

Hydrometric measurements with quality and accuracy

Oct. 25~27, 2016

Youngsin Roh

(rohys@hsc.re.kr)

Hydrological Survey Center, HSC Republic of Korea

Background

- In order to improve accuracy of field measurement, it is necessary to improve relevant techniques and use of adequate instrument and analysis method for specific flow conditions.
- Both of Application of advanced techniques and improvement of existing method(measurement, data analysis and QC, assessment) are important
- The main objective of the activities is to provide a technical report or guideline about three parts of hydrological observation technique
 - Real-time discharge measurement (IRDIMS, Integrated Real-time Discharge Measurement System)
 - Sediment measurement
 - development of rating curve
- Each action was based on case study for various conditions and practical experience of HSC

Overview of Hydrological measurements in HSC

- Since 2007, HSC has been conducting hydrological measurement in Korea
 - Discharge measurement and rating curve development in over 150 sites every year
 - Construction and operation of IRDIMS(55 sites have been operating)
 - Sediment measurement in 15~20 sites every year

			Num	ber of sites			
year	Development of H-Q rating	IRDIMS	Sediment	Soil moisture	Evapotran- spiration	Survey river-bed	Remarks
2004	69	-	-	-	-	-	
2005	73	1	-	-	-	-	
2006	99	4	6	-	-	-	
2007	107	8	6	1	1	-	
2008	109	11	6	2	2	-	
2009	114	13	7	2	2	-	
2010	126	16	20	2	2	-	
2011	121	26	20	2	2	-	HSC
2012	123	46	15	2	2	690km	noe
2013	146	49	15	2	2	530km	
2014	152	52	15	2	2	690km	
2015	153	55	17				
2016	154	58	16				
Plan*	380	104	138	25	25		

* National hydrological observation network in Korea

ACTIVITIES and OUTCOME

Hydrometric measurements with quality and accuracy

• Provide guidance on the use of appropriate instruments and methods of observation in diverse conditions

- In terms of use of appropriate instruments and methods of observation in diverse conditions, IRDIMS(Integrated Real-time discharge Measurement System) would be a great model and example for real-time discharge measurement in diverse conditions such as backwater and tidally effected area
- The main purpose of this action is providing technical information and guidance on application of real-time discharge measurement
- There are two sub actions have been conducted in this action plan,
 - (1) Collection of the technical information of IRDIMS
 - (2) Case study on measurement of IRDIMS

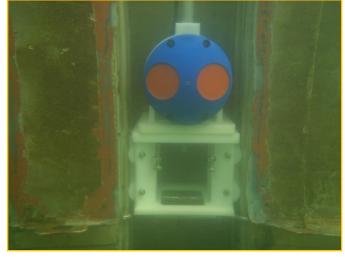
(1) Collection of the technical information of IRDIMS

- Technical information related to real-time measurement, which include (a) measuring instruments, (b) discharge calculation and (c) construction and operation of IRDIMS
- (a) Analysis on measurement conditions of various types of ADVM by its specifications and flow condition have been carried out based on results from IRDIMS stations.
- (b) The information related to discharge calculation using IVM(Index Velocity Method) and its development procedure considering flow condition, characteristics of measuring instrument
- (c) The technical information of a proper installation considering development of IVM
 - Selection of measuring instrument and type of installation
 - Analysis on flow condition to proper installation
 - Available range of ADVM measurement to be more accurate measurement

(2) Case study on measurement of IRDIMS

- Analysis on result of measurement by IRDIMS have been conducted and it contained the procedure on development of index rating. The details are
 - (a) Measurement in tidally effected area
 - (b) Measurement in backwater area caused by weir, sluice gate, junction
 - (c) Evaluation of the result of measurement
 - Comparative analysis using individual measurements
 - Assessment of runoff between up and down stream
 - (d) Development of index rating
 - Analysis on available measurement range of ADVM to calculate index velocity properly
 - Procedure of index rating development and its software tool
 - Analysis of index ratings developed for various conditions

