Improving flood model predictions using satellite EO-derived flood extent maps

Patrick Matgen, Laura Giustarini, Marco Chini, Renaud Hostache, Melissa Wood, Giovanni Corato

LUXEMBOURG INSTITUTE OF SCIENCE AND TECHNOLOGY

SETTING THE SCENE

Objective

To reduce uncertainties in numerical modelling-based flood forecasting

Traditional approach

To regularly control and correct the models by assimilating external observations (i.e. in situ river discharge measurements)

Limitations

- Problem of availability and representativeness of point measurements
- > In situ measurements are not evenly distributed and networks globally tend to be in decline
- Uncertainties unknown or poorly understood
- Ground measurements difficult/dangerous to obtain during crises

Hence: There is a need for <u>globally consistent and coherent</u> high resolution observation data with known uncertainties that enable improved hydrological predictions at large scale

THE IMPORTANCE OF FLOOD EXTENT OBSERVATIONS

- Initiation of fast runoff is a threshold process that occurs when soil moisture rises above a critical threshold
- Soil moisture and water level variability are inversely correlated: potentially soil moisture and water level (or flood extent) observations are highly complementary

MICROWAVE REMOTE SENSING

Advantages:

weather

events

esa grid processing on demand

SWS: Surface Water Storage

Research question: How to efficiently combine SAR remote sensing information with hydrologic-hydraulic models for improved predictions?

RESEARCH AND DEVELOPMENT

Flood extent mapping from SAR images

Several state-of-the-art methods based on thresholding, region growing, change detection, segmentation...

→ but lack of efficient methods enabling probabilistic flood mapping that are necessary for data assimilation applications

Sequential assimilation in hydrologic/hydraulic models

Past studies only assimilate SAR image derived water level (model state variable)

→ Processing of images not straightforward and longer (issue for NRT applications + DEM consistency SAR/model)

Objective: directly assimilate flood extent observations into operational flood prediction model

PROOF-OF-CONCEPT STUDY

July 2007 Flood event

2 Envisat WSM images acquired after flood peak

In situ WSE and Q (control)

Aerial photos of maximum food event

LIST.lu

RETRIEVING FLOOD EXTENT

TerraSAR-X	<image/>	E Swath width (Km)	wisat Wide Swa	the base of the second se
Envisat WS	150	400	5.6	0.05 % (5100x2850)
TerraSAR-X	3	30	3	2% (15135x21294)
				_

RETRIEVING FLOOD EXTENT

FLOOD EXTENT

$$p(w|\sigma^{0}) = \frac{p(\sigma^{0}|w)p(w)}{p(\sigma^{0}|w)p(w) + p(\sigma^{0}|d)p(d)}$$

Matgen et al., PCE, 2011 Giustarini et al., IEEE TGRS, 2016

CASCADE OF NUMERICAL MODELS

Flood

maps

probability

Model set up: SuperFlex (Fenicia et al., WRR, 2010)

LISFLOOD-FP SubGrid (Neal et al 2012)

- Designed for modeling flood flows in large catchments as well.
- > Uses DEM file as geometry.
- Models 1D- 2D dimensional flows.
- Calibration using in situ measurements and archived flood extent observations

DATA ASSIMILATION

RESULTS

RESULTS

100

22-Jul-07

29-Jul-07

Time

05-Aug-07

0.27:52

RMSE (WSE) [cm]

- 1. Open loop: 31 cm
- 2. 1st image assimil.: 23 cm
- 3. 2nd image assimil.: 21 cm

NSE(Q) [-]:

- 1. Open loop: .64
- 2. 1st image assimil.: .88
- 3. 2nd image assimil.: .86

SUMMARY & PERSPECTIVES

We introduce a new method for assimilating in NRT SAR-derived flood extent maps into hydrological-hydraulic models:

 \rightarrow To exploit continuously growing satellite image collections with faster repeat times and processing

First results:

- The approach improves simulated flood extent over several time steps
- The approach further improves simulated discharge and water surface elevation hydrographs over several time steps

Perspectives:

- Not restricted to NRT sequential assimilation, but potentially useful for improved reanalyses over many years (using catalogue of historic flood extent obs.)
- Further testing in operational context
- Investigate complementarity of various satellite EO data sets (flood extent, soil moisture, ET, snow water equivalent, etc.)
- Critical to reduce data latency!