

Productos y funciones adicionales del FFGS

Konstantine P. Georgakakos, Sc.D. HYDROLOGIC RESEARCH CENTER 23 Mayo 2018

Funciones avanzadas

- 0. Multi-modelo de pronóstico de precipitación cuantitativo (QPF)
- A. Alertas por crecidas repentinas urbanas
- B. Tránsito fluvial
- C. Predicción de ocurrencia de deslizamiento de tierras
- D. Pronóstico estacional y sub-estacional de escorrentía y caudal

0. Multi-modelo QPF

Ejemplo para el Mar Negro-Medio Oriente (BSMEFFGS)

QPF de 3 modelos de predicción del tiempo (NWP) operativos están disponibles para los pronosticadores

0. Multi-modelo QPF

Ejemplo para la región de Asia central (CARFFGS)

QPF de 2 modelos de predicción del tiempo (NWP) operativos están disponibles para los pronosticadores

0. Multi-modelo QPF

23 May 2018

A. Alertas por crecidas repentinas urbanas (UFFWS)

A.1 Elementos básicos del UFFWS

 $\Im y/\Im t + \Im (vy)/\Im x = 2q_{L}/B - f$ $S_{f} = S_{0} - \Im y/\Im x$

A.1 Elementos técnicos básicos del UFFWS

Capacidad de entrada Total Rainfall Generating Inlet Capacity: $(N_s+N_m) Q_T = (1/3.6) U_0 f_A A$

Volumen total de capacidad del drenaje pluvial: $X_s^0 = \sum_{k=0}^{M} (\pi D_k^2 / 4) L_k$

Tiempo para desbordar el drenaje pluvial: $T_s^0 = -(1/b) \ln\{1 - b X_s^0 / [(1/3.6) U_0 f_A A]\}$

Escalamiento del caudal a sección llena Q y caudal a sección llena v:

$$Q_{BNKF} = \alpha A^{\beta}$$

Area de cuenca promedio: 1-5 km²

Area de malla de lluvia: 16 km²

A.3 Ejemplo de caudal de drenaje superficial

A.4 Uso para la mitigación del peligro de crecida

A.5 Implementación del FFGS

Aplicación del FFGS en la cuenca Cendere, Istanbul.

Solo se considera drenaje pluvial superficial a través de arroyos y calles

Cuencas urbanas definidas con una resolución de 0.25 km².

B. Tránsito de cauces para el FFGS

Meta:

Proporcionar la capacidad de pronosticar el flujo de descarga en ubicaciones específicas a lo largo de la red de cauces de cuencas seleccionadas y formar a pronosticadores (y otros) en el uso de la información

Prerequisitos:

- Pronósticos a mesoescala de previsión numérica del tiempo (NWP) (pronósticos individuales o de conjunto) para ser asimilados por el FFGS (por los países y el Centro Regional)
- 2. Selección de cuencas específicas y puntos de pronóstico dentro de la cuenca (por los países y el Centro Regional)
- 3. Información en sitios de los cauces e información de embalses para los embalses incluidos Information at sites of the river channel and reservoir information for those reservoirs included (por los países)

B.1 Sub-sistema de tránsito de ríos

B.2 Tipo de tránsito de cauce

Pendientes pronunciada (> 0.01-0.001) Tránsito cinemático $\frac{\partial Q}{\partial t} + \frac{\partial (\frac{Q^2}{A})}{\partial x} + gA \frac{\partial h}{\partial x} - \frac{Cinemático}{gA s + gA S = 0}$ Pendientes ligeras (>0.0001) Tránsito del tipo difuso (Muskingum-Cunge)

Qi (m³/s

B.3 Tipo de interfaz: Productos de simulación

| Simulation Images | Forecast Images | Basin Forecast Ensembles

PANDHM v1.0p Release Date - April 2015 Copyright © 2015 <u>Hydrologic Research Center</u> (HRC)

B.3 Tipo de interfaz: Tablas y trazas de conjunto

Download the CSV data file: 2016101000 2024511394 streamflow forecast basin ensemble.csv

