●
●
●
●

●

●

This is a simple example on how to use
ggmap to display the tornado dataset using
a background taken from Google Maps.
Now we have also added a kernel density
smoothing:

> qmap("usa", zoom = 4) + geom_point(data = pts) +

+ geom_density2d(data = pts)

Using Google Maps

●

●

●
●

●

●

●

●●●
●
●

●●●●

●

●

●
●

●

●

●

●●

●
●●
●

● ●●● ●

●●●

●●
● ●●●

●●●●

●●●●

●●
●

●●

●
●

●●●●

●

●●●●

●

●●●

●●

●

●

●
●

●●

●

●
●●●

●●●●
●

●●●●

●

●

●●
●●

●

● ●
●

●●●●

●
●

●

●
●

●

●

●

●
●

●●

●● ●● ● ●

●●

●

●

●

●●

●

●●●
●

●
●

● ●

●

●

●●

●
●
●

●●● ●
●

●

●

●●

●

●●

●

●
●

●●●

●●

●

●

●

●●
●●

●

●● ●

●

●

●

●

●

●
●
●
●●●

●

●●
●
●

●

●

●

●●

●

●●●●
●
●

●●
●● ●

●

●●●
●
●●●

●
●
●●●

●

●

●

●
●

●

●●●

● ● ●
●● ●●

●

●●

●

●
●●

●●●● ●●

●

●

●

●

●●●●●

●●

●

●

●

●

●

●

●●●●

●

●

●

●
● ● ●

●

●

●● ●

●
●●●
●●

●

●

●
●

●●

●● ●●

●
●

●

●●●●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●●

●

●●●

●

●

●●
●

●

●●●●

●●

●●

●

●

●

●

●

●

●●

●
●

●●

●

●●●●●●

●

●
●●

●●

●

●
●

●●●

●●

●

●●●●●

●●

●

●●

●●

●●●

●●

●●●●

● ● ●●
●●●

●

●
●●● ●● ●●●●

●

●●●●

●

●

●

●
●

●

●
●

●●

●

●●●
●● ●● ●

●●●
●

●●●

●

●

●

●●

●

●●●●●

● ●

●

●

●●
●

●

●●●
●●
●
●●●
●
●●
●●
●
●●●
● ●

●●●●●
●●

●

●

●
●

●

●

●

●●●●● ●

●

●

●●●
●●

●●

●

●
●

●

●●

●

●

●

●

●●

●●●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●●

●

●

●

●

●

●

●●●

●●●

●
●

●

●

●
●

●● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●●

●●●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●●

●

●●

●

●

●●●●

●●

●

●

●●●●

● ●

●●●

●

●
●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●●●

●
●

●●
●

●●●●
●●

●●

● ●●

●●

●

●●

●●●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●● ●
●

●●●

●

●

●●●●●●●

●

●●●●●●●●
● ●●

●●

●

●●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●●

●
●

●

●

●●●

●●

●●●●

●

●

●

●
●

●●

●

●

●●●

●

●
●

●●

● ●●●

●●

●●

●
●

●
●● ● ●●●

●●

●
●

●

●●●●●●●

●●●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●
●

●

●

●

●

●

● ●●●
●

●

●

●
●●

●●

●●●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●●●

●●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●●●

●●

●

●

●

●

●

●●

●
●

●

●

●
●

●●

●

●
● ●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●●
●
●●

●

●

●

●

●

●

● ●●

●

●●●●●

●

●●
● ●●

●
●

●

●●●●

●●

●●●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●●
●●

● ●

●

●

●●
●●

●

●●

●

●●

●

●
●
●●

●

●

●●●
●●

●
●

●

●
●

●
●

●●
●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●●
●

●●●

●

●

●●●

●

●

●

●

●

●●
●
●

●
●

●●●

●●
●
●
●
●
●

●
●
●●
●●●●●●
●
●
●
●
●

●

●

This is a simple example on how to use
ggmap to display the tornado dataset using
a background taken from Google Maps:

