Central Asia Regional Flash Flood Guidance System: Introduction to CARFFGS, Design Philosophy, and FFGS Products

Hydrologic Research Center 15 SEPTEMBER 2015

CARFFG Steering Committee Meeting Astana, KAZAKHSTAN

Theresa Modrick, PhD TModrick@hrcwater.org

FFG Development Team at HRC

Kosta Georgakakos – Technical Director/Hydrometeorology

Robert Jubach – Program Management/Disaster Risk Reduction

Rochelle Graham – Education and Training

Theresa Modrick – Mesoscale Modeling and Routing Models

Ari Posner – Land Slides/EOS Data Evaluation

Eylon Shamir – Soil Water and Snow Models

Cris Spencer – IT Engineering/Programming

Jason Sperfslage – IT Systems Engineering

WORLD METEOROLOGICAL ORGANIZATION (WMO):

" A flood of short duration with a relatively high peak discharge "

AMERICAN METEOROLOGICAL SOCIETY (AMS):

" A flood that rises and falls quite rapidly with little or no advance warning, usually the result of intense rainfall over a relatively small area "

A local hydrometeorological phenomenon that requires:

- 1. BOTH Hydrological and Meteorological expertise for real time forecasting/warning
- 2. Knowledge of local up to the hour information for effective warning

Usually, flow crest is reached within **6 hours** of causative event (Only consider **< 2000km²**).

Natural Causes of Flash Floods

- Intense rainfall from slow moving thunderstorms or tropical systems
- Orographic rainfall in steep terrain
- Soil saturation or impervious land surfaces
- Hydraulic *channel* properties

 Sudden release of impounded water (natural dam or human-made dam)

The Need

Flash Floods are very significant disasters globally ...

Highest number of deaths per people affected

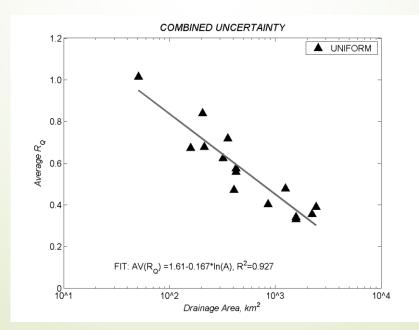
... BUT there are no discernible trends for loss reduction

- No flash flood warnings for vast populated areas of the world
- Lack of local expertise and of regional cooperation
- Little in situ data in small regions
- Large-river flood-warning strategies ineffective for flash floods

Large River Flooding vs. Flash Flooding

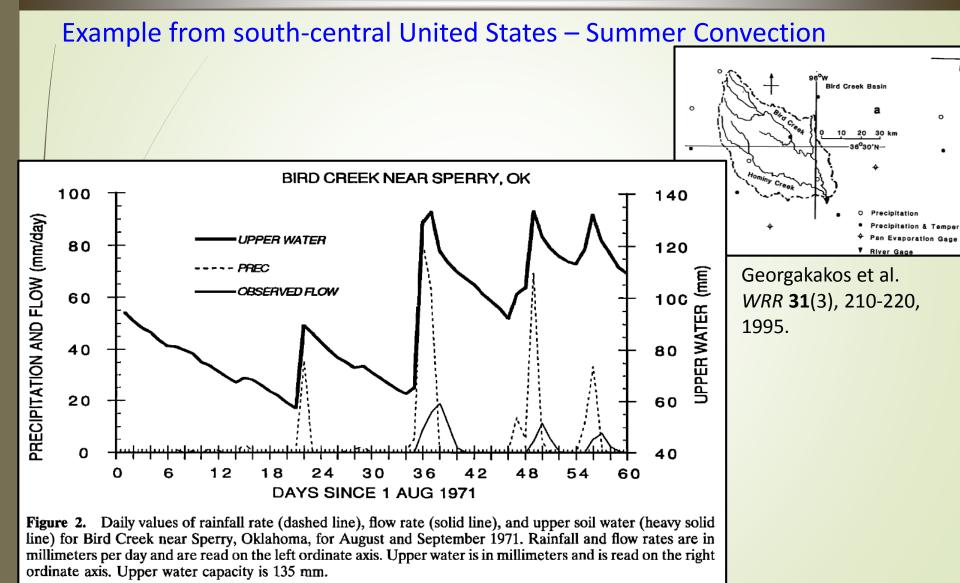
LRF

- Catchment response affords long lead times
- Entire hydrographs can be produced with low uncertainty with good quality data
- Local information less valuable
- > A hydrologic forecasting problem primarily

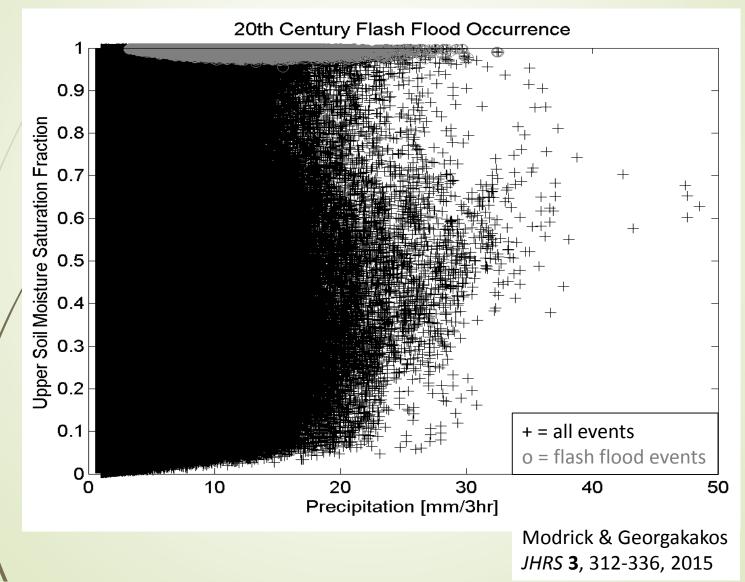

Affords time for coordination of flood response and damage mitigation

FF

- Catchment response is very fast and allows very short lead times (< 12hrs)</p>
- Prediction of occurrence is of interest
- Local information is very valuable
- A truly hydro-meteorological forecasting problem
- Coordination of forecasting and response is challenging over short times (Careful Planning Needed)