Construction and operation of IRDIMS in Korea


- Integrated River Discharge Measurement System, IRDIMS is widely used to measure real-time flow discharge in Korea
- IRDIMS mainly have been installed in difficult stations to measure discharge due to backwater or tidal effect and key stations to flood forecast
- **4** 55 sts. have been constructed and operating now and it will be extended to more than 100

Total	Han	Nakdong	Geum	Yeongsan
	river	river	river	river
55	16	22	7	10

Measurement of ADVM

CM-1200kHz

CM-300, 600kHz

ADP-250, 500kHz

ArgonautSL-500, 1500kHz

Specification of ADVM

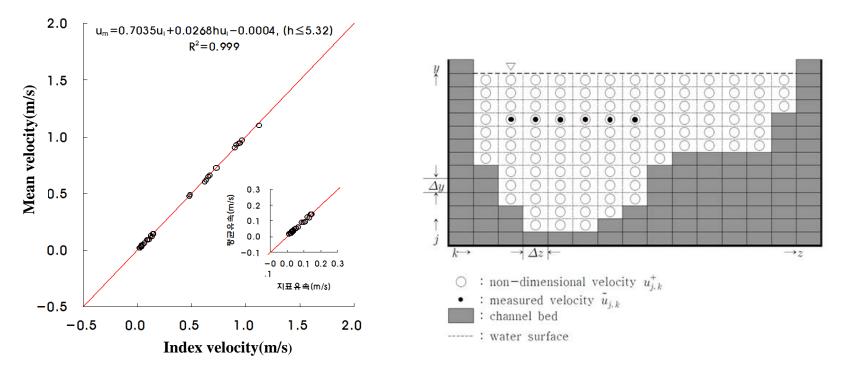
				Speci	ification			
	Ch	annel Ma	ster	ADP-SL		ARG-SL		
Model								
Manufacturer	RD	Instrume	ents			SonTek		
Frequency(kHz)	300	600	1,200	250	500	500	1,500	3,000
Max. range(m)	300	90	20	180	100	1.5~120	0.2~20	0.2~5
Range of velocity(m/s)	defau	lt ±5, max	κ. ±20	±				
Accuracy(%, cm/s)	±0.	5%(±0.20	cm /s)	±1%(±				
Resolution(cm/s)		0.1		C		Н		
Number of Cell		128		1		2D Velocit ↓ User I	y Profile In Horizon Programmable Cell S	tal Layer Size
Cell size(m)	1~16	0.5~8	0.25~4	1~20		4	R	→
Beam Angle(°)	2.2	1.5	1.5	1		Н		
Min. Blanking distance(m)	1	0.5	0.2	1.5		+		
Aspect Ratio(R:H)		35:1		20):1		20:1	9/7

Measurement of ADVM

4 Types of measurement

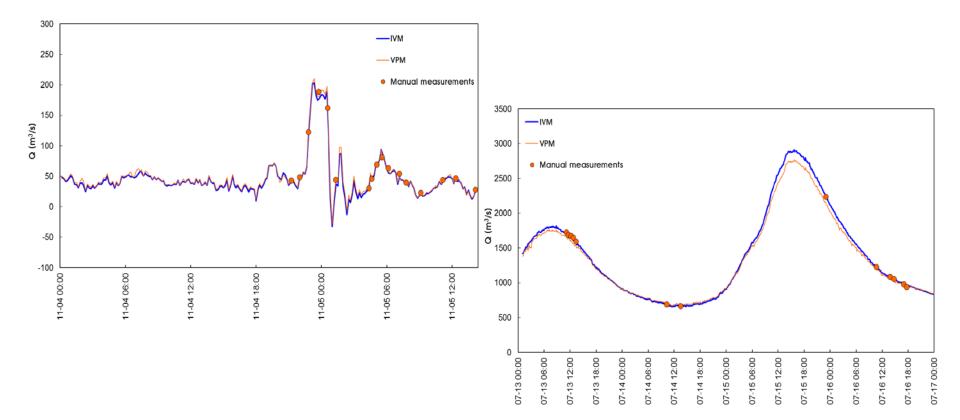
- 3 types of installation of ADVM depending on measur
- It's important to select the proper position of ADVM to cross-section (central core of flow, away from the influ

Calculation of **Discharge**


For real-time discharge measurement by ADVM, it is necessary to calculate mean velocity from ADVM measurement in order to calculate discharge

4 IVM(Index Velocity Method)

- Mean velocity is calculated by relationship between index- and mean velocity
- A number of individual discharge measurements are needed to develop relationship between indexand mean velocity throughout the expected range in stage or mean velocity.


