

Challenges and opportunities in the use of hydrological modelling to provide status and outlook information – Examples from Sweden, Europe, Niger River, Arctic, India, and WorldWide-HYPE

Dr. Jafet Andersson Swedish Meteorological and Hydrological Institute (SMHI), Hydrology Research Jafet.Andersson@smhi.se



# Swedish Meteorological and Hydrological Institute (SMHI)

100



www.smhi.se

National agency with Operational, Research and Business departments <u>Mission:</u> To provide decision-support for a safe and sustainable society. Cover:

- Meteorology, Hydrology, Oceanography and Climatology.
- National monitoring networks and computational systems.
- Operational Forecast, Warning services, Climate projections, Consultancy ...

National hub for international cooperation (e.g. IPCC, WMO, UNESCO-IHP, EUMETSAT, ECMWF)

# Challenges for global hydrological modelling SMH

## Accuracy of global information at regional & local scales

### Some reasons

- Hydrological processes
  - Natural and human (e.g. reservoirs, water transfers)
  - Many different processes active simultaneously
  - Varies in space and time
  - → Represent dominant processes in 'sufficient' detail
- Data
  - Availability, quality, resolution, delay, homogeneity etc.
  - Large data volume  $\rightarrow$  intelligent information extraction / synthesis necessary
- Ungauged basins  $\rightarrow$  model necessary, conventional model calibration insufficient
- Trade-off of global consistency vs. local accuracy
- Insufficient collaboration / lack of critical mass & funding

# Suggestions for HydroSOS



#### Use multiple hydrological models

- Distributed production
- Data delivery to HydroSOS using standardised data format / API
- HydroSOS: synthesize, visualize and distribute data & information to users (also low data size info.).
- Benefits: Improved accuracy, Clarified uncertainty, Operational redundancy, Resource efficiency, Quick start of production, Easier to use, Critical mass, Open for new participants

# Integrate observations and model data operationally

- Tailored operational meteorological inputs (e.g. GFD, daily meteo. data)
- Data assimilation of hydrological variables (e.g. discharge, soil moisture.)
- In each case, use multiple data types (in situ, earth observations etc.)

#### Evaluate participating models

- Accuracy: performance vs. hydrological observations, multiple variables
- Operational reliability: delay, missing data, data format
- Openness of code/model: transparency, better development, easier for new groups to contribute
- Evaluate global models at regional & local scales, standardised protocols
- Communicate skill

#### Community

- Critical mass of developers, producers and users at global, regional and local scales
- Each NMS/NHS test global information in their country & provide feedback (e.g. evaluation results, suggested improvements, implemented improvements)

#### Versions

# SMHI's approach to provide hydrological status and outlooks for large domains



- Open code, open data, open science → transparency, collaboration and quality
- Large scale: countries, continents, global
- Hydrological model development and applications
  - Historical dynamics
  - Current status
  - Outlooks: days, weeks, months, season, decades, century
- Tailoring meteorological data for hydrological use
- Data assimilation: integrating modelled & observed data
- Water services to provide information:
  - Open data: vattenwebb.smhi.se, hypeweb.smhi.se, swicca.climate.copernicus.eu
  - Custom deliveries: hypedata.smhi.se

# The hydrological model HYPE



### Aims

- Simulate the land phase of the water cyle
- Capture dynamics of water flow and water storage (and WQ)

## Semi-distributed

- River basins
- Catchments
- Hydrologic Response Units (HRUs)

### Hydrological fluxes & stores

- Streamflow (discharge)
- Precipitation
- Snow and glaciers
- Infiltration
- Soil moisture
- Evapotranspiration
- Runoff (surface & subsurface)
- Routing
- Lakes
- Floodplains
- Reservoirs
- Irrigation

**Open-source:** <u>http://hypecode.smhi.se</u> **Process detail:** keep it simple, capture major dynamics, balanced complexity