Operational Approaches for Flash Flood Warning

- 1. Site Specific (data rich catchments with special forecast interests)
- 2. Area-wide modeling with remotely sensed data and global datasets
 - 2a. Flash Flood Guidance (data sparse regions for public watches and warnings of flash flood occurrence)
 - 2b. Full Distributed Hydrograph Modeling (in regions with good data when entire hydrographs are needed) (High Uncertainty on smaller scales)


5 BASINS 3 LOCATIONS/BASIN 27 EVENTS/LOCATION

Importance of Soil Water on Flash Flooding in addition to rainfall rate

Importance of Soil Water on Flash Flooding in addition to rainfall rate

Example from southwestern United States – Winter Mediterranean Rain

Examples of Soil Texture and Infiltration Rates

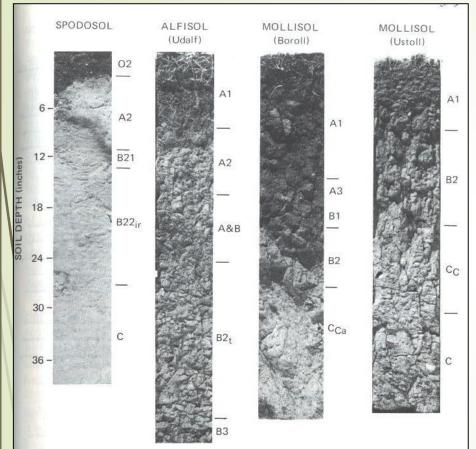
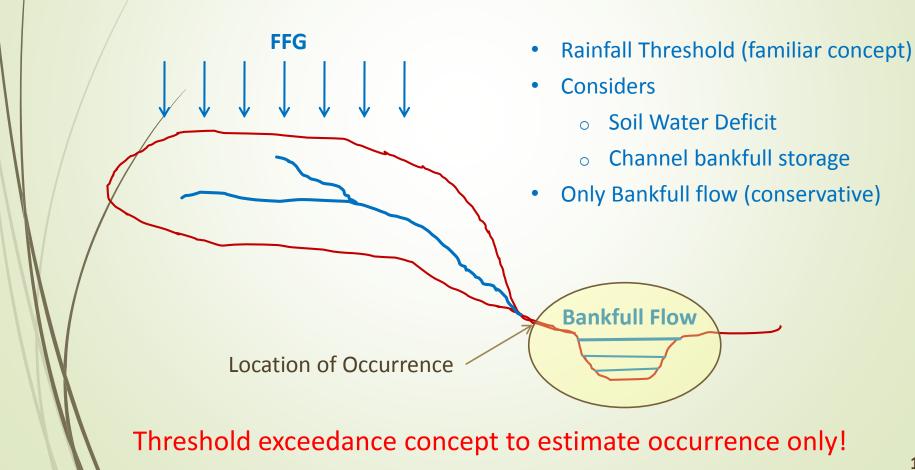


FIGURE 12:8. Monoliths of profiles representing four soil orders. The suborder names are also shown (in parentheses). Note the spodic horizons in the Spodosol characterized by humus (h) and iron (ir) accumulation. In the Alfisol is found the illuvial clay horizon B_{2_t} . The thick dark surface horizon (mollic epipedon) characterizes both Mollisols. Note that the zone of calcium accumulation (C_{Ca}) is higher in the Ustoll, which has developed in a dry climate.

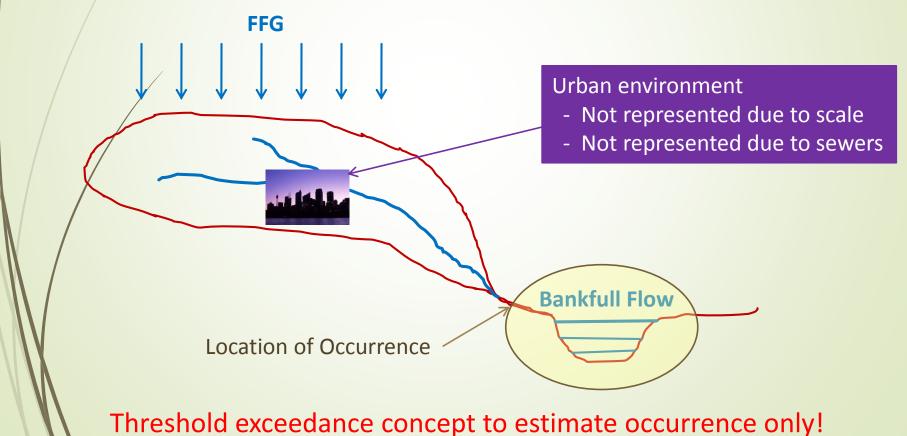
Profile	Depth (cm)	Horizon Description	Upper Limit Infiltration Rate (cm/day		
RP-1	10	A/B	5,760		
	40	C/Bt Clay in fractures	26		
	80	C/Bt Clay in fractures	19		
RP-2	40	Bt2	9		
	80	Cox/t Saprolite with clay in fractures	55		
RP-3	40	Cox/t Saprolite with clay in fractures	180		
	80	Cox/t Saprolite with clay in fractures	160		
RP-4	10	Bw/C Disturbed horizon	14,400		
C-1	10	Bt	60		
	120	Saprolite	180		
	300	Saprolite	85		
C-2	50	Bt	85		

Harmon, R.,S., (ed.) 2005: The Rio Chagres, Panama. Springer, The Netherlands.