4 VPM(Velocity Profile Method)

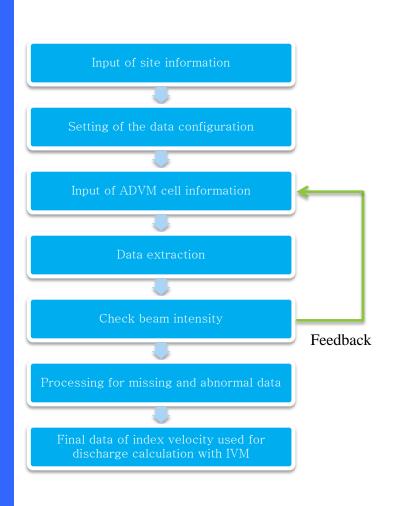
- Velocity distribution of cross section is estimated by applying theoretical velocity profile

Calculation of **Discharge**

- **4** Comparison between **IVM and VPM**
 - Results of discharge by IVM and VPM during low and high flow were compared with manual measurements
 - Both method showed a similar result and accuracy
 - Comparative error with manual meas. : IVM(average 4.4%, 0.2~21.6%), VPM(average 5.9%, 0.7~17.7%)

Standard procedures of IVM

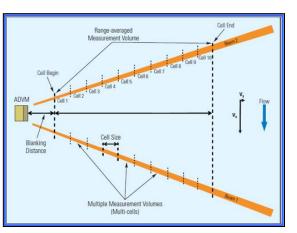
 Field investigation to select the site including survey of cross- section, discharge measurement and check velocity profile Temporary operation of ADVM to check measurement
 Identify optimum location and position at the chosen site Selection of optimum alignment of the ADVM
 Check the available measurement range(setting of cell) Setting of Measurement Interval(MI) & Averaging Period(AP) Setting of raw data configuration
• Discharge measurements considering variant Vm range
• Examination of ADVM data : Velocity , Temperature, Cell end, Signal amplitudes & instruments noise, etc.
 Identify and survey of standard cross-section used for calculation of discharge Development of stage-area rating Checking of change of cross-section
 Extracting of Vi and checking of relation between Vm Development of index rating Checking on correlation of index rating between Vi and Vm and evaluate possible shift Separation of the rating for applicable period depend on cross-section change Discharge calculation


• EDPad(Extracting Data Pad)

- Data extracting from ADVM
- Data checking (available range of meas., signal amplitude etc.)
- Calculation of Vi
- Data processing of missing or abnormal data

• MCDPad(Multi-Computing Discharge Pad)

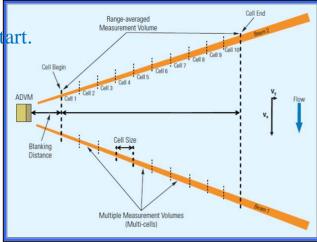
- Calculation of cross-section area(H-A rating or coordination of cross-section)
- Development of relationship between $V_{i} \text{ and } V_{m}$
- Checking of correlation of index rating and evaluate possible shift
- Separation of the rating for applicable period depend on cross-section change
- Calculation of discharge

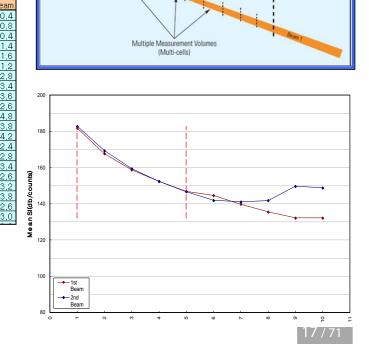

1007560 IPO
Han ri∨, Han ri∨,
nair iiv,
2016
7
Yes
(+)
30min
art

Data extracting from ADVM

- Time series of water height, 2-D velocity vector and signal amplitude(or intensity) along the transvers line of ADVM

