

WMO RA VI Hydrological Forum Oslo, 20 September 2016

H-SAF: from products to end users

Lt. Col. Francesco Zauli ITAF-COMet H-SAF Project Manager

H-SAF Objectives

Satellite Application Facility in Support to Operational Hydrology and Water Management

- to provide satellite-derived products from existing and future satellites with sufficient time and space resolution to satisfy the needs of operational hydrology. Identified products:
 - precipitation (liquid, solid, rate, accumulated);
 - soil moisture (at large-scale, at local-scale, at surface, in the roots region);
 - snow parameters (detection, cover, melting conditions, water equivalent);
- to perform independent validation of the usefulness of the new products for fighting against floods, landslides, avalanches, and evaluating water resources

The Consortium and Partners

USAM-CNMCA PROTEZIONE CIVILE CNR -ISAC UNIFE **TELESPAZIO**

EUROPEAN CENTRE FOF

MEDIUM-RANGE WEATHER FORECASTS

BELGIUM	ROYAL METEOROLOGICAL INSTITUTE
BULGARIA	NATIONAL INSTITUTE OF METEOROLOGY AND HYDROLOGY
FRANCE	METEO-FRANCE
GERMANY	BUNDESANSTALT FUR GEWASSERKUNDE
HUNGARY	HUNGARIAN METEO SERVICE

bfg

SLOVAKIA

HYDRO-METEOROLOGICAI INSTITUTE

METEOROLOGIE UN AUSTRIA GEODYNAMIC TU WIEN

ECMWF

FINNISH FINLAND METEOROLOGICAL INSTITUTE

INSTITUTE OF METEOROLOGY POLAND AND WATER MANAGEMENT

TURKISH STATE METEOROLOGICAL SERVICE TURKEY MIDDLE EAST TECH. UNIV. **ISTANBUL TECH. UNIV. ANADOLU UNIVERSITY ONDOKUZ MAYIS UNIV.**

The Context: The SAF Concept

The Context: The SAF Schedule

The Context: The SAF Network

HSAF

Support to Operational Hydrology and Water Management

H-SAF Operational Products

Precipitation Products

Precipitation products generation chains at COMet(Italy)

Identifier	Product Description	Algorithm	Resp. Inst.	Status	
H01 PR-OBS-1	Precipitation rate at ground by MW conical scanners	Bayesian CDRD	ISAC-CNR Rome	Operational	
H02 PR-OBS-2	Precipitation rate at ground by MW cross-track scanners	Neural Network	ISAC-CNR Rome	Operational	
H03 PR-OBS-3	Precipitation rate at ground by GEO/IR supported by LEO/MW	Blending	ISAC-CNR Bologna	Operational	
H04 PR-OBS-4	Precipitation rate at ground by LEO/MW supported by GEO/IR	Morphing	ISAC-CNR Bologna	Operational (to be discontinued)	
H05 PR-OBS-5	Accumulated precipitation at ground by blended MW and IR	Time integration	COMet	Operational	
H15 PR-OBS-6	Blended SEVIRI Convection area / LEO MW precipitation -	Blending + NEFODINA	COMet	Pre-operational	

PR-OBS1 / H01 Precipitation from Microwave Conical scan satellite (SSMI/S)

PR-OBS2 / H02 Precipitation from Microwave Cross scan satellite (AMSU/MHS)

EUMETSAT H-SAF PR-OBS-2 Instantaneous Rain Rate from Crosstrack MW Scan

PR-OBS3 / H03 Multi-platform algorithm: BLENDING

SAF

Support to Operational Hydrology and Water Management

Technique

The "Rapid Update" tecnique allows to compute instantaneous rain intensities at the ground at the geostationary time-space scale (Turk et al. 2000, Torricella et al. 2007).

It is based on a blended MW-IR technique that correlates, by means of the statistical probability matching, brightness temperatures measured by the IR geostationary sensors and PMW-estimated precipitation rates at the ground.

H-SAF Operational Products:

EUMETSAT H-SAF PR-OBS-3 Instantaneous Rain Rate retrieved from IR-MW blending data

0 Blending of: SEVIRI IR + SSM/I-SSMIS MW + AMSU MW. Instantaneous Rain Rate (mm/h): 20130619 0627 H03 Case study: 19 June 2013 Germany

Future improvements for precipitation products

Enlargement to Full Disc > Algorithms to be assessed by 2016

Expected Operations in 2017

MTG-based Products > From FCI, LI > Expected Operations in CDOP-3 (next phase)

- New PMW based> Algorithms to be
assessed by 2016> Expected Operations in
CDOP-3 (next phase)
- Higher temporal sampling
- Full exploitation of all overpasses of present and future satellites carrying cross-track and conically scanning PMW radiometers, which has now reached its optimal configuration with the NASA/JAXA GPM (number of satellites, GPM core satellite)

H-SAF Operational Products

Soil Moisture Products

Soil moisture products generation chains at ZAMG (Austria)+ ECMWF (UK)

H08 SM-DIS-1	Small-scale surface soil moisture by radar scatterometer [1 km, ASCAT/SAR]	Pre-Operational
H16, H101, H102, H103 SM-OBS-3	Large-scale surface soil moisture by radar scatterometer (25 km, ASCAT)	Operational
H14 PR-OBS-2	Soil Moisture Profile Index in the roots region retrieved by surface wetness scatterometer assimilation method	Operational
H25 PR-OBS-2	ASCAT Large-scale surface soil moisture (25 Km) - Time Series	Released
H27 PR-OBS-3	Soil Wetness Index in the roots region by scatterometer assimilation in a NWP model - Time Series	Expected release Nov 2016