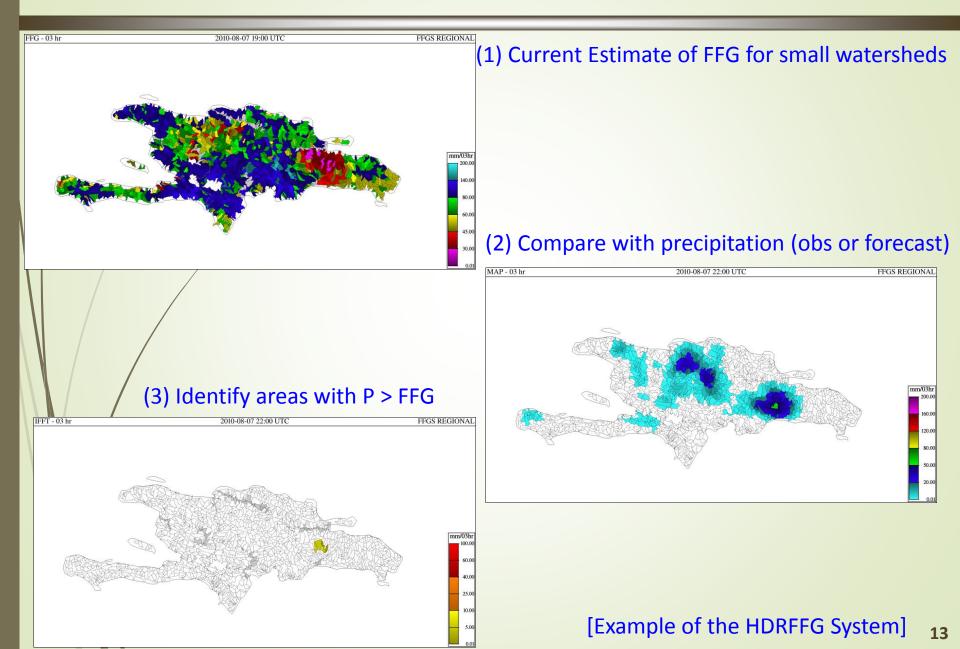

Maximum Daily Rainfall Observed: 187 cm/day – Reunion Island

Soils can infiltrate significant precipitation rates and amount.

Brady, N.C., 1974: The nature and properties of soils. McMillan Publ. Co., NY.


FFG Fundamental Concepts

Flash Flood Guidance (FFG): defines the amount of **rainfall** of a given duration and <u>over a given catchment</u> that is just enough to cause **flooding conditions** at the <u>outlet of the draining stream</u>

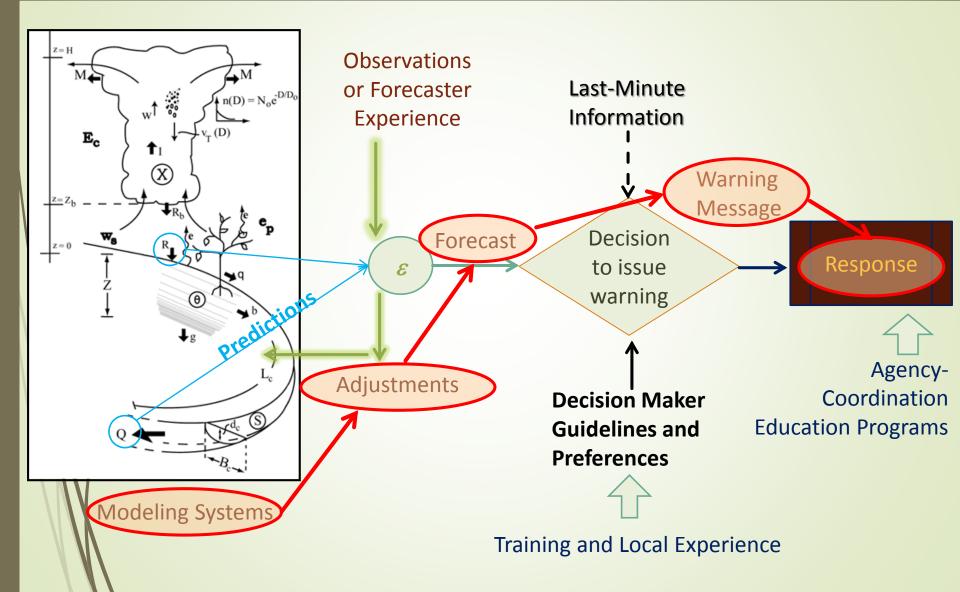


FFG Fundamental Concepts

Flash Flood Guidance (FFG): defines the amount of **rainfall** of a given duration and <u>over a given catchment</u> that is just enough to cause **flooding conditions** at the <u>outlet of the draining stream</u>

Regional Application of Flash Flood Guidance

The Hydrologic Research Center (HRC) has signed a joint Memorandum of Understanding to implement regional flash flood guidance systems worldwide with:


the United Nations – World Meteorological Organization (WMO)

the U.S. Agency for International Development/Office of U.S. Foreign Disaster Assistance (USAID/OFDA)

and the U.S. National Oceanic and Atmospheric Administration (NOAA).

http://www.wmo.int/pages/prog/hwrp/flood/ffgs/index_en.php

Integrated Systems for Real-Time Warning

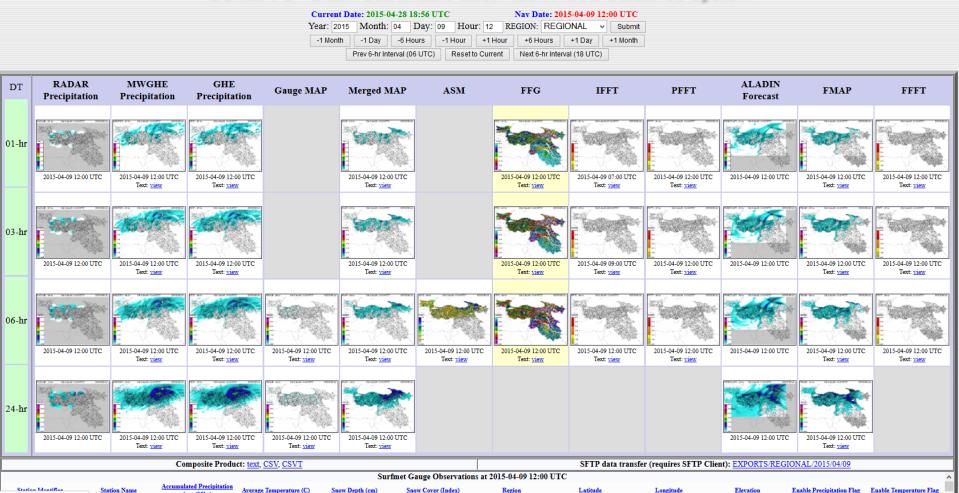
FFG Research and Development History

- 1970-1988: US NWS Produces FFG statistically for each River Forecast Center. Also, research in adaptive site specific FF prediction systems.
- 1988-1993: IIHR/HRC develop physically consistent FFG formulations based on
 GIS and create the first operational codes for US NWS
- 1993-2005: HRC continues research in various aspects of the FFG process and system (sparsely gauged basins and uncertainty issues, forcing and models). The development of prototype regional systems using FFG is proposed and accepted in work plan of WMO CHy Working Group on Applications (2002-2003)
 - **2004**: The **Central America Flash Flood Guidance System becomes operational** (serves 7 countries in CA)

