OMPARIZON OF TRADITIONAL AND NEV MEASUREMENT TECHNIQUES

Elise Trondsen

Norwegian Water Resources and Energy Directorate

Work by Kristoffer Florvaag-Dybvig

WHY?

NB! This one IS fake!

- We use discharge measurements to build rating curves
- We use rating curves to generate time series for discharge
- We use time series for discharge to detect climate changes

... And a lot of other things

- Direct comparisons
 - Regatta
 - Parallel measurements
 - Regular fieldwork or campaigns
- Indirect comparisons
 - Dual calculation
 - Historical data (Batch processing)
 - Fresh data (Manual processing)
 - Historical data
 - Compare to rated discharge

Regatta

Collect all instruments and check if they agree with each other

Collect data

- All NVE's ADCPs
 - 9 RG & 12 SP
- Same setup for all instruments
- Only good locations
- Compare instruments, not sites
- "True discharge" = mean of all

NVE

Review data

Conclude

- All Dopplers but one were OK
 - SP and RG agree with each other
 - SP and RG agree with themselves
- One SP was off
 - It had a faulty temperature sensor
 - OK when corrected speed of sound in post-processing
 - Off to repair in France
 - Would not have detected problem without regatta
 - External temperature measurement after this

Parallel measurements

Use more than one instrument at each site when doing field work

Parallel measurements

Options, conditions, alternatives...

NVE case: Measurements under ice

- Comparing instruments for measuring under ice
 - Campaign winters 2006-2008 and 2011
 - Reference is current meter, 2-points per vertical
- Same cross-section, same verticals, so-to-say same time
- Compared depths and mean velocities for all verticals
- Compared areas and discharges for each measurement

NVE case: Measurements under ice

What could possibly go wrong?

This sounds very evident, but it <u>will</u> go wrong unless it is stressed. ...and it will cause a lot of extra work when reviewing data

From previous slide:

"Same cross-section, same verticals, so-to-say same time"

All instruments actually measured in the same holes in the ice, a few minutes apart

- File/site/folder name conventions must be consistent
- Time & date must be correct on all laptops, PDAs and controllers
- Operators must agree that Edge of water is at 7 meters and that the holes in the ice are at 9, 11,13,... etc,... meters

Review data

NVE case: Measurements under ice

- Depth
 - QLiner measures <u>greater</u> depths than the reference
 - StreamPro (pda) measures <u>smaller</u> depths than the reference
 - Current meter... equal!
- Velocity
 - QLiner measures <u>smaller</u> velocities than the reference
 - StreamPro (pda) measures <u>greater</u> velocities than the reference
 - Current meter (6 points per vertical) is very close to the reference
- Discharge
 - Current meter 6 and 2 points closest
 - 2 points is sufficient
 - StreamPro closest to current meter
 - StreamPro recommended for consistency
 - Qliner potentially more correct that both others but cannot tell
 - On sites with reverse currents

Dual calculation

Calculate same data using different algorithms/methods

Dual calculation

2 NVE-cases

- Recalculate all old currentmeter-measurements using old and new algorithms
- Calculate ADCP-measurements using default extrapolation and extrapolation from Extrap/Qrev

Calculate same data using different algorithms/methods

Case I: Old vs. new current meter software

Re-process old Current meter data using new algorithms

Collect data

- New Current meter software from 2006
 - Using ISO 748 reduced points & mid section
- Old Current meter software
 - Computer-mimic of hand-drawing & millimetre-scale paper
- Batch processed all old measurements using old and new algorithms
 - Wrote a small program "around" the original code
 - Re-calculated using ISO 748 and compared to original calculations

Review data

Conclude

- Discharge, Q(nve)/Q(iso)
 - Mean and median showing less than 1% difference
 - I points verticals problematic
 - New method approved

Case 2: ADCP-data with and without Extrap

Method: Indirect (dual calculation, manual processing)

Collect data

What kind of extrapolation on what kind of rivers? Always const/no-slip?	Q1	
What is the extent of the problem? - Present and past, how many discharge measurements have	Q2	
- Pwr / pwr / 0.1667 - Pwr / pwr / (not 0,1667) - Const / no-slip - Other (3pt/no-slip, pwr/co	gather and t	o harvest
How is discharge affected? - Up, down, random/noise, systematically/bias - The real problem is in the small rivers? - In the large ones the problem is neglectable?	Q3	
Flow disturbance?	Q4	

Collect data

What kind of extrapolation on what kind of rivers? Always const/no-slip?	Q1
What is the extent of the problem? - Present and past, how many discharge measurements have - Pwr / pwr / 0.1667 - Pwr / pwr / (not 0,1667) - Const / no-slip - Other (3pt/no-slip, pwr/const,)	Q2

- Wrote Matlab-code to collect data from all ADCP data files
- Matched data-files to database entries using Excel

03

Collect data

How is discharge affected?

- Up, down, random/noise, systematically/bias
- The real problem is in the small rivers...?
- In the large ones the problem is neglectable ...?

- Too much data to require the hydrologists to enter into the standard ADCP report
- Wrote Excel-macro to automaticly extract data
 - ...to the ADCP-report we make anyway
 - ...to a «shaddow-database» with a lot of extra data

Collect data

• Field or tow-tank work

Review data

Extrapolation methods

---%PP.1667 ---%PPnnn ---%CNS

Conclude

- For approximately 500 discharge measurements, it seems like Extrap has changed data
 - For all data, discharge decreases by 2%
 - For c/ns discharge decreases by 2.6%
 - 60% of recent measurements are c/ns
 - For pwr/pwr/not. 1667 discharge decreases by approximately 0.8%
 - 20% of recent measurements are pwr/pwr/not.1667
- We use extrap/Qrev and document changes

How do we handle changes?

- ... new methods produce different data?
- For each agency to decide
- NVE policy: _____
 - Produce as correct data as we can
 - Document changes
- Other views on this?
 - Correct is more important!
 - Consistent is more important!

....Summing it all up

Instruments and methods evolve

- Need to document consistency in results
- Many ways to achieve this
- Direct...
- Indirect...
- Field, database, programming,...
- The sky is the limit (and the budgets)
- Reliable = Conistent ...or accurate?