> library(ggmap)

> load("results/unit1.RData")

> pts <- as.data.frame(coordinates(storn))

> names(pts) <- c("lon", "lat")

> qmap("usa", zoom = 4) + geom_point(data = pts)

42 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 43

Analysing Spatial Data in R:
Worked example: geostatistics

44 | Statistical Downscaling Tutorial

44 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 45

Worked example: geostatistics

� Geostatistics is a bit like the alchemy of spatial statistics,
focussed more on prediction than model fitting

� Since the reason for modelling is chiefly prediction in
pre-model-based geostatistics, and to a good extent in
model-based geostatistics, we’ll also keep to interpolation here

� Interpolation is trying to make as good guesses as possible of
the values of the variable of interest for places where there are
no observations (can be in 1, 2, 3, . . . dimensions)

� These are based on the relative positions of places with
observations and places for which predictions are required, and
the observed values at observations

Analysing Spatial Data in R: Worked example:
geostatistics

46 | Statistical Downscaling Tutorial

Meuse soil data

� The Maas river bank soil pollution data (Limburg, The
Netherlands) are sampled along the Dutch bank of the river
Maas (Meuse) north of Maastricht; the data are those used in
Burrough and McDonnell (1998, pp. 309–311)

� These are a subset of the data provided with gstat and sp,
but here we use the same subset as the very well regarded GIS
textbook, in case cross-checking is of interest

� The data used here are a shapefile named BMcD.shp with its
data table with the zinc ppm measurements we are interested
in interpolating, and an ASCII grid of flood frequencies for the
part of the river bank we are interested in, giving the
prediction locations

Geostatistics packages

� The gstat package provides a wide range of functions for
univariate and multivariate geostatistics, also for larger
datasets, while geoR and geoRglm contain functions for
model-based geostatistics

� A similar wide range of functions is to be found in the fields
package. The spatial package is available as part of the VR
bundle (shipped with base R), and contains several core
functions

� The RandomFields package provides functions for the
simulation and analysis of random fields. For diagnostics of
variograms, the vardiag package can be used

� The sgeostat package is also available; within the same
general topical area are the tripack for triangulation and the
akima package for spline interpolation

46 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 47

Observed zinc ppm levels

Zn

●
●
●

●
●

●●
●
●
●

●

●●●

●
●

●

●
●
●

●●
●

●

●●

●

●

●

●●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●
●

●

●

●
●

113
186.25
307.5
698.5
1839

The zinc ppm values are rather
obviously higher near the river bank
to the west, and at the river bend in
the south east; the pollution is from
upstream industry in the watershep,
and is deposited in silt during
flooding
> bubble(BMcD, "Zn")

Reading the data

> library(rgdal)

> BMcD <- readOGR(".", "BMcD")

OGR data source with driver: ESRI Shapefile

Source: ".", layer: "BMcD"

with 98 rows and 15 columns

> BMcD$Fldf <- factor(BMcD$Fldf)

> names(BMcD)

[1] "x" "y" "xl"

[4] "yl" "elev" "d_river"

[7] "Cd" "Cu" "Pb"

[10] "Zn" "LOI" "Fldf"

[13] "Soil" "lime" "landuse"

> proj4string(BMcD) <- CRS("+init=epsg:28992")

Although rgdal is used here, the
maptools function readShapePoints
could be used. Since a variable of
interest — flood frequency — is a
categorical variable but read as
numeric, it is set to factor

48 | Statistical Downscaling Tutorial

Densities of zinc ppm

0 500 1000 1500 2000

0.
00

00
0.

00
15

N = 98 Bandwidth = 137.5

D
en

si
ty

0 500 1000 1500 2000

0.
00

00
0.

00
10

N = 43 Bandwidth = 132.5

D
en

si
ty

0 500 1000 1500 2000

0.
00

0
0.

00
4

N = 46 Bandwidth = 33.26

D
en

si
ty

0 500 1000 1500 2000

0.
00

0
0.