2008: WMO, USAID, NOAA, HRC sign a quad-part Memorandum of Understanding to collaborate in the development of a global flash flood guidance system (currently in second 5-year phase)

2015: Begin development for Central Asia Regional System

Flash Flood Guidance Systems


Central Asia Regional Flash Flood Guidance System

Introduction to FFGS Products

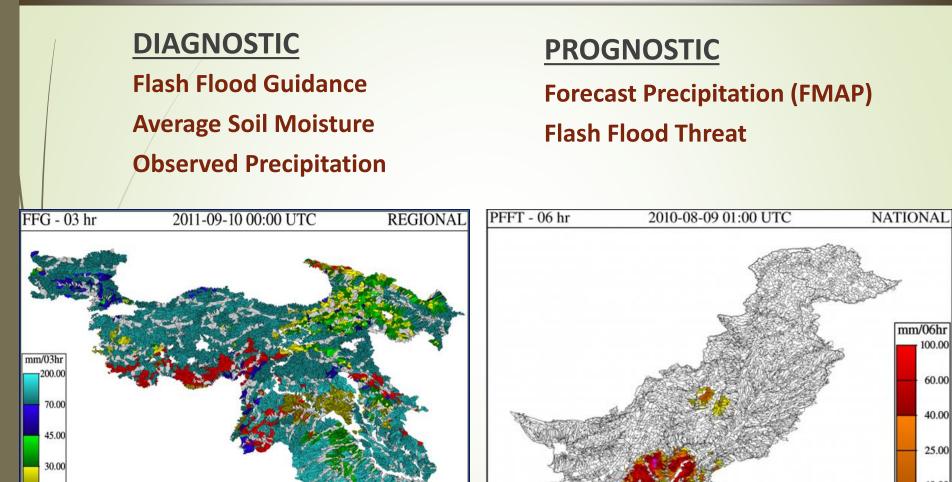
Flash Flood Guidance System Forecaster Interface

FFGS forecaster interface was designed to provide visual overview of current (and historical) system products. [Example of the BSMEFFG System]

BSMEFFG - Black Sea Middle East Flash Flood Guidance System

Construct Talance Connala n1

(mm/06hr)


Average Temperature (C) Snow Depth (cm)

Snow Cover (Index) Region

Enable Precipitation Flag

Enable Temperature Flag

FFG System Products

20.00

10.00

0.01

mm/06hr 100.00

60.00

40.00

25.00

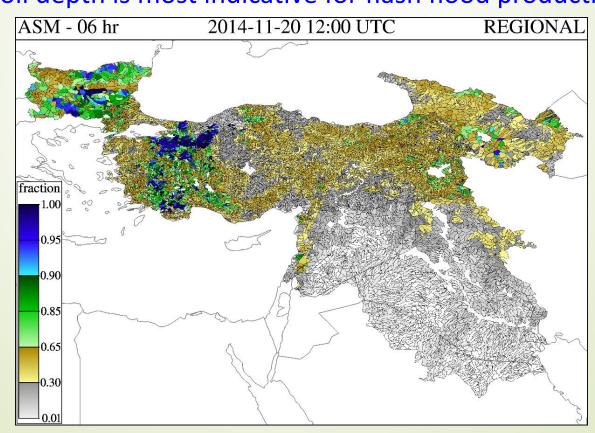
10.00

5.00

0.01

Flash Flood Guidance System Forecaster Interface

Diagnostic Products: ASM, FFG, Merged MAP

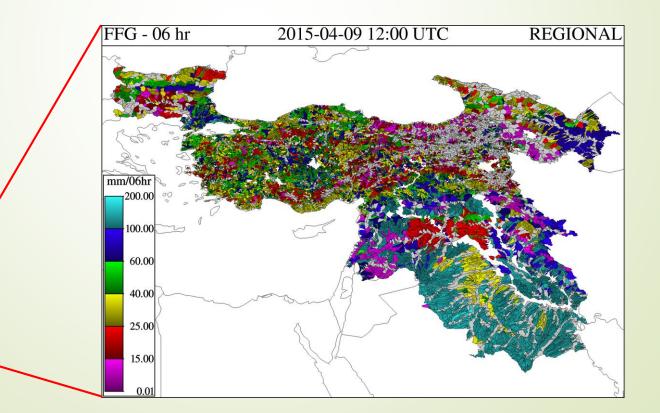

BSMEFFG - Black Sea Middle East Flash Flood Guidance System

Current I	Date: 2015-0	4-28 18:56 U	TC	Na	v Date: 201	15-04-09 12	:00 UTC
Year: 201	5 Month:	04 Day:	09 Hour:	12 REGI	ON: REGI	onal 🗸	Submit
-1 Month	-1 Day	-6 Hours	-1 Hour	+1 Hour	+6 Hours	+1 Day	+1 Month
	Prev 6-hr Int	erval (06 UTC)	Reset to C	Current N	lext 6-hr Interv	/al (18 UTC)	