# A brief history of HYPE





## Current status & outlooks in Sweden and beyond



### **Quick overview**



#### Interactive details for each catchment



Source: http://vattenwebb.smhi.se/

# Production system to provide hydrological status & outlooks





Every component counts & has to be continuously improved

# **Collaboration to refine process descriptions:**

example of floodplain dynamics in Niger River, West Africa

#### **Inner Niger Delta**

- >30000 km<sup>2</sup> in Mali
- Annual flooding processes: floodplain with dynamic area, river area & atmospheric exchange, post-flood evaporation

#### **Regional collaboration**

- AGRHYMET: process understanding
- SMHI: process conceptualization and programming of open-source solution

#### Results

- Increased model performance
- Increases local understanding and confidence in model (status/outlooks)



Andersson et al. (2017) http://dx.doi.org/10.1016/j.pce.2017.02.010









# Model improvement using Earth Observations: example of PET parameters & India-HYPE



Mean annual PET from MODIS (mm)



**Risk if only using discharge:** compensatory process parameterisation **Our approach:** Constrain PET parameters directly against MODIS

Pechlivanidis & Arheimer (2015) https://www.hydrol-earth-syst-sci.net/19/4559/2015/

### MODIS – India-HYPE (% difference)



#### Resulting parameter ranges & optima



# Production system to provide hydrological status & outlooks





Every component counts & has to be continuously improved

#### Precipitation [mm/month]

. . . . . . . . . . . . . .

> 150

120

< 0 15 30 45 60 75 90

# Problems with global meteo. data

- Meteorological re-analyses (e.g. ERA-Interim) and forecasts (e.g. ECMWF) are key data sources for large-scale operational hydrology
- Problem in meteo. data: significant precipitation bias & incorrect no. wet days  $\rightarrow$  erroneous hydrological simulations
- Approach: bias adjustment toward obseved P (e.g. WFDEI). However, long delay of adjusted datasets  $\rightarrow$ not available for operational hydrological initialisation

Berg et al. 2017, http://dx.doi.org/10.5194/hess-2017-326

-50

< -100

-12.5

-3.125



Berg et al. 2017, <u>http://dx.doi.org/10.5194/hess-2017-326</u>

# SMHI solution: Global Forcing Data (GFD) SMH

- Adjusting bias & no. wet days relative to best available observations
- Up to date: utilising best available adjustment dataset for each period until present (t)
- Global coverage
- Daily temporal resolution
- Currently extended with satellite data

| Period           | Name  | Atm. model  | Precip.            | Wet days         | Temp.         |
|------------------|-------|-------------|--------------------|------------------|---------------|
| 1979-2013        | GFDCL | ERA-Interim | GPCC7              | CRU ts3.22       | CRU<br>ts3.22 |
| 2013 to [t–3m]   | GFDEI | ERA-Interim | GPCC<br>Monitor    | GPCC-FG<br>daily | GHCN-<br>CAMS |
| [t–3m] to [t–1m] | GFDOD | ECMWF-OD    | GPCC-FG<br>monthly | GPCC-FG<br>daily | GHCN-<br>CAMS |
| [t–1m] to today  | OD    | ECMWF-OD    | NA                 | NA               | NA            |



# **GFD: improves model initialisation**



Berg et al. 2017, http://dx.doi.org/10.5194/hess-2017-326

### Comparison: Percent bias in specific runoff vs. GFDCL (reference climate)

GFDEI (adjusted, month t-3)

Conventional operational (ECMWF-OD no adjustment)



# Production system to provide hydrological status & outlooks





Every component counts & has to be continuously improved

## Improving status & outlooks by integrating modelled & observed data (Sweden)



Lindström et al. The power of simple downstream updating, submitted

## Improving status & outlooks by integrating modelled & observed data (Sweden)

#### Summary for historical period

**Summary for 4-day forecast** 



- Correcting for e.g. erroneous representation of regulation
- Number of gauges:159 for calibration & validation, 34 unregulated, 125 regulated

Lindström et al. The power of simple downstream updating, submittted

- 1
   NSE (mean)