00
6

N = 9 Bandwidth = 28.13

D
en

si
ty

This impression is supported by
dividing density plots up into one
pooled, and three separate flood
frequency classes — the at least
annual flooding class has higher
values than the others
> plot(density(BMcD$Zn), main = "",

+ xlim = c(0, 2000), lwd = 2)

> by(as(BMcD, "data.frame"), BMcD$Fldf,

+ function(x) plot(density(x$Zn),

+ main = "", xlim = c(0,

+ 2000), lwd = 2))

Flood frequency boxplots

1 2 3

50
0

10
00

15
00

Boxplots of the zinc ppm values by
flood frequency suggest that the
apparent skewness of the values may
be related to heterogeneity in
environmental “drivers”
> boxplot(Zn ~ Fldf, BMcD, width = table(BMcD$Fldf),

+ col = "grey")

48 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 49

Roll-your-own boundaries

In case there are no such study area boundaries for prediction, we
can make some:
> crds <- coordinates(BMcD)

> poly <- crds[chull(crds),]

> poly <- rbind(poly, poly[1,])

> SPpoly <- SpatialPolygons(list(Polygons(list(Polygon(poly)), ID = "poly")))

> bbox(BMcD)

min max

coords.x1 178605 180956

coords.x2 330349 332351

> (apply(bbox(BMcD), 1, diff)%/%50) + 1

coords.x1 coords.x2

48 41

> grd <- GridTopology(c(178600, 330300), c(50, 50), c(48, 41))

> SG <- SpatialGrid(grd)

> inside <- overlay(SG, SPpoly)

> SGDF <- SpatialGridDataFrame(grd, data = data.frame(list(ins = inside)))

> SPDF <- as(SGDF, "SpatialPixelsDataFrame")

Reading the prediction locations

Reading the prediction locations:
> BMcD_grid <- as(readGDAL("BMcD_fldf.txt"),

+ "SpatialPixelsDataFrame")

BMcD_fldf.txt has GDAL driver AAIGrid

and has 52 rows and 61 columns

> names(BMcD_grid) <- "Fldf"

> BMcD_grid$Fldf <- as.factor(BMcD_grid$Fldf)

> proj4string(BMcD_grid) <- CRS("+init=epsg:28992")

> pts = list("sp.points", BMcD,

+ pch = 4, col = "white")

> spplot(BMcD_grid, "Fldf", col.regions = 1:3,

+ sp.layout = list(pts))

50 | Statistical Downscaling Tutorial

Set up class intervals and palettes

Setting up class intervals and palettes initially will save time later;
note the use of colorRampPalette, which can also be specified
from RColorBrewer palettes:
> bluepal <- colorRampPalette(c("azure1", "steelblue4"))

> brks <- c(0, 130, 155, 195, 250, 330, 450, 630, 890, 1270, 1850)

> cols <- bluepal(length(brks) - 1)

> sepal <- colorRampPalette(c("peachpuff1", "tomato3"))

> brks.se <- c(0, 240, 250, 260, 270, 280, 290, 300, 350, 400, 1000)

> cols.se <- sepal(length(brks.se) - 1)

> scols <- c("green", "red")

Roll-your-own boundaries

179000 179500 180000 180500 181000

33
05

00
33

10
00

33
15

00
33

20
00

33
25

00

Plotting the new boundaries shows
how flexible the overlay method and
the SpatialPixels class can be
> plot(BMcD, axes = TRUE)

> plot(SPpoly, add = TRUE)

> plot(SPDF, col = "red", add = TRUE)

50 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 51

Aspatial flood frequency model

Flood frequency model interpolation

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

under 130
130 − 155
155 − 195
195 − 250
250 − 330
330 − 450
450 − 630
630 − 890
890 − 1270
over 1270

And the messy bits (once):
> library(maptools)

> BMcD_grid$lm_pred <- predict(fres,

+ newdata = BMcD_grid)