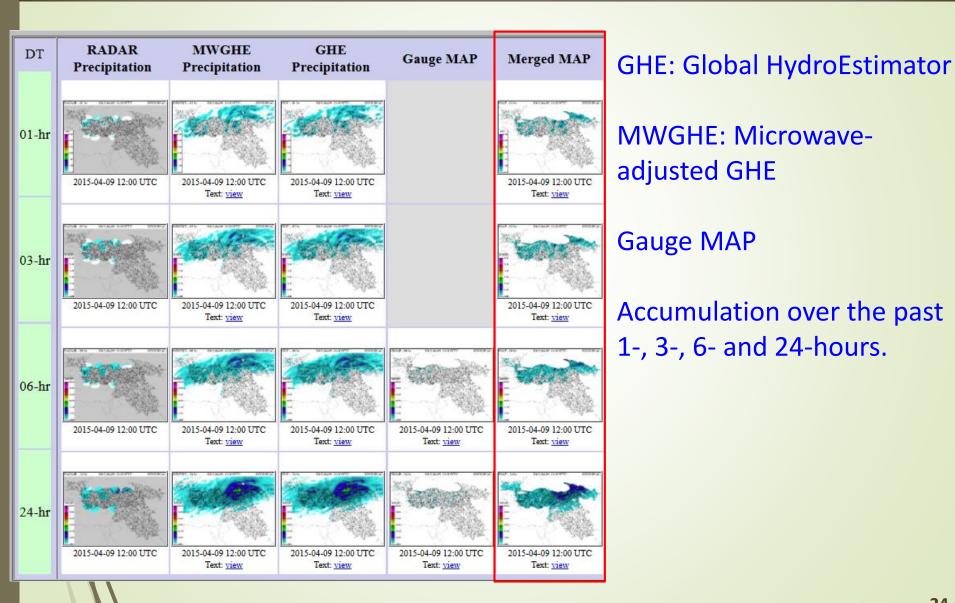
DT	RADAR Precipitation	MWGHE Precipitation	GHE Precipitation	Gauge MAP	Merged MAP	ASM	FFG	IFFT	PFFT	ALADIN Forecast	FMAP	FFFT
01-hr	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC Text: <u>view</u>	2015-04-09 12:00 UTC Text: yiew		2015-04-09 12:00 UTC Text: <u>view</u>		2015-04-09 12:00 UTC Text: view	2015-04-09 07:00 UTC Text: <u>view</u>	2015-04-09 12:00 UTC Text: <u>view</u>	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC Text: <u>view</u>	2015-04-09 12:00 UTC Text: <u>yiew</u>
03-hr	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC Text: view	2015-04-09 12-00 UTC Text: view		2015-04-09 12:00 UTC Text: view		2015-04-09 12-00 UTC Text: view	2015-04-09 09-00 UTC Text: view	2015-04-09 12:00 UTC Text: <u>view</u>	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC Text: view	2015-04-09 12:00 UTC Text: <u>view</u>
06-hr	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC Text: yiew	2015-04-09 12:00 UTC Text: view	2015-04-09 12:00 UTC Text: yiew	2015-04-09 12:00 UTC Text: yiew	2015-04-09 12-00 UTC Text: view	2015-04-09 12-00 UTC Text: view	2015-04-09 12:00 UTC Text: <u>view</u>	2015-04-09 12:00 UTC Text: <u>view</u>	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC Text: yjery	2015-04-09 12:00 UTC Text: <u>view</u>
24-hr	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC Text: <u>view</u>	2015-04-09 12:00 UTC Text: <u>view</u>	2015-04-09 12:00 UTC Text: <u>view</u>	2015-04-09 12-00 UTC Text: <u>view</u>					2015-04-09 12:00 UTC	2015-04-09 12:00 UTC Text: <u>view</u>	
		Co	mposite Product: <u>text</u> , (CSV, CSVT				SFTP data transfer	r (requires SFTP Clien	t): <u>EXPORTS/REGIO</u>	NAL/2015/04/09	
		Accumul	ated Precipitation			uge Observations at 2						^
	a cingle p10d1)	tion Name (1	mm/06hr) Average	Temperature (C) Sr	now Depth (cm) Sno	w Cover (Index)	Region	<u>Latitude</u>	Longitude	Elevation En	nable Precipitation Flag <u>F</u>	Enable Temperature Flag

ASM

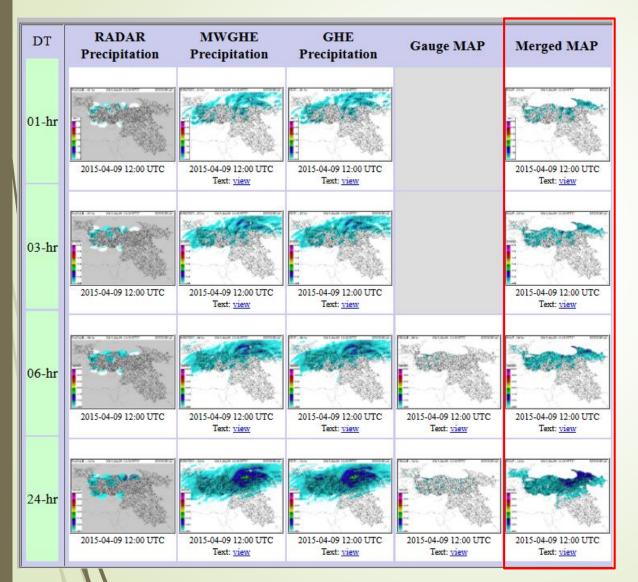
Average Soil Moisture (ASM) product provides an estimate of current soil water in the upper soil depth, expressed as a fraction of saturation, based on hydrologic modeling of soil water content. ASM reflects history of prior precipitation. The upper soil depth is most indicative for flash flood production.



FFG


Flash Flood Guidance (FFG) is an estimate of the amount of rainfall of a

FFG 2015-04-09 12:00 UTC Text: view 2015-04-09 12:00 UTC Text: view 2015-04-09 12:00 UTC Text: view


given duration over a given small watershed which is enough to produce bankfull flow in the stream channel at the outlet of the watershed. The system interface provides current FFG values for durations of 1-, 3-, and 6-hours.

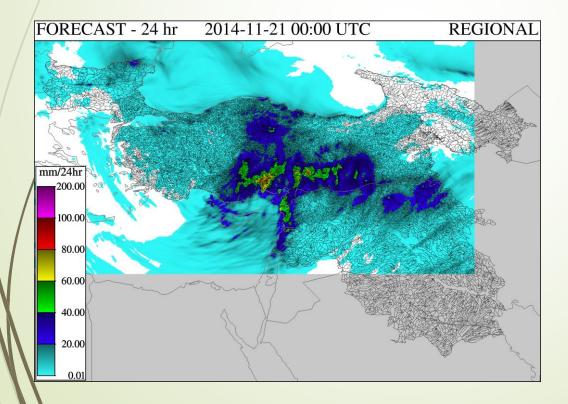
Observed Precipitation

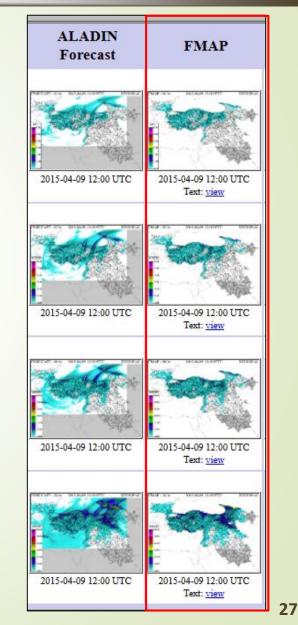
Merged MAP

Merged MAP is the *best estimate* of Mean Areal Precipitation over each small watershed for each duration (1-, 3-, 6-, 24-hr)