Data extracting COPULIANT DU KIM D.S., HSC											
Extracting	1	• [1.Loa	d data	2.Ex	tracting	3.Dat	ta process	ing		
	н	Cell No.	aEW	aNS	aE1	aE2					
201607010000	2,129	1	-5	28	154	142	2	-31	23	134	13
201607010010	2,125	1	-65	26	153	143	2	-79	7	135	13
201607010020	2,126	1	-83	49	154	141	2	-80	1	139	13
201607010030	2,124	1	-70	46	154	142	2	-30	-23	137	13
201607010040	2,122	1	-48	26	154	143	2	64	-32	138	13
201607010050	2,121	1	-5	-29	154	144	2	-30	-43	137	13
201607010100	2,12	1	32	-6	154	145	2	83	-22	140	13
201607010110	2,118	1	-21	-10	157	145	2	54	-41	140	13
201607010120	2,115	1	5	-21	157	145	2	67	-22	140	13
201607010130	2,113	1	29	-6	158	146	2	106	-58	141	13
201607010140	2,111	1	7	-19	154	146	2	-31	13	137	13
201607010150	2,108	1	21	-11	156	146	2	17	-32	139	10
201607010200	2,104	1	37	-13	157	146	2	-22	1	138	1:
201607010210	2,098	1	44	-26	159	143	2	-14	-29	141	1:
201607010220	2.098	1	104	-39	157	144	2	-14	28	142	1:
201607010230	2,094	1	22	1	156	147	2	-7	5	139	1:
201607010240	2,091	1	17	-38	157	145	2	87	-10	137	1:
201607010250	2.087	1	8	-29	157	146	2	20	-14	136	1:
201607010300	2.093	1	2	-32	160	149	2	-14	11	140	1
201607010310	2,089	1	28	-29	159	150	2	37	-21	138	1
201607010320	2.088	1	28	-28	158	148	2	28	-25	140	1
201607010330	2,088	1	51	-16	158	146	2	61	-31	138	1
201607010340	2.09	1	104	-31	158	146	2	47	-32	137	1
201607010350	2.088	1	67	-22	156	145	2	45	-44	137	1:
201607010400	2,000	1	4	-15	156	146	2	24	-18	138	1
201607010410	2,001	1	42	-8	155	146	2	25	-25	136	1
201607010420	2,094	1	42	-9	156	140	2	11	-29	135	1
201607010420	2.095	1	7	-4	157	141	2	47	-2	135	1
201607010440	2.096	1	45		156	144	2	15	38	132	1:
201607010450	2.097	1	35	-15	159	143	2	74	2	136	1:
201607010500	2,099	1	-66	29	159	140	2	54	-20	134	1
201607010510	2,000	1	-25	49	158	144	2	-21	55	139	1
201607010520	2,101	1	-14	14	156	144	2	34	15	142	1
201607010520	2,101	1	-24	36	150	145	2	101	-76	136	1
201607010540	2,102	1	-14	9	160	145	2	-15	-3	142	1
201607010540	2,105	1	-60	22	156	140	2	50	-27	142	1
201607010550	2.112	1	-60	-6	150	143	2	25	-20	138	1
201607010600	2,117	1	52	-0	157	147	2	25 44	-32	136	1
201607010610	2,116	1	-1	-3	157	145	2	44	-34	130	1
201607010620		1	31	-12	158	146	2	19	-34	137	
201607010630	2,116	1	31	-12	157	145	2	19	-17	138	13


• Checking of signal intensity


Signal Intensity

- Determination of available range of measurement used as $\ensuremath{V}\xspace_i$
- Examination of decreasing pattern of signal intensity
- \Rightarrow Available range : section that SI gradually decrease
- \Rightarrow If it shows difference with initial setup, it should be changed in Start.