> image(BMcD_grid, "lm_pred",

+ breaks = brks, col = cols)

> title("Flood frequency model interpolation")

> pe <- BMcD$Zn - eres$predictions

> symbols(coordinates(BMcD), circles = sqrt(abs(pe)),

+ fg = "black", bg = scols[(pe <

+ 0) + 1], inches = FALSE,

+ add = TRUE)

> legend("topleft", fill = cols,

+ legend = leglabs(brks),

+ bty = "n", cex = 0.8)

Aspatial flood frequency model
Since we have seen how the zinc ppm values seem to be
distributed in relationship to flood frequencies, and because we
have flood frequencies for the prediction locations, we can start
with a null model, then an aspatial model (using leave-one-out
cross validation to show us how we are doing):
> library(ipred)

> res <- errorest(Zn ~ 1, data = as(BMcD, "data.frame"), model = lm,

+ est.para = control.errorest(k = nrow(BMcD), random = FALSE,

+ predictions = TRUE))

> round(res$error, 2)

[1] 400.86

> fres <- lm(Zn ~ Fldf, data = BMcD)

> anova(fres)

Analysis of Variance Table

Response: Zn

Df Sum Sq Mean Sq F value Pr(>F)

Fldf 2 6413959 3206979 33.8 8.196e-12

Residuals 95 9013656 94881

> eres <- errorest(Zn ~ Fldf, data = as(BMcD, "data.frame"), model = lm,

+ est.para = control.errorest(k = nrow(BMcD), random = FALSE,

+ predictions = TRUE))

> round(eres$error, 2)

[1] 310.74

52 | Statistical Downscaling Tutorial

Thin plate spline interpolation

Thin plate spline model

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

under 130
130 − 155
155 − 195
195 − 250
250 − 330
330 − 450
450 − 630
630 − 890
890 − 1270
over 1270

We have a slight problem of
undershooting zero on the east, but
thin plate splines yield a generally
“attractive” smoothed picture of zinc
ppm:
> BMcD_grid$spl_pred <- predict(tps,

+ coordinates(BMcD_grid))

> image(BMcD_grid, "spl_pred",

+ breaks = brks, col = cols)

Thin plate spline interpolation

The next attempt uses tps from fields to do thin plate spline
interpolation, first in a loop to do LOO CV:
> library(fields)

> pe_tps <- numeric(nrow(BMcD))

> cBMcD <- coordinates(BMcD)

> for (i in seq(along = pe_tps)) {

+ tpsi <- Tps(cBMcD[-i,], BMcD$Zn[-i])

+ pri <- predict(tpsi, cBMcD[i, , drop = FALSE])

+ pe_tps[i] <- BMcD$Zn[i] - pri

+ }

> round(sqrt(mean(pe_tps^2)), 2)

[1] 263.69

> tps <- Tps(coordinates(BMcD), BMcD$Zn)

52 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 53

Ordinary kriging

Using the fitted variogram, we define the geostatistical model and
use it both for LOO cross validation and for predictions, also
storing the prediction standard errors:
> OK_fit <- gstat(id = "OK_fit", formula = Zn ~ 1, data = BMcD, model = efitted)

> pe <- gstat.cv(OK_fit, debug.level = 0, random = FALSE)$residual

> round(sqrt(mean(pe^2)), 2)

[1] 261.55

> z <- predict(OK_fit, newdata = BMcD_grid, debug.level = 0)

> BMcD_grid$OK_pred <- z$OK_fit.pred

> BMcD_grid$OK_se <- sqrt(z$OK_fit.var)

Modelling the local smooth

If we choose to use geostatistical
methods, we need a model of local
dependence, and conventionally fit
an exponential model to the zinc
ppm data:
> library(gstat)

> cvgm <- variogram(Zn ~ 1, data = BMcD,

+ width = 100, cutoff = 1000)

> efitted <- fit.variogram(cvgm,

+ vgm(psill = 1, model = "Exp",

+ range = 100, nugget = 1))

