WMO Global Hydrological Status and Outlook System @ Entebbe.ug

2017.09.27

Development and Applications of the GSMaP: Overview & Lessons learned in a real-world case for Hydrological Status and Outlook System

¹ Hyungjun Kim, ² Takuji Kubota, ³ Nobuyuki Utsumi, ¹ Yuta Ishitsuka, ¹ Kei Yoshimura, ² Riko Oki and ¹ Taikan Oki

¹ Institute of Industrial Science, the University of Tokyo, Tokyo, Japan
 ² Earth Observation Research Center (EORC), Japan Aerospace Exploration Agency
 ³ Jet Propulsion Laboratory, Pasadena, CA, USA

Image courtesy of http://www.satnavi.jaxa.jp/gpmdpr_special/

STATE OF THE CLIMATE IN 2016

North America

South America

Europe

Why Precipitation?

Global

Kim 2007, River Discharge

Special Supplement to the Bulletin of the American Meteorological Society Vol. 98, No. 8, August 2017

THE P

Uncertainty in Observational Precipitation

+ Uncertainty in precipitation has heterogeneous global distribution
+ Non-linear impacts in land surface simulations

* Kim 2010

Diurnal Cycle over African Monsoon Region

morning

Location of three meso-scale sites: Oueme-Benin (red), South-West Niger (ora and Gourma-Mali (blue). Contours correspond to the annually-averaged Leaf A Index (LAI m²m⁻²)

(b) Total Precipitation (10 km)

- + Diurnal cycle of precipitation highly depends on mode convection schemes
- + Satellite products capture diurnal cycle successfully

Domain: 30°N – 38°N; 60°E – 149°E Precipitation Composite for @ 2001 – 2004 (DJF) Intercomparison for Extratropical Cyclone

Class	Central Pressure Gradient	Product	Туре	S. Res.	T. Res.	Period
CL01	0.3 – 5.0 [hPa/1000km]	¹ APHRODITE	Gauge	0.25°	Daily	1951 – 2007
CL02	5.0 - 10.0	² GPCP 1DD	Hybrid	1.0 °	Daily	1996 – 2009
CL03	10.0 – 15.0	³ GSMaP V5.222.1	Satellite	0.1°	Hourly	2000 - 2010
CL04	15.0 -	⁴ JRA25	Reanalysis	T106°	Monthly	1979 –

Global Satellite Mapping of Precipitation (GSMaP)

GSMaP_NRT hourly rain with Himawari-8 cloud (1-12 Jan 2017)

- GSMaP is a blended Microwave-IR product and has been developed in Japan toward the GPM mission (as JAXA GPM standard product).
 - U.S. counterpart is "IMERG"
 - GSMaP (v6) data since Mar. 2000 period was reprocessing as reanalysis version (GSMaP_RNL), and was open to the public on Apr. 2016.

New version, GSMaP (v7) was released on 17 Jan. 2017.

Overview of GSMaP Algorithm

http://sharaku.eorc.jaxa.jp/GSMaP/

GSMaP Product list

Product name	Variables	Resolution	Latency	Update interval
Standard product	Hourly Precip Rate (GSMaP_MVK)	Horizontal: 0.1×0.1 deg.lat/lon Temporal: 1 hour	3 days	1 hour
	Gauge-adjusted Hourly Precip Rate (GSMaP_Gauge)			
Near-real-time product	Hourly Precip Rate (GSMaP_NRT)		4 hours	
	Gauge-adjusted Hourly Precip Rate (GSMaP_Gauge_NRT)			
Real-time product	Hourly Precip Rate (GSMaP_NOW)		0 hours	0.5 hour

In addition, there are reanalysis products (GSMaP_RNL, GSMaP_RNL_Gauge), calculated with Japanese 55-year reanalysis (JRA55), and GSMaP Riken NowCast (GSMaP_RNC, Otsuka et al. 2016) by AICS/RIKEN (in preparation).

GSMaP realtime version: GSMaP_NOW (Since Nov. 2015)

Differences from the GSMaP_NRT

- Using data that is available within 0.5-hour (GMI, AMSR2 direct receiving data, AMSU direct receiving data and Himawari-IR) to produce GSMaP at 0.5-hr before (observation).
- Applying 0.5-hour forward extrapolation (future direction) by cloud motion vector to produce <u>GSMaP at current hour (just now)</u>.

Snapshots of Daily Validation

Validation using JMA's Radar-AMeDAS

- Following GSMaP products were compared with JMA's Radar-AMeDAS (gauge-calibrated radar analysis rainfall) around Japan in 0.25 degree grid and daily accumulation for the period from Oct. 10, 2015 to Jan. 3, 2016.
 - **GSMaP_NOW: GSMaP Realtime version (latency: 0 hour)**
 - **GSMaP_NRT: GSMaP Near-Real-Time** version (latency: 4 hour)
 - **GSMaP_MVK: GSMaP Standard** version (latency: 3 days)
 - **GSMaP_Gauge: Gauge-adjusted** version (latency: 3 days)

RMSE (2015.10.10-2016.01.03)

Globe Portal (G-Portal) https://www.gportal.jaxa.jp/

C Ph. o. Ph.