2016-10-10 00:00 UTC - Streamflow Forecast Ensemble - Outlet 2024511394 Units: cms																				
Valid Time	m01	m02	m03	m04	m05	m06	m07	m08	m09	m10	m11	m12	m13	m14	m15	m16	m17	m18	m19	m20
2016-10-10 06:00	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8
2016-10-10 07:00	14.3	14.3	14.3	14.3	14.3	14.3	14.3	14.3	14.3	14.4	14.3	14.3	14.3	14.3	14.3	14.3	14.3	14.3	14.3	14.3
2016-10-10 08:00	13.9	13.9	13.9	13.9	13.9	14.2	13.9	13.9	14.2	14.4	13.9	13.9	13.9	13.9	14.2	13.9	13.9	13.9	13.9	14.0
2016-10-10 09:00	13.5	13.5	13.5	13.5	13.5	14.3	13.5	13.5	14.7	15.3	13.5	13.5	14.1	13.7	14.7	13.9	13.5	13.5	13.5	14.0
2016-10-10 10:00	13.1	13.1	13.3	13.1	13.1	14.2	13.2	13.1	14.9	15.7	13.1	13.1	14.5	13.5	15.0	13.7	13.1	13.1	13.1	13.8
2016-10-10 11:00	12.9	12.8	13.3	12.8	12.8	14.0	13.6	12.8	15.5	15.6	12.8	12.9	16.4	13.7	16.9	13.4	12.8	12.9	13.0	14.8
2016-10-10 12:00	13.2	12.7	13.3	13.3	12.9	13.9	15.2	12.5	16.2	15.5	12.9	12.5	17.8	16.4	18.6	13.8	12.6	12.8	13.4	17.6
2016-10-10 13:00	14.1	13.0	14.2	16.9	14.8	15.8	18.2	12.5	16.5	15.6	15.9	12.5	18.2	29.7	18.5	14.1	12.8	13.2	13.9	19.9
2016-10-10 14:00	15.1	13.9	16.2	21.3	17.4	18.3	19.5	13.8	17.2	16.0	23.3	13.3	18.7	28.6	19.3	14.5	13.2	13.9	15.1	21.1
2016-10-10 15:00	17.4	15.0	18.9	24.9	19.2	20.4	20.5	15.2	18.9	17.8	22.9	14.8	19.4	26.6	19.6	15.3	13.7	14.5	16.1	22.7
2016-10-10 16:00	19.6	16.2	21.6	25.8	20.0	21.3	21.0	16.3	21.1	19.1	20.7	16.0	18.7	26.5	19.1	16.1	13.8	15.1	16.1	22.2
2016-10-10 17:00	18.7	16.1	21.4	25.8	18.5	23.2	20.5	17.4	22.4	19.9	21.1	16.6	17.6	26.3	18.1	17.3	13.2	15.4	15.4	20.9
2045 40 40 40 00	40.0	45.0	40.0	20.0	47.0	25.0	40.0	47.0	24.7	40.4	24.2	40.0	40.0	24.0	40.0	40.5	40.7	45.0	44.0	40.4

B.3 Tipo de interfaz: Mapas de pronóstico

B.4 Niveles de embalses y lagos

Módulo de almacenamiento/descarga de embalses para el componente de tránsito

B.5 Influencia de los parámetros del modelo hidrológico

Simulacion de descarga horaria (línea azul) con parámetros **sin ajustar**, comparada con las observaciones (línea negra) – las observaciones horarias del caudal son importantes para la

calibración

23 May 2018

C. Predicción de deslizamiento de tierras usando resultados del FFGS

- C.1 Desarrollo de mapas de susceptibilidad en una region con una base de datos adecuada (El Salvador, America central) (realizado)
- C.2 Predicción de deslizamiento de tierras en tiempo real usando umbrales de lluvia y de agua del suelo del FFGS en El Salvador (realizado)
- C.3 Generalización para América Central e implementación/demonstración en el CAFFG (en curso)
- C.4 Consola de productos del FFGS para evaluación de deslizamientos de tierra

C.1 Mapeo de susceptibilidad

C.2 Real-time Occurrence Prediction based on FFGS Rainfall and SM

C.3 Generalization for Central America

C.4 Product Console

Design and Implementation Status of Current Advances

Landslide Module operational in CAFFG System

D. Seasonal to Sub-seasonal Ensemble Forecasting

Seasonal Forecasting of Snowmelt and Rain Runoff

Assessment Date 1 April 2017

D.1 Seasonal to Sub-Seasonal Ensemble Runoff and **Flow Prediction**

Interactive Maps for Runoff Volume

Ensemble Forecast Time Series for a 84.63-km² basin (1 April 2017)

23 May 2018

E. Mapa de inundación para el cálculo de humedad del suelo

MRC FLASH FLOOD GUIDANCE SYSTEM - MRCFFG In Operation Since 2009

Development/Implementation/Training: Hydrologic Research Center **Purpose:** Provide Regional Products with High Resolution to Forecasters in Thailand, Lao PDR, Cambodia and Vietnam to Provide Real-Time Warnings for Flash Floods Sample Products for Flash Flood Prone Basins Delineated in Vietnam (Son Tinh Typhoon Landfall in Northern Vietnam in October 2012) Precipitation **Upper-Soil Water** at Landfall Saturation Fraction from **NESDIS** ASM - 06 hr 2012-10-28 18:00 UTC VIETNAM at Landfall fraction HydroEstimator from operational 1.00 MRCFFG (uses bias-adjusted).90 HE pixel values)

E. Mapa de inundación para el cálculo de humedad del suelo

STANDING WATER CORRECTIONS TO MODEL SOIL WATER FROM NASA PRODUCTS

MODIS-Based MRCFFG Modeled Area inundada observada en Camboya Drying Surface Soil Water in Cambodia

E. Mapa de inundación para el cálculo de humedad del suelo

Posner et al. Remote Sens. 2014, 6, 10835-10859 – Acceso libre

Método: Asimilación de la saturación del suelo superior en cuencas con una inundación mayor a 85% y uso del modelo de humedad del suelo para ajustar la cantidad de agua en el suelo inferior.