SM-DIS-1 / H08

H-SAF Operational Products: examples

Small-scale surface soil moisture by radar scatterometer [1 km, ASCAT/SAR]

HSAF 1km soil moisture: 20141102_102400

SM-DAS-2 / H14 Soil Moisture Profile Index in the roots region retrieved by surface wetness scatterometer assimilation method

Future improvements for Soil Moisture products

Transition to EPS-SG

Full Transition to SCA (EPS-SG) for both surface and root region Soil Moisture Product is planned for next phase (CDOP-3)

H-SAF Operational Products

Snow Products

Snow products generation chains at FMI (Finland) and TSMS (Turkey)

H10 PR-OBS-1	Snow detection (snow mask) by VIS/IR radiometry	Operational
H11 PR-OBS-2	Snow status (dry/wet) by MW radiometry	Pre- Operational
H12 PR-OBS-3	Effective snow cover by VIS/IR radiometry	Operational
H13 PR-OBS-4	Snow water equivalent by MW radiometry	Pre- Operational

SN-OBS-1 / H10 Snow detection (snow mask) by VIS/IR

SN-OBS-2 / H11 Snow status (dry/wet) by MW

SN-OBS-3 / H12 Effective snow cover by VIS/IR

SN-OBS-4 / H13 Snow water equivalent by MW

Future improvements for Snow products

Transition to MSG

Transition from SEVIRI to FCI planned on next phase (CDOP-3)

Hemispherical Products ➤ Provision of products with enlargement to northern hemisphere planned on next phase (CDOP-3)

Quality Monitoring and Hydrovalidation Programmes

Quality Monitoring Programme provides a continuous assessment of the products quality and performances by evaluating statistical scores and case study analysis on the base of comparison between satellite products and ground data;

13 countries involved: Austria, Belgium, Bulgaria, ECMWF, Finland, France, Germany, Hungary, Italy, Poland, Romania, Slovakia, Turkey; coordinated by **DPC (Italy)**

Hydrovalidation Programme evaluates the impact with hydrological applications by interfacing with hydrological models, performed both through near real time and off-line impact studies

8 countries involved : Poland, Belgium, Bulgaria, Finland, Germany, Italy, Slovakia, Turkey; 21 test sites provided;

coordinated by IMGW (Poland)

Quality Monitoring Programme

The Raingauge Network Data Sources Raingauges Instrument characteristics Telemetric and mechanic 55°N Time domain (near real Near real time, case studies time/ case studies) Time resolution (15 min, 10 – 30 min (telemetric), 50°N 30 min) 3 – 24 h (mechanic) Spatial distribution (whole national territory/limited Whole national territory ි area) £°N ~390 mechanic (RMI) + 12 Number of station telemetric (RMI) + 4160 telemetric (SETHY) **Operational/ for research Operational (RMI) + research** 40°N (other networks) only 4500 stations **Telemetric:** automatically checked / mechanic: autom. + Data quality check manually checked 10°E 20°E

Quality Monitoring Programme

The Radar Network

Data Sources	Radars
Instrument characteristics	Beam width ~1°, max range ~150 Km, 250m, C-band, single polarization, Doppler polarimetric
Time domain	Near real time/ case studies
Time resolution	5 min, 15 min, 30 min, 1h, 24h
Spatial distribution	Whole national territory
Number of station	40 C-band +1 Ka-band

Central Services – Archiving and dissemination

H-SAF Products are **centrally collected** by NRT ingestion from peripherals to Central Site at COMet.

On-line archive: Latest 60 days of production constantly available (24/7), by mean of ftp access for registered users.

Off-line archive : Entire production since the beginning of H-SAF operations, made available on demand through an Order Management system in a temporary FTP area for a limited temporal window

Dissemination of products is performed by both **EUMETSAT Data Delivery Service (EUMETCast)** and **ftp dedicated server**

Products are available as follows:

User Services – Website

hsaf.meteoam.it

User Services – Website

The EUX Netv Satellite Appl Fc	The EUMETSAT Network of te Application Facilities HSAF Support to Operational Hydrology and Water Management						Davide Melfi		edit profile	user support Downloa	logout ad Products	
Home	Overview	Products	Quality Monitoring	News	Partners	Documents	Faq	Contact us				

H-SAF Products Download Centre

All H-SAF products are owned by EUMETSAT, and the EUMETSAT SAF Data Policy applies. They are available for all users free of charge. Users should recognise the respective roles of EUMETSAT, the H-SAF Leading Entity and the H-SAF Consortium when publishing results that are based on H-SAF products.

Access to H-SAF on-line archive (last 60 days)

This function allows the direct access to the H-SAF FTP server by the web browser.

Place an order to get the H-SAF archived data (basic)

This function allows access to the H-SAF internal order centre. This service offers all basic functions to carry out orders on H-SAF historical archives. Orders placed will be submitted for approval and will be processed within three working days

hsaf.meteoam.it

User Services – Map Tool

The **Map Tool** is a web application that provides an easy to use tool - you only need a web browser and a good internet connection - to display a set of precipitation products (H03, H05) on a **georeferenced map**.

Achievements and status of the Programme

Establishment of user community Trend in user registration:

Thank you for your attention!

hsafcdop.meteoam.it