Central Asia Regional Flash Flood Guidance System 4-6 October 2016

Central Asia Snow Accumulation, Ablation & Cover

Hydrologic Research Center

A Nonprofit, Public-Benefit Corporation

http://www.hrcwater.org

FFGS Snow Products

Presentation Outline:

- FFGS Snow Components
- Snow Accumulation and Ablation Model
- Model Input (MAT and MAP)
- Snow Cover (IMS)
- Model Evaluation

FFGS Snow Model Components

Modeling Schematic

Snow -17

- Anderson, Eric A., 1973: "National Weather Service River Forecast System -- Snow Accumulation and Ablation Model", NOAA Technical Memorandum NWS HYDRO-17, US Dept. of Commerce, Silver Spring, MD, 217p.
- Anderson, Eric, A., 1976: "A Point Energy and Mass Balance Model of a Snow Cover", NOAA Technical Report 19, U.S. Dept. of Commerce, Silver Spring, MD, 150p.
- http://www.nws.noaa.gov/oh/hrl/nwsrfs/users_manual/part2/_pdf/22 snow17.pdf

Snow Model

- Snow Accumulation and Ablation Model (SNOW-17) of the U.S. NWS (Anderson, 1973; Anderson, 2005)
- Operational model at the National Weather Service, U.S.A
- A conceptual areal lumped energy and mass balance model
- Air Temperature used as an index for pack energy and division of precipitation as rain or snow
- Considers: melt during no rain; melt during rain; no melt
- Model states track: snow water equivalent (SWE), heat deficit, liquid content, and snow cover area

SNOW-17 MODEL:

Model Variables

States

- SWE Snow water equivalent
- Liquid content PLWHC parameter (vertical transmission through the pack)
- Heat Deficit Energy required to bring the snowpack to isothermal o^o C
- ATI Antecedent Temperature Index
- Snow Pack Depth (Optional)
- SCA Snow Cover Area

Output

Rain plus Melt

Data Requirements

- Surface Air Temperature
 - Index for the pack energy balance and determine the form of precipitation (rain or snow)
- Precipitation
 - determine amount of snowfall and amount of rain-on-snow (PXTEMP)
 - SCF Multiplying factor that adjusts precipitation data for gage catch deficiencies during periods of snowfall
- Other Data (when available)
 - Snowfall
 - Snow course and/or snow sensors (water-equivalent)
 - Areal extent of snow cover (satellite)

Rainfall or Snowfall ?

(Anderson 2006)

PXTEMP – threshold temperature parameter (2°C)

Seasonal Melt Factor (mm /(C 6-hr))

Snowmelt During Non-rain Periods

Energy balance equation is not used because of wide variability of meteorological conditions

(e.g. sunny overcast dry humid calm or windy)

Empirical relationship

 $M = M_f * (T_a - MBASE)$

 $M_f = melt factor (mm * {}^{o}C^{-1} * \Delta t^{-1})$

MBASE = base temperature where melt begins (°C) (usually =0)

 $Mf = \left[\frac{MFMAX + MFMIN}{2} + \sin\left(\frac{n^{*}2\pi}{366}\right)^{*} \frac{MFMAX - MFMIN}{2}\right]^{*} \frac{\Delta t}{6}$

MFMAX = maximum melt factor, assumed to occur on June 21 (mm * ºC⁻¹ * 6hr ⁻¹) MFMIN = minimum melt factor, assumed to occur on December 21 (mm * ºC⁻¹ * 6hr ⁻¹) n = day number beginning with March 21 Experimental for the Sierra Nevada Snow Laboratory

Seasonal variation - solar radiation and albedo reduction with snow aging.