   1) Without updating
   2) With updating

   3) " + upstr. AR
   0.83

   4) " + local AR
   47%

   0.8
   0.74 0.75

   0.6
   0.68

   0.6
   0.68
  - Observations still important for forecasts due to hydrological memory
  - Requires low latency of observation data delivery
  - Smoothing beneficial

# Production system to provide hydrological status & outlooks





Every component counts & has to be continuously improved

# Improving status & outlooks by using multiple hydrological models



Forecasting performance using 2 hydro. models and 2 meteo. forecasts



#### Forecasting example details

Period: Apr 2014 - Okt 2014, 106 events, Forecasting horizon: 2-9 days ahead HydModels: S-HYPE & HBV Meteo forecasts: SMHI PMP & ECMWF ensemble

# Improving status & outlooks by using multiple hydrological models



Source: <u>http://swicca.climate.copernicus.eu/</u>

 Multiple hydrological models helps to understand and convey uncertainty

## **Example details**

- Four hydrological models over Europe
- Climate change impacts on no. dry spells in southern Sweden



# Production system to provide hydrological status & outlooks





Every component counts & has to be continuously improved

# Information distribution / communication

![](_page_22_Picture_1.jpeg)

![](_page_22_Figure_2.jpeg)

#### Sweden: http://vattenwebb.smhi.se/

- Status & outlooks
- Model performance / skill
- Scenario tools (WQ, regulations)
- Climate change impacts
- Data download: observations & model output, lakes&reservoirs, waterfalls, wetlands ...
- Multiple users: authorities, business, public etc.

### Global: http://hypeweb.smhi.se/

- Water resources
- Historical dynamics
- Model performance / skill
- Forecasts
- Climate change impacts
- Data download

### **Customized for clients:**

 Copernicus: <u>http://swicca.climate.copernicus.eu/</u> WMO / HydroSOS?

## Performance communication: examples for

simulation of historical dynamics

![](_page_23_Picture_2.jpeg)

![](_page_23_Figure_3.jpeg)

![](_page_23_Figure_4.jpeg)

### http://hypeweb.smhi.se

Europe

![](_page_23_Figure_8.jpeg)

### Indian subcontinent

![](_page_23_Figure_10.jpeg)

![](_page_23_Figure_11.jpeg)

![](_page_23_Figure_12.jpeg)

# **Performance communication:** example of seasonal hydrological forecasting skill in Europe

![](_page_24_Picture_1.jpeg)

![](_page_24_Figure_2.jpeg)

Skill variability: season, lead time, location, regime...

**Pechlivanidis et al., 2017,** Seasonal hydrological forecasting in Europe: Analysis of skill and its key driving factors, CEST 2017, https://cest.gnest.org/

**All catchments** 

![](_page_24_Figure_6.jpeg)

### **ONLY catchments with skill**

![](_page_24_Picture_8.jpeg)

### http://swicca.climate.copernicus.eu/

# World-Wide HYPE (WWH)

- Global hydrological model (all land areas except Antartica)
- Spatial resolution: 130 000 catchments (average size 1000 km<sup>2</sup>)
- Temporal resolution: daily
- Continuously developed into refined versions
- Producing information since April 2016
- Operational forecast production: spring 2018
- Co-development regionally/locally

![](_page_25_Figure_8.jpeg)

![](_page_26_Picture_1.jpeg)