Flash Flood Guidance System Forecaster Interface

Prognostic Product: Forecast Precipitation and FMAP


BSMEFFG - Black Sea Middle East Flash Flood Guidance System


Current Date: 2015-04-28 18:56 UTC						Nav Date: 2015-04-09 12:00 UTC				
Year: 2015	Month:	04 Day	: 09	Hour:	12	REGION:	REGIONAL	✓ Submit		
-1 Month	-1 Day	-6 Hours	-11	Hour	+1 Ho	ur +6 H(ours +1 Day	+1 Month		
	Prev 6-hr Int	erval (06 UT)	Reset to C	Curren	t Next 6-	hr Interval (18 UT	C)		

DT	RADAR Precipitation	MWGHE Precipitation	GHE Precipitation	Gauge MAP	Merged MAP	ASM	FFG	IFFT	PFFT	ALADIN Forecast	FMAP	FFFT
01-hr	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC Text: <u>view</u>	2015-04-09 12:00 UTC Text: yiew		2015-04-09 12:00 UTC Text: <u>view</u>		2015-04-09 12:00 UTC Text: view	2015-04-09 07:00 UTC Text: <u>view</u>	2015-04-09 12:00 UTC Text: <u>view</u>	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC Text: <u>view</u>	2015-04-09 12:00 UTC Text: <u>view</u>
03-hr	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC Text: yiew	2015-04-09 12:00 UTC Test: yiaw		2015-04-09 12-00 UTC Test: view		2015-04-09 12:00 UTC Text: view	2015-04-09 09-00 UTC Text: <u>view</u>	2015-04-09 12:00 UTC Text: <u>view</u>	2015-04-09 12:00 UTC	2015-04-09 12-00 UTC Test: yiew	2015-04-09 12:00 UTC Text: <u>view</u>
06-hr	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC Text: yiew	2015-04-09 12:00 UTC Text: yiew	2015-04-09 12:00 UTC Text: yiew	2015-04-09 12:00 UTC Text: yiew	2015-04-09 12:00 UTC Text: <u>view</u>	2015-04-09 12:00 UTC Text: yiew	2015-04-09 12:00 UTC Text: yiew	2015-04-09 12:00 UTC Text: <u>yiaw</u>	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC Text: yiew	2015-04-09 12:00 UTC Text: <u>yiew</u>
24-hr	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC Text: <u>yawy</u>	2015-04-09 12:00 UTC Text: <u>View</u>	2015-04-09 12:00 UTC Text: <u>view</u>	2015-04-09 12:00 UTC Text: <u>View</u>					2015-04-09 12:00 UTC	2015-04-09 12:00 UTC Text: <u>yiew</u>	
		Co	mposite Product: <u>text,</u>	<u>CSV, CSVT</u>					r (requires SFTP Clie	t): EXPORTS/REGIO	NAL/2015/04/09	
	n Identifien Stat		lated Precipitation <u>Average</u> mm/06hr)	Temperature (C) Sno		auge Observations at 2	2015-04-09 12:00 UTC Region	Latitude	Longitude	<u>Elevation</u> <u>E</u>	nable Precipitation Flag <u>E</u>	nable Temperature Flag

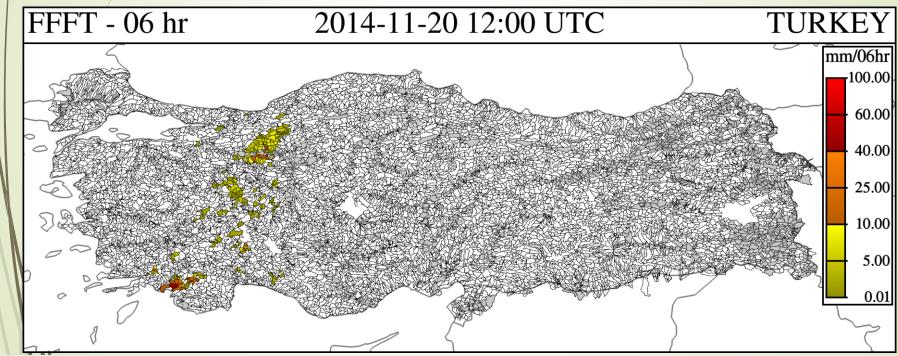
FMAP

If a forecast precipitation product is available, the system ingests forecast precipitation estimates to calculate forecast MAP (FMAP) for each small watershed for forecast lead times of 1-, 3-, 6-, and 24-hours.

Flash Flood Guidance System Forecaster Interface

Prognostic Products: Flash Flood Threat

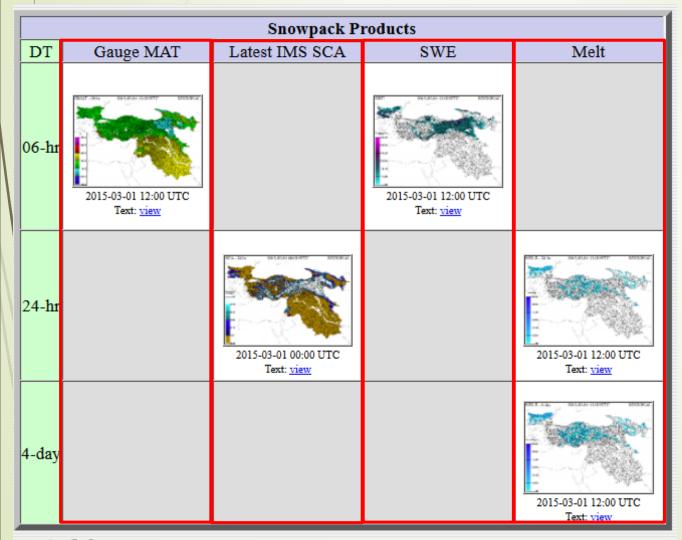
BSMEFFG - Black Sea Middle East Flash Flood Guidance System