A Priori Estimate of Melt Factor

LAND COVER	MF _{MAX} (mm °C 6hr ⁻¹)	MF _{MIN} (mm °C 6hr ⁻¹)
Coniferous forest	0.5 -0.7	0.2 - 0.4
/persistent cloud cover		
Mixed forest Coniferous	0.8 - 1.2	0.1-0.3
plus open and/or		
deciduous		
Predominantly Deciduous	1.0-1.4	0.2- 0.6
Open Areas flat terrain	1.5-2.2	0.2-0.6
Mountainous terrain	0.9-1.3	0.1-0.3

Table 2. Recommendation for MF_{MAX} and MF_{MIN} values (Anderson 2002)

Spatial Information

AVHRR Global Land Cover Product GLCF 1 km resolution

GTOPO – DEM (~km)

Elevation (m) Casia -143 - 0.01 0 - 200 200 - 800 800 - 1500 1600 - 3000

No Det

Monthly Climatological temperature Climate Research Unit –East Anglia [1960-1990]

Satellite Snow Covered Area

- Interactive Multisensor Snow and Ice Mapping System (IMS), made available through National Snow and Ice Data Center, NOAA. http://nsidc.org/data/docs/noaa/go2156_ims_snow_ice_analysis/index.html
- Northern Hemisphere daily snow cover based on summary of multiple satellites at 4km x 4km resolution.
- Product defines: Snow covered land, sea ice, sea land (no snow)
- Since December 2014 a 1 km SCA and snow depth (4-km) products are available (to be evaluated for FFGS)
- Generally available within 1 day (often within several hours) following date of observation
- □ Archive is available for 2006-current
- Helfrich et al., 2007 Hydrological Processes

Comparison between snow stations and snow satellite

GOOD AGGREMMENT BETWEEN SNOW AT THE STATION AND THE CLOSEST GRID CELL

Comparison between snow stations to the 4km snow cover from the satellite 2006-2010 Data from 289 stations

139 stations reported one daily event or more.

The map shows the station locations that have frequent reports

7224 Daily total reports for these period

As the SWE increase as the t-hold for cover by the satellite the percent agreement and disagreement between the station and the satellite increases and decreases respectively

Incorporating Glacier mapping information in the FFGS

GLIMS: Global Land Ice Measurements from Space (<u>http://www.glims.org/</u>)

- National Snow and Ice Data Center
- Contribution from more than 60 institutions
- Based on data from ASTER (Advanced Spaceborne Thermal Emission and reflection Radiometer) and the Landsat Enhanced Thematic Mapper Plus (ETM+) as well as historical information derived from maps and aerial photographs.

Raup, B.H.; A. Racoviteanu; S.J.S. Khalsa; C. Helm; R. Armstrong; Y. Arnaud (2007). "The GLIMS Geospatial Glacier Database: a New Tool for Studying Glacier Change". Global and Planetary Change 56:101--110. (doi:10.1016/j.gloplacha.2006.07.018)

CARFFG Glacier percent cover

FFG Modeling of Frozen Ground

- Frozen ground can have a significant effect on streamflow
- The modeling of frozen ground using a Frost Index (FI)
- Operational data source that can be used operationally in the FFGS (CFSv2)
- Evaluation of Regional Frost Index

The importance of simulating frozen ground

Frost Index [FI]

Calculating an empirical Frost Index [FI] as a function of:

- Air Surface Temperature [Ta]
- Snow depth [SD]
- Snow cover area [SCA]

Reduction Factor

 A multiplier that reduces percolation and interflow withdrawal rates as a function of soil moisture

Figure 1. Illustration of a generalized hydrologic model.

Kazakhstan Climate and Land Cover

C. Eisfelder et al. / Journal of Arid Environments 103 (2014) 17-30

Land cover map: Klein et al., 2012

MODIS/Terra 8day LST vs. SCA 2000-

2014

Thaw Onset calculated with Temperature data from NCDC and CFS

Thaw Onset [CFS 6-hr Forecast]

Thaw Onset 0-0.1m 2012

Thaw Onset 0-0.1m 2014 55 50 60 70 80 90

55

50

45

May

Thaw Onset 1-2m 2014

Thaw Onset 0.1-0.4m 2014

Freezing Onset [CFS 6-hr Forecast]

55

50

80

Freezing Onset 0.1-0.4m 2012

70

60

Freezing Onset 0.4-1m 2012

Freezing Onset 1-2m 2012

Freezing Onset 0-0.1m 2013

Freezing Onset 0.1-0.4m 2013

Freezing Onset 0.4-1m 2013

Freezing Onset 1-2m 2013

Nov Dec

Freezing Onset 0-0.1m 2014

Freezing Onset 0.1-0.4m 2014

Freezing Onset 1-2m 2014

SWE from Real Time Run at KAZHYDROMET