> efitted

model psill range

1 Nug 21652.99 0.000

2 Exp 157840.74 336.472
distance

se
m

iv
ar

ia
nc

e

50000

100000

150000

200 400 600 800

32

176

221

250

267
285

312 354
328 306

54 | Statistical Downscaling Tutorial

Ordinary kriging standard errors

Fitted exponential OK standard errors

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

under 240
240 − 250
250 − 260
260 − 270
270 − 280
280 − 290
290 − 300
300 − 350
350 − 400
over 400 For the standard errors, we use a

different palette, but the procedure is
the same:
> image(BMcD_grid, "OK_se", breaks = brks.se,

+ col = cols.se)

Ordinary kriging predictions

Fitted exponential OK model

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

under 130
130 − 155
155 − 195
195 − 250
250 − 330
330 − 450
450 − 630
630 − 890
890 − 1270
over 1270

By now, the typical idiom of adding
constructed variables to the
SpatialPixels data frame object, and
displaying them by name, should be
familiar:
> image(BMcD_grid, "OK_pred",

+ breaks = brks, col = cols)

54 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 55

Universal kriging

The geostatistical packages, like gstat, use formula objects in
standard ways where possible, which allows for considerable
flexibility, as in this case, where we do really quite well in terms of
LOO CV — and reach the same conclusion as Burrough and
McDonnell about the choice of model:
> UK_fit <- gstat(id = "UK_fit", formula = Zn ~ Fldf, data = BMcD, model = uefitted)

> pe_UK <- gstat.cv(UK_fit, debug.level = 0, random = FALSE)$residual

> round(sqrt(mean(pe_UK^2)), 2)

[1] 225.8

> z <- predict(UK_fit, newdata = BMcD_grid, debug.level = 0)

> BMcD_grid$UK_pred <- z$UK_fit.pred

> BMcD_grid$UK_se <- sqrt(z$UK_fit.var)

Universal kriging — adding flood frequencies

We know that flood frequencies
make a difference — can we combine
the local smooth with that global
smooth?
> cvgm <- variogram(Zn ~ Fldf,

+ data = BMcD, width = 100,

+ cutoff = 1000)

> uefitted <- fit.variogram(cvgm,

+ vgm(psill = 1, model = "Exp",

+ range = 100, nugget = 1))

> uefitted

model psill range

1 Nug 37259.01 0.0000

2 Exp 52811.94 285.6129

distance
se

m
iv

ar
ia

nc
e

2e+04

4e+04

6e+04

8e+04

200 400 600 800

32

176
221

250
267 285

312 354

328

306

56 | Statistical Downscaling Tutorial

Universal kriging standard errors

Flood frequency UK interpolation standard errors

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

under 240
240 − 250
250 − 260
260 − 270
270 − 280
280 − 290
290 − 300
300 − 350
350 − 400
over 400 The standard errors are also

improved on the ordinary kriging
case:
> image(BMcD_grid, "UK_se", breaks = brks.se,

+ col = cols.se)

Universal kriging predictions

Flood frequency UK model

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

under 130
130 − 155
155 − 195
195 − 250
250 − 330
330 − 450
450 − 630
630 − 890
890 − 1270
over 1270

Of course, the resolution of the grid
of prediction locations means that
the shift from flood frequency class 1
to the others is too“chunky”, but the
effect of flood water“backin up”
creeks seems to be captured:
> image(BMcD_grid, "UK_pred",

+ breaks = brks, col = cols)

56 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 57

Exporting a completed prediction

We will finally try to export the universal kriging predictions as a
GeoTiff file, and read it into ArcGIS. In practice, this requires using
Toolbox → Raster → Calculate statistics, and then right-clicking
on the layer: Properties → Symbology → Classified:
> writeGDAL(BMcD_grid["UK_pred"], "UK_pred.tif")