Current D	ate: 2015-0	4-28 18:	Nav Date: 2015-04-09 12:00 UTC						
Year: 2015	Month:	04 D	ay: 09	Hour:	12	REGION:	REGIONAL	✓ Sub	mit
-1 Month	-1 Day	-6 Hour	s -1⊦	lour	+1 Ho	ur +6 H(ours +1 Day	+1 Mor	nth
	Prev 6-hr Int	erval (06 L	JTC) F	Reset to C	urrent	t Next 6-	hr Interval (18 U	TC)	

DT	RADAR Precipitation	MWGHE Precipitation	GHE Precipitation	Gauge MAP	Merged MAP	ASM	FFG	IFFT	PFFT	ALADIN Forecast	FMAP	FFFT
01-hr	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC Text: yiew	2015-04-09 12:00 UTC Text: yiew		2015-04-09 12:00 UTC Text: yiew		2015-04-09 12:00 UTC Text: yiew	2015-04-09 07:00 UTC Text: yiew	2015-04-09 12:00 UTC Text: <u>yiew</u>	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC Test: yiew	2015-04-09 12:00 UTC Text: view
03-hr	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC Text: <u>view</u>	2015-04-09 12-00 UTC Text: view		2015-04-09 12-00 UTC Text: yiew		2015-04-09 12-00 UTC Text: View	2015-04-09 09-00 UTC Text: view	2015-04-09 12-00 UTC Text: <u>view</u>	2015-04-09 12:00 UTC	2015-04-09 12-00 UTC Text: view	2015-04-09 12:00 UTC Text: view
06-hr	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC	2015-04-09 12:00 UTC
24-hr	2015-04-09 12:00 UTC	Text: <u>view</u>	Text: yiew 2015-04-09 12:00 UTC Text: yiew	Text: yiew 2015-04-09 12:00 UTC Text: yiew	Text: yiew	Text: <u>view</u>	Text: <u>view</u>	Text: <u>view</u>	Text: <u>view</u>	2015-04-09 12:00 UTC	Text: yiew	Text: <u>view</u>
		Co	mposite Product: <u>text,</u>	<u>CSV, CSVT</u>				SFTP data transfe	r (requires SFTP Clier	t): <u>EXPORTS/REGIO</u>	NAL/2015/04/09	
	an identifian Stat	tion Name <u>Accumul</u>	ated Precipitation <u>Average</u> <u>mm/06hr)</u>	<u>Temperature (C)</u> <u>Sn</u>		uge Observations at 2 w Cover (Index)	2015-04-09 12:00 UTC <u>Region</u>	<u>Latitude</u>	<u>Longitude</u>	<u>Elevation</u> Er	nable Precipitation Flag	nable Temperature Flag

Flash Flood Threat (FFT) Products

Flash Flood Threat (FFT) products indicate the watersheds where precipitation exceeds the Flash Flood Guidance (FFG) value, based on observed, persisted, or forecast precipitation.


FFTs indicate watersheds where the potential for flash flooding is increased.

FFT products are *not* intended to be used for automatic warning generation. Rather these serve as indicators of regions of potential concern. The role of operational forecasters in evaluating the current situation (observed and forecast precipitation) in these regions is **critical**.

Flash Flood Guidance System Forecaster Interface

Informational Products: Snow Products

Observations

(1) Gauge MAT based on real-time temperature stations

(2) IMS Snow Cover satellite observation of snow extent (daily)

Model Output (3) SWE model estimated Snow Water Equivalent

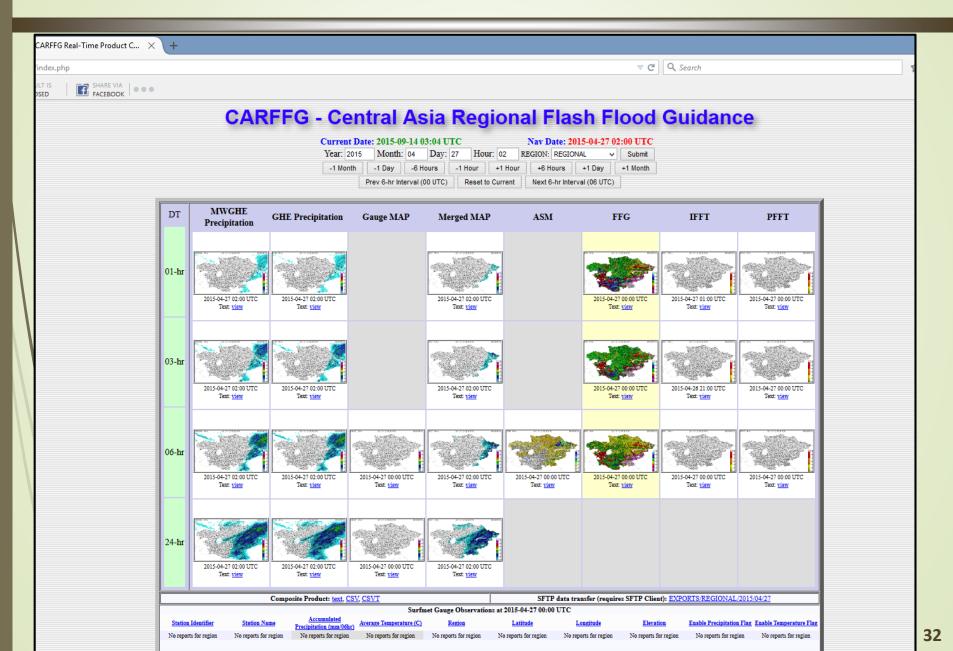
(4) Snow Melt melt from snow pack; this contributes to soil water model