## **Databases for catchment delineation in WWH**

| ТҮРЕ                                                                                    | DATA SET                                                                           | Provider/References                                         |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Topography (Flow<br>accumulation, flow<br>direction, digital elevation,<br>river width) | GWD-LR (3 arcsec)<br>GIMP-DEM (3 arcsec)<br>HYDRO1K (30 arcsec)<br>SRTM (3 arcsec) | Yamazaki et al., 2014<br>Howat et al., 2015<br>USGS<br>USGS |
| Non contributing areas in<br>Canada *                                                   | Areas of Non-Contributing Drainage (AAFC<br>Watersheds Project – 2013)             | Government Canada                                           |
| Watershed delineation (Iceland) **                                                      | IMO subbasins and main river basins                                                | Icelandic Met Office<br>(IMO)                               |
| Carst ***                                                                               | World Map of Carbonate Rock Outcrops v3.0                                          | Williams & Ford (2006)                                      |
| Global Flood Risk ****                                                                  | Global estimated risk index for flood hazard                                       | UNEP/GRID-Europe                                            |
| Floodplains *****                                                                       | Global Lake and Wetland Database (GLWD)                                            | Lehner and Döll, 2004                                       |
| Desert areas *****                                                                      | World Land-Based Polygon Features                                                  | Kelso, et al., 2012                                         |

\* original dataset imported and tailored to WWH subbasins

\*\* original subbasins merged and adjusted into larger units for WWH

\*\*\* sinks within carst area were relinked into the subbasin routings

\*\*\*\* used to find larger cities within areas with high flood risk

\*\*\*\*\* used to find floodplains and merge subbasins within these to larger units (for later use of flooddata.txt)

\*\*\*\*\*\* used to select and amerge subbasins into larger units within desert areas

![](_page_27_Picture_1.jpeg)

## **Databases for land cover, lakes & reservoirs in WWH**

| ТҮРЕ                          | DATA SET                                        | Provider/References                                   |
|-------------------------------|-------------------------------------------------|-------------------------------------------------------|
| Land cover<br>characteristics | ESA CCI Landcover v 1.6.1 epoch 2010<br>(300 m) | ESA Climate Change Initiative -<br>Land Cover project |
| Glaciers*                     | Randolph Glacier Inventory (RGI) v 5.0          | Arendt et al., 2015                                   |
| Lakes**                       | ESA CCI-LC Waterbodies 150 m 2000 v 4.0         | ESA Climate Change Initiative -<br>Land Cover project |
| Lakes**                       | Global Lake and Wetland Database 1.1 (GLWD)     | Lehner and Döll, 2004                                 |
| Lake depths                   | Global Lake Database v2(GLDB)                   | Kourzeneva, 2010, 2012, Oulga,<br>2014                |
| Reservoirs and dams**         | Global Reservoir and Dam database v 1.1 (GRanD) | Lehner et al., 2011                                   |
| Irrigation***                 | GMIA v5.0                                       | Siebert et al., 2013                                  |

\* Added as a land cover class in the land cover grid

\*\* Combination of databases resulting in: A new world lakes database for global hydrological modelling, Piementel et al., EGU 2017.

\*\*\* Irrigated/nonirrigated cropland has been updated with information from GMIA v5.0

![](_page_28_Picture_1.jpeg)

## **Databases: meteorological inputs in WWH**

| ТҮРЕ                       | DATA SET                                                       | Provider/References                               |
|----------------------------|----------------------------------------------------------------|---------------------------------------------------|
| Precipitation              | MSWEP v1.1* (Multi-Source Weighted-<br>Ensamble Precipitation) | Beck, H.E et al. (2016)                           |
| Temperature                | GFD (Global Forcing Data)                                      | Berg et al., in review 2017                       |
| Climate<br>classification* | Köppen-Geiger Climate classification, 1976-2000, v June 2006   | Institute for Veterinary Public<br>Health, Vienna |

• Used for linking subbasins to optimal PET (Potential EvapoTranspiration) model option in HYPE.

![](_page_29_Picture_1.jpeg)