Putting it all together

lm_pred spl_pred

OK_pred UK_pred

0

200

400

600

800

1000

1200

1400

1600

1800

Using spplot, we can display all the
predictions together, to give a view
of our progress:
> pts = list("sp.points", BMcD,

+ pch = 4, col = "black",

+ cex = 0.5)

> spplot(BMcD_grid, c("lm_pred",

+ "spl_pred", "OK_pred", "UK_pred"),

+ at = brks, col.regions = cols,

+ sp.layout = list(pts))

58 | Statistical Downscaling Tutorial

Writing a GE image overlay

> library(maptools)

> grd <- as.SpatialPolygons.SpatialPixels(BMcD_grid)

> proj4string(grd) <- CRS(proj4string(BMcD))

> grd.union <- unionSpatialPolygons(grd, rep("x", length(slot(grd, "polygons"))))

> grd.union.ll <- spTransform(grd.union, CRS("+proj=longlat"))

> llGRD <- GE_SpatialGrid(grd.union.ll, maxPixels = 100)

> llGRD_in <- overlay(llGRD$SG, grd.union.ll)

> llSPix <- as(SpatialGridDataFrame(grid = slot(llGRD$SG, "grid"), proj4string = CRS(proj4string(llGRD$SG)),

+ data = data.frame(in0 = llGRD_in)), "SpatialPixelsDataFrame")

> SPix <- spTransform(llSPix, CRS("+init=epsg:28992"))

> z <- predict(OK_fit, newdata = SPix, debug.level = 0)

> llSPix$pred <- z$OK_fit.pred

> png(file = "zinc_OK.png", width = llGRD$width, height = llGRD$height,

+ bg = "transparent")

> par(mar = c(0, 0, 0, 0), xaxs = "i", yaxs = "i")

> image(llSPix, "pred", col = bpy.colors(20))

> dev.off()

> kmlOverlay(llGRD, "zinc_OK.kml", "zinc_OK.png")

The exported raster viewed in ArcGIS

58 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 59

Conclusions

� The sp classes can be used (more or less) like data frames in
many contexts

� The display methods on generated predictions and standard
errors can be used directly, with spatial position being handled
within the sp class objects

� Generating output for interfacing with other software is a bit
picky (Arc prefers single-band GeoTiffs, while ENVI will digest
multi-band files with no apparent discomfort)

� And we are still just at the beginning of making predictions —
there are far more sophisticated methods out there, but they
also benefit from ease of standardised data import, export,
and display

The image overlay viewed in GE

example of korean daily mean data

62 | Statistical Downscaling Tutorial

62 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 63

구성

1. 소개

2. 자료

3. 통계모형

4. 결과

5. 결론및향후연구

통계적 보간법을 이용한

일별 평균기온 추정

대구대학교

전산통계학과

윤상후

64 | Statistical Downscaling Tutorial

통계적보간법 (통계적상세화기법)

inverse distance weighted interpolation, artificial neural network, canonical correlation analysis,

hidden Markov model, partial least squares regression, spline interpolation, parameter-elevation

Regressions on independent slopes Model, PRISM 등이존재

Linear model 모형 :이해하기쉬운직관적모형으로상대적으로쉽게모형과가능

일반선형모형 (General linear model)

일반화가법모형 (Generalized linear model)

공간선형모형 (Spatial regression model)

베이지안공간선형 (Bayesian spatial regression model)

1. 소개

• 다양한분야(농업, 수문등)에서고해상도격자기상정보의활용성과중요성증가

• 관측된자료로부터고르게분포된장기간의고해상도격자기상정보생산이필요

• 스케일상세화기법은통계적상세화기법과역학적상세화기법이존재

• 역학적상세화기법 :산지효과와같은물리적요소에대한대기과정을현실적으로모의가능

하지만상당한계산시간과방대한저장공간이요구됨

• 통계적상세화기법 :계산부하가작고모델앙상블전망을통해예측의불확실성평가

• 격자형국지기후자료 : 격자와관측지점간거리와지형학적환경을모두고려해야함

64 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 65

3. 통계모형

General Linear Model(GLM) : OLS estimation

Generalized Additive Model(GAM): REML estimation, mgcv(Wood, 2012)

f : unspecified functions(Hastie and Tibshirani, 1990; Wood, 2006)