Flash Flood Guidance System Forecaster Interface

Informational Products: Real-time gauge data

		Composite Produ	ict: <u>text</u> , <u>CSV</u> , <u>CSVT</u>				SFTP data tra	nsfer (requires SFTP (Client): <u>EXPORTS/R</u>	EGIONAL/2015/04/09		
	Surfmet Gauge Observations at 2015-04-09 12:00 UTC										^	
Station Identifier	Station Name	Accumulated Precipitation (mm/06hr)	<u>Average Temperature (C)</u>	Snow Depth (cm)	Snow Cover (Index)	Region	Latitude	Longitude	Elevation	Enable Precipitation Flag	Enable Temperature Flag	н
<u>15502</u>	Vidin	0.00	14.40	No Report	No Report	BULGARIA	43.9942	22.8525	31	Enabled	Enabled	
15525	Lovech	0.00	8.50	No Report	No Report	BULGARIA	43.1631	24.7006	220	Enabled	Enabled	
15549	Razgrad	0.10	7.35	No Report	No Report	BULGARIA	43.5661	26.5078	346	Enabled	Enabled	
<u>15552</u>	Varna	0.00	11.60	No Report	No Report	BULGARIA	43.2125	27.9522	39	Enabled	Enabled	
15600	Murgash	0.10	-3.85	50.00	8.00	BULGARIA	42.8333	23.6683	1687	Enabled	Enabled	
15614	Sofia	0.00	7.60	No Report	No Report	BULGARIA	42.6553	23.3847	586	Enabled	Enabled	
<u>15615</u>	Musala	8.00	-12.20	No Report	No Report	BULGARIA	42.1797	23.5866	2925	Enabled	Enabled	\mathbf{v}

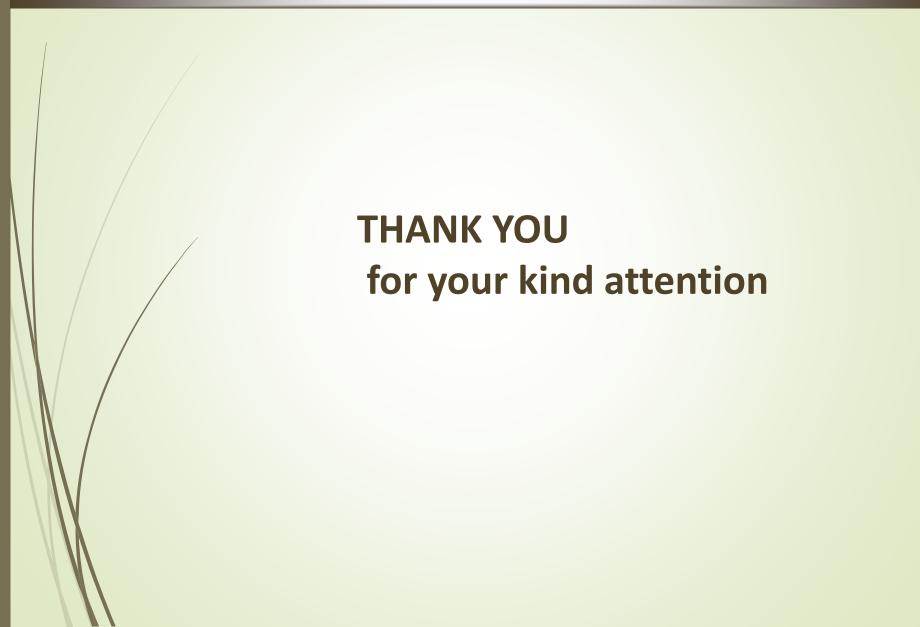
BSMEFFG - Black Sea Middle East Flash Flood Guidance System


urrent Date: 2015-04-28 19:2	20 UTC	Nav Date: 2015-04-09 12:00 UT
	Return to Main	
Station Identifier	150	515
Station Name	Mu	sala
Region	BULG	ARIA
Latitude	42.1	.797
Longitude	23.5	866
Elevation (m)	29	25
Agency	Bulį	garia
Туре	SYI	NOP
Precipitation Enabled Flag	Ena	bled
Temperature Enabled Flag	Ena	bled

	Reported Surfmet Gauge Observations from Station '15615' within the past 30 days											
	-	-	om Station '15615' within the pas	•	^							
Station Identifier	Observation Date & Time	Precipitation (mm/06hr)	Temperature (C)	Snow Depth (cm)	Snow Cover (Index)							
15615	2015-04-09 12:00:00+00	8.00	-12.20	No Data	No Data							
15615	2015-04-09 06:00:00+00	9.00	-13.65	999.00	9.00							
15615	2015-04-09 00:00:00+00	3.00	-14.25	No Data	No Data							
15615	2015-04-08 18:00:00+00	8.00	-13.95	No Data	No Data							
15615	2015-04-08 12:00:00+00	6.00	-12.20	No Data	No Data							
15615	2015-04-08 06:00:00+00	12.00	-15.50	999.00	9.00							
15615	2015-04-08 00:00:00+00	7.00	-13.55	No Data	No Data							
15615	2015-04-07 18:00:00+00	8.00	-12.25	No Data	No Data							
15615	2015-04-07 12:00:00+00	4.00	-11.95	No Data	No Data							
15615	2015-04-07 06:00:00+00	0.00	-14.05	999.00	9.00							
15615	2015-04-07 00:00:00+00	0.00	-14.30	No Data	No Data							
15615	2015-04-06 18:00:00+00	0.00	-9.70	No Data	No Data							
15615	2015-04-06 12:00:00+00	0.20	-6.60	No Data	No Data							
15615	2015-04-06 06:00:00+00	5.00	-6.80	999.00	9.00							
15615	2015-04-06 00:00:00+00	4.00	-6.95	No Data	No Data							
15615	2015-04-05 18:00:00+00	5.00	-7.50	No Data	No Data							
15615	2015-04-05 12:00:00+00	2.00	-6.85	No Data	No Data							

Real-time gauge report are critically important for:

- gauge MAP product
- real-time temperature (MAT)
- dynamic precipitation bias adjustment


Preliminary Forecaster Interface Design for CARFFG System

Preliminary Forecaster Interface Design for CARFFG System

Introduction to CARFFG System and System Products

Various processes lead to the production of surface runoff and possible flash flooding:

- SATURATION FROM BELOW ALL RAIN INFILTRATES (DOMINANT FOR MOST SOILS)
- INFILTRATION CONTROLLED RAIN RATES IN EXCESS OF INFILTRATION CAPACITY (CLAY SOILS)
- COMBINED HETEROGENEOUS AREAS AND PROFILES