Copylight by Kim D.S., HSC

Mean SI			유효셀신호강도	하한선	0,2	상한선	0,3	평균	
Cell No,	1st Beam	2nd Beam	시간	1st Beam	2nd Beam	1st Beam	2nd Beam	1st Beam	2nd Be
1	181,9	182,8	201607010000	101,6	96,3	165,1	156,5	127,0	120
2	167,7	169,3	201607010010	102,1	96,6	165,9	157,0	127,6	120
3	158,8	159,4	201607010020	103,2	96,3	167,7	156,5	129.0	120
4	152,3	152,4	201607010030	102,4	97,1	166,4	157,8	128.0	121
5	146,9	146,7	201607010040	102,4	97,3	166.4	158_1	128.0	121
6	144,6	141,9	201607010050	104.0	97,0	169,0	157,6	130,0	121
7	139,8	141,1	201607010100	105,0	98,2	170,6	159,6	131,2	122
8	135,5	141,9	201607010110	105,1	98,7	170,8	160.4	131.4	123
9	132,2	149,7	201607010120	105,6	98,9	171,6	160,7	132,0	123
10	132,2	148,8	201607010130	106,4	98,1	172,9	159,4	133,0	122
11			201607010140	104,5	99,8	169,8	162,2	130,6	124
12			201607010150	103,8	99,0	168,7	160,9	129,8	123
13			201607010200	104,8	99,4	170,3	161,5	131,0	124
14			201607010210	105,8	97,9	171,9	159,1	132,2	122
15			201607010220	105,6	98,2	171,6	159,6	132,0	122
16			201607010230	105,4	98,7	171,3	160,4	131,8	123
17			201607010240	104,5	98,1	169,8	159,4	130,6	122
18			201607010250	104,2	98,6	169,3	160,2	130,2	123
19			201607010300	105,9	99,0	172,1	160,9	132.4	123
20			201607010310	104,8	98,1	170,3	159,4	131.0	122
21			201607010320	105,1	98,4	170,8	159.9	131.4	123

• Final data of Vi

- Vi is calculated by averaging velocities within available range of cell
- Interpolation of Missing or abnormal data within 30min

Total No.

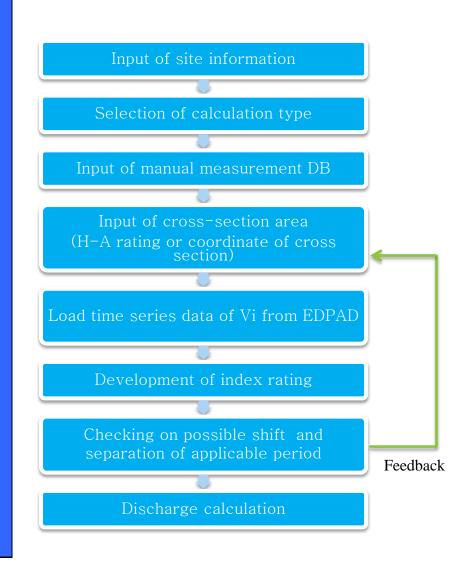
 \Rightarrow Final time series data of Vi used for development of index rating and calculation of discharge

Extracted V

Available No.

			4464		
	1				
Raw Data				Final data	
Time	Н	Vi		Time	
1607010000	2,13	-0,031		201607010000	
1607010010	2,13	-0,051		201607010010	
1607010020	2,13	-0.058		201607010020	
1607010030	2,12	-0.01		201607010030	
1607010040	2,12	-0.011		201607010040	
1607010050	2,12	0,019		201607010050	
1607010100	2,12	0,032		201607010100	
1607010110	2,12	-0,002		201607010110	
1607010120	2,12	0,011		201607010120	
1607010130	2,11	0.029		201607010130	
1607010140	2,11	0.007		201607010140	
1607010150	2,11	0.021		201607010150	
1607010200	2,1	-0.017		201607010200	
1607010210	2,1	-0.014		201607010210	
1607010220	2,1	-0.011		201607010220	
1607010230	2,09	0.012		201607010230	
1607010240	2.09	0.017		201607010240	
1607010250	2,09	0.008		201607010250	
1607010300	2,09	0.034		201607010300	
1607010310	2,09	0,022		201607010310	
1607010320	2,09	0		201607010320	
1607010330	2,09	0.021		201607010330	
1607010340	2,09	0.007		201607010340	
1607010350	2.09	0.012		201607010350	
1607010400	2,09	0.004		201607010400	
1607010410	2,09	0.025		201607010410	
1607010420	2,09	-0,002		201607010420	
1607010430	2,1	0,007		201607010430	
1607010440	2,1	0.015		201607010440	
1607010450	2.1	0.007		201607010450	
1607010500	2,1	0.007		201607010500	
1607010510	2,1	-0.021		201607010510	
1607010520	2,1	0.004		201607010520	
1607010530	2,1	-0,001		201607010530	
1607010540	2,11	-0,011		201607010540	
1607010550	2,11	0.017		201607010550	
1007010000	A 1A	0 00E		001007010000	