How Does It Work In the Real World?

Torrential precipitation over Kanto-area, Japan between Sep. 9 – 10, 2015 caused flood disaster in Tone-river basin.

Photo Courtesy of Yuta Ishitsuka

H27.09 KANTO/TOHOKU HEAVY RAIN (a.k.a. KINUGAWA KOUZUI)

GSMaP Precipitation (shade:left), JRA55 Column Integrated Water Vapor Divergence (shade:right), JRA55 Wind@900mb (vector:right), JRA Mean Sea Level Pressure (contour:right)

< ► ■ ≫	Rate	te: 1000ms 😑 😌	Opacity: 70%	

Comparison between Satellite and Ground Radar

Images Courtesy of http://www.ktr.mlit.go.jp/shimodate/shimodate_know010.html

Cloud Mask Based on Geostationary Satellite

Original Data: Satellite Cloud Grid Information by JMA (Vis. and IR of Himarwari-6) @ 0.2 deg x 0.25 deg of WN Pacific / hourly Fractions of each cloud types in a grid-cell

Relative Frequency

Retrieval Sensitivity by Cloud Types /* Cumulonimbus */

62W Mid-Rising

Localized, complex patterns of dh/dt with sharp dh/dt aligned with many channels indicates flow to floodplain arriving via channels and emptying to one side Purus flood wave supplies water.

Only Precipitation?

Altimeter Path

Ocean Topography

H-Pol Interometer Swath

10 - 70 km

Summary

- + Precipitation products include various systematic biases which affects land surface simulation in asymmetric way.
- + GPM-GSMaP V05 (algorithm version 7) data was released on Jan. 2017.
- + GSMaP realtime product (GSMaP_NOW)
 - The data in the domain of GEO-Himawari (JMA meteorogical satellite) was open to the public on Nov. 2015.
 - Extension to the global domain using the EUMETSAT and the NOAA GEO data will be planed.
- + Significant underestimation found in atmospheric river type precipitation
- + Cloud type dependencies of the bias structures are found.
 - KuPR \simeq GMI @ Deep conv (sea)
 - KuPR > GMI @ High clouds, Mid&Low clouds (sea)

- IR-based products show weak precipitation of Deep convection is overestimated.

GPyM: a Python Module to Interface TRMM/GPM Data

colorbar()

Out[10]: <matplotlib.colorbar.Colorbar instance at 0x4601ab8>

<u>Features</u>

- + Archive data from G-Portal (SFTP protocol)
- + Search granules by timespan and spatial domain
- + Convert and upscale granules to maps
- + Cached IO (e.g., orbits)

https://github.com/kimlab/GPyM

WMO Global Hydrological Status and Outlook System @ Entebbe.ug

2017.09.27

Thank you

Image courtesy of http://www.satnavi.jaxa.jp/gpmdpr_special/

STATE OF THE CLIMATE IN 2016

Kim 2007, River Discharge

Special Supplement to the Bulletin of the American Meteorological Society Vol. 98, No. 8, August 2017

Error Estimation by Weather Systems: Sensitivity

+ Different algorithms show biases of different amounts and directions.

Error Estimation by Weather Systems: Sensitivity

* Utsumi et al., in preparation; Azariah et al., in preparation

Concluding Remarks

+ Uncertainty in forcing data is one of important uncertainty sources of hydrologic simulations.

+ Multiple precipitation products including satellite measurement show systematic bias by different causal weather systems.

+ Weather system mask is not only useful to classify measurement error and update algorithms but also to trace reasons of water excess (flood) or deficit (drought) in different spatiotemporal scale.

+ Satellite retrieval algorithms show different sensitivities to various cloud types.

+ Algorithms using IR tend to underestimate week precipitation, but its impact is not considerable in IMERG product.

+ Overall, current satellite precipitation retrievals mostly underestimate precipitation comparing to Radar-AMeDAS.

Validation of Cloud Mask (vs CloudSat)

Cloud type by CloudSat (2B-CLDCLASS)

+ Rule based reclassification works properly.

+ Bayesian based classification is under development.

Cloud Type Frequency

- IR-based products have very different feature for Deep Conv.

62W Mid-Rising Localized, complex patterns of dh/dt with sharp dh/dt aligned with many channels indicates flow to

floodplain arriving via channels and emptying to on

+ Ka-band SAR interferometric system with 2 swaths, 10-60km on each side of the nadir track

+ Produces heights and coregistered all-weather imagery

+ 200MHz bandwidth (0.75cm range resolution) for higher resolution imaging

+ Uses near-nadir returns for SAR altimetry to fill in nadir swath

2014.04.08.11PM, IIS

Hindcasted for 2015 Sep Kinu-river flood with <u>ensemble</u> precipitation forecast data (up to 32 hours ahead).

Atmos data : **ECMWF ensemble** No. of ensemble : 51

39-hour forecast at 3JST Sep 9

Fig. 2. Coefficient of variation of the estimation residuals for the 620 stations considered. Circle size is proportional to the upstream area of the river station. Alfieri et al. (2013)

Work Flow & Plan

Sensitivity Tests for Damping Weight Profiles

Work Flow & Plan

Bias-correction