## **Databases: river flow gauges in WWH (20k time series)**

| Characte  | eristic/Data type | Info/Name                                                 | Coverage            | Provider/References                                                  |
|-----------|-------------------|-----------------------------------------------------------|---------------------|----------------------------------------------------------------------|
| Discharge | + metadata        | GRDC                                                      | Global              | GRDC                                                                 |
| "         | "                 | EWA                                                       | Europe              | GRDC                                                                 |
| **        | "                 | ds553.2 Russian River data by Bodo                        | Former Soviet Union | Byron Bodo. 2000                                                     |
| "         | "                 | R-ArcticNet v 4.0                                         | Arctic region       | UNH                                                                  |
| **        | "                 | RIVDIS v 1.1                                              | Global              | Vörösmarty et al., 1998                                              |
| "         | "                 | USGS                                                      | USA                 | U.S. Geological Survey                                               |
| **        | **                | HYDAT                                                     | Canada              | Water Survey of Canada (WSC)                                         |
| "         | "                 | Chinese Hydrology Data Project                            | China               | Henck et al., 2011                                                   |
| **        | "                 | National data                                             | Spain               | Spanish authorities                                                  |
| "         | "                 | WISKI                                                     | Sweden              | SMHI                                                                 |
| Metadata  |                   | CLARIS-project                                            | La Plata Basin      | CLARIS project                                                       |
| "         |                   | CWC handbook                                              | India               | Central Water commission (CWC)                                       |
| "         |                   | SIEREM                                                    | Africa              | Boyer et al., 2006                                                   |
| "         |                   | Regional data                                             | Congo Basin         | International Commission for Congo-Ubangui-Sangha Basin              |
| "         |                   | National data                                             | Australia           | BOM (Bureau of Meteorology)                                          |
| "         |                   | Red Hidrometrica SNHN 2013                                | Bolivia             | Servicio Nacional de Hidrgrafía Naval                                |
| "         |                   | Estacoes Fluviometrica                                    | Brazil              | ANA (Agencia Nacional de Aguas)                                      |
| "         |                   | Red Hidrometrica                                          | Chile               | DGA (Direccion General de Aguas)                                     |
| "         |                   | Catalogo Nacional de Estaciones de<br>Monitoreo Ambiental | Colombia            | IDEAM (Instituto de Hidrologia, Meteorologia y Estudios Ambientales) |
| "         |                   | Estaciones_Hidrologicas                                   | Ecuador             | Instituto Nacional de Meteorologia e Hidrologia                      |
| "         |                   | National data                                             | Peru                | SENAMHI (Servicio Nacional de Meteorologia e Hidologia del Peru)     |
| "         |                   | National data                                             | Venezuela           | IGVSB (Instituto Geográfico de Venezuela Simon Bolivar)              |
| "         |                   | Conabio 2008                                              | Mexico              | Instituto Mexicano de Tecnología del Agua/CONABIO                    |
| "         |                   | Niger HYCOS                                               | Niger river         | ABN / AGRHYMET                                                       |
| "         |                   | National data                                             | South Africa        | Department Water & Sanitation, Republic of South Africa              |
| "         |                   | National data                                             | Mauritius           | Mauritisus Ministry of Energy and Public Utilities                   |

# Suggestions for HydroSOS

![](_page_30_Picture_1.jpeg)

#### Use multiple hydrological models

- Distributed production
- Data delivery to HydroSOS using standardised data format / API
- HydroSOS: synthesize, visualize and distribute data & information to users (also low data size info.).
- Benefits: Improved accuracy, Clarified uncertainty, Operational redundancy, Resource efficiency, Quick start of production, Easier to use, Critical mass, Open for new participants

# Integrate observations and model data operationally

- Tailored operational meteorological inputs (e.g. GFD, daily meteo. data)
- Data assimilation of hydrological variables (e.g. discharge, soil moisture.)
- In each case, use multiple data types (in situ, earth observations etc.)

#### **Evaluate participating models**

- Accuracy: performance vs. hydrological observations, multiple variables
- Operational reliability: delay, missing data, data format
- Openness of code/model: transparency, better development, easier for new groups to contribute
- Evaluate global models at regional & local scales, standardised protocols

#### Community

- Critical mass of developers, producers and users at global, regional and local scales
- Each NMS/NHS test global information in their country & provide feedback (e.g. evaluation results, suggested improvements, implemented improvements)
- SMHI wants to participate with our experience, operational production system, and communication platforms

#### Versions

#### Jafet.Andersson@smhi.se

![](_page_30_Picture_22.jpeg)