β : unknown parameters corresponding to each explanatory variables

독립변수 : 위도, 경도, 해발

지수분포족 (정규분포, 지수분포, 감마분포등)

Suitable function : Regression spline (or Spline smoothing) Algorithm

Solution : 매듭(knot)을 Natural cubic spline

2. 자료

기간 : 2003년~2012년 (10년)

종속변수 : 1월평균기온

독립변수 : 위도, 경도, 고도

모델적합자료 : 종간기상관측소 (ASOS, 60)
기압, 기온, 풍향, 풍속, 습도, 강수량, 시정, 구름등 20여개요소

검증자료 : 자동기상관측지점(AWS, 352)
풍향, 풍속, 기온, 강수량, 강수유무, 5개요소

ASOS : 1973년부터 60개지점에서자료수집

AWS : 1990년후반부터구축

66 | Statistical Downscaling Tutorial

𝝉𝝉𝝉𝝉𝟐𝟐𝟐𝟐 : Nugget effect (measurement error)

If nugget effect is 0,

the line MUST go through all the points.

If nugget effect is small, (for example, 0.04)

the line goes through nearby all the points.

If nugget effect is large, (for example, 4)

the line smoothly goes the points.

Spatial Linear Model(SLM) : MLE estimation, DiceKriging(Roustant et al., 2010)
Gaussian Process Regression Model

Bayesian Hierarchical model(BSLM) : MCMC, Spbayes(Finley and Banaerjee, 2007)

Matern , Gaussian, exponential, powered exponential
Spherical correation function

Gamma (IG) distribution for the variance parameters, 2 and 1.
With a shape of 2, the mean of the IG is equal to the scale and the variance is infinite.
A proper prior distribution for any variance component that will satisfy a proper posterior distribution (Gelman, et al., 2004)

66 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 67

4. 결과

Year
GLM GAM SRM (OK) SRM (UK) BSM

RMSE rBIAS Corr RMSE rBIAS Corr RMSE rBIAS Corr RMSE rBIAS Corr RMSE rBIAS Corr

2003 1.651 0.616 0.832 1.349 0.838 0.903 1.483 0.503 0.877 1.326 0.608 0.903 1.203 0.548 0.925

2004 1.704 -0.027 0.808 1.388 0.122 0.884 1.466 0.046 0.865 1.358 0.026 0.886 1.237 0.069 0.913

2005 1.519 -0.101 0.848 1.303 -0.176 0.898 1.416 -0.329 0.879 1.294 -0.238 0.901 1.244 -0.166 0.914

2006 1.488 2.537 0.848 1.317 3.718 0.887 1.323 4.127 0.888 1.244 2.228 0.898 1.150 3.181 0.920

2007 1.687 0.059 0.792 1.373 -0.152 0.871 1.468 -0.024 0.849 1.407 -0.140 0.862 1.249 -0.058 0.898

2008 1.431 -0.181 0.862 1.220 -0.220 0.912 1.213 -0.194 0.910 1.155 -0.192 0.918 1.109 -0.231 0.928

2009 1.777 -0.046 0.808 1.338 -0.092 0.901 1.467 -0.078 0.878 1.378 -0.060 0.893 1.269 -0.109 0.916

2010 1.793 -4.803 0.858 1.276 -4.874 0.934 1.462 -5.647 0.912 1.370 -4.617 0.925 1.268 -4.121 0.939

2011 1.828 -0.038 0.847 1.353 -0.064 0.924 1.491 -0.039 0.902 1.475 -0.029 0.903 1.354 -0.063 0.926

2012 1.536 -0.085 0.859 1.214 -0.117 0.919 1.319 -0.126 0.904 1.247 -0.088 0.912 1.154 -0.116 0.930

Average 1.641 -0.207 0.836 1.313 -0.102 0.903 1.411 -0.176 0.886 1.325 -0.250 0.900 1.224 -0.106 0.921

RMSE : BSM (1.224) < GAM (1.313) < SRM (UK, 1.325) < SRM (OK, 1.411) < GLM (1.641)

Corr : GLM (0.836) < SRM (OK, 0.886) < SRM (UK, 0.900) < GAM (0.903) < BSM (0.921)

ASOS(60) + AWS (352) = 412 sites

68 | Statistical Downscaling Tutorial

2007-01-15 RMSE Corr 계산시간

GLM 2.151 0.787 0.14

GAM 1.563 0.897 0.20

SRM (UK) 1.746 0.866 0.23

BSM 1.455 0.910 8.34

Sample : 3,000, burn-in : 1,500 8.34초

Sample : 13,000, burn-in : 3,000 35.42초

(RMSE : 1.452, Corr: 0.911)

일단위분석 : 2007년 1월 15일 (예)

0.780
0.800
0.820
0.840
0.860
0.880
0.900
0.920
0.940
0.960

2002 2004 2006 2008 2010 2012 2014

상관계수

GLM GAM SRM (OK) SRM (UK) BSM

1.000
1.100
1.200
1.300
1.400
1.500
1.600
1.700
1.800
1.900

2002 2004 2006 2008 2010 2012 2014

RMSE

GLM GAM SRM (OK) SRM (UK) BSM

BSM 모형의 RMSE가가장낮고, 상관계수가높음

33, 11%

50, 16%

227, 73%

SRM (UK)

GAM

BSM

SRM (UK) GAM BSM
33 50 227

총 310일중최적모형 (RMSE 기준)

68 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 69

고해상도일평균기온맵작성

Final Model : Bayesian Hierarchical Model.
Modelling sites : N=412.
Geographic information : Global 30-arc second elevation data set.

(GTOPO30, approximately 1 kilometer, U.S. Geological Survey’s Center)

2008-01-20 RMSE Corr 계산시간

GLM 1.419 0.775 0.14

GAM 0.977 0.900 0.20

SRM (UK) 0.876 0.924 0.23

BSM 0.887 0.921 8.34

Sample : 3,000, burn-in : 1,500 8.34초

Sample : 13,000, burn-in : 3,000 35.42초

(RMSE : 0.885, Corr: 0.922)

일단위분석 : 2008년 1월 20일 (예)

70 | Statistical Downscaling Tutorial

1km 해상도 95%신뢰구간

SRM

GAM
GLM

BSM

1km 해상도평균기온그림(2007.1.15)

SRM

GAM
GLM

BSM

70 | Statistical Downscaling Tutorial Statistical Downscaling Tutorial | 71

향후연구

독립변수 : 위도, 경도, 해발, 지향면, 해양도

2007-01-15 RMSE Corr
GLM 2.151 0.787
GAM 1.563 0.897

SRM (UK) 1.746 0.866
BSM 1.455 0.910

2007-01-15 RMSE Corr
GLM 1.945 0.859
GAM 1.871 0.878

SRM (UK) 1.998 0.861
BSM 1.697 0.911

최적예측을위해변수선택알고리즘필요

Kriging (Variogram model), MK-PRISM 등다른방법과예측성능비교

5. 결론

• 선형기반통계적보간법을이용한고해상도기후자료생성연구
• GLM, GAM, SRM, BSM.

• 베이지안선형모형이일평균기온의공간적패턴을잘반영

• 통계적보간법은:
• 기온, 강수량, 상대습도, 바람세기, 시나리오결과등다양하게적용가능.

• GAM과 SRM은베이지안선형모형에비해상대적으로계산시간은저렴하면서
성능은우수함.

• 베이지안선형모형의경우 iteration이증가할수록정확도는향상되나, 계산시
간이비싸지는단점이존재.

72 | Statistical Downscaling Tutorial