+	Vi	L I	Salinity
	-0.031		0
2,13	-0,051		0
2,13 2,13 2,13 2,12	-0,058		0
2,12	-0.01		0
2,12	-0,011		0
2,12	0,019		0
2,12	0,032		0
2,12	-0,002		0
2.12 2.12 2.12 2.12 2.11 2.11 2.1 2.1 2.	0,011		0
2.11	0,029		0
2,11	0,007		0
2,11	0,021		0
2,1	-0,017		0
2,1	-0,014		0
2,1	-0,011		0
2,09	0,012		0
2,09	0,017		0
2,09	0,008		0
2,09	0,034		0
2,09	0,022		0
2,09	0		0
2,09	0,021		0
2,09	0,007		0
2.09	0.012		0
2,09	0.004		0
2,09	0,025		0
2,09	-0,002		0
2,1	0,007		0
2.1	0,015		0
2.1	0.007		0
2. 2. 2. 2. 2. 2. 2. 2.	0.007		0
2,1	-0.021		0
2,1	0,004		Ű
2,1	-0,001		0
2,11	-0,011		0

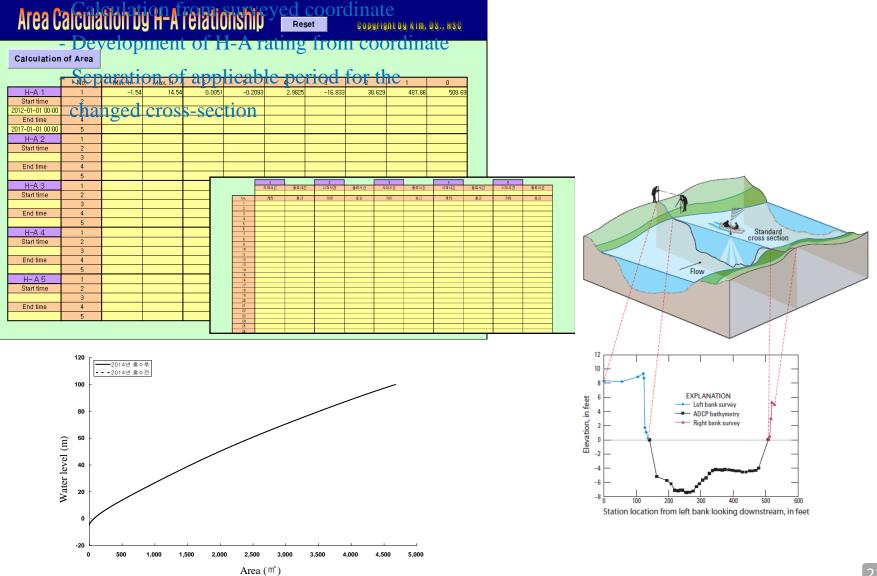

0.017

Copylight by Kim D.S., HSC

		Status of
Roll	Pitch	Water Temp,
	0,	26,99
D.1	0,	26,98
D.1	0.	26,97
D. 1	0.	26,96
D.1	0.	26,96
D.1	0.	26,96
D.1	0,	26,95
D, 1	0,	26,95
0,1	0,	26,94
0,1	0,	26,94
0,1	0,	26,93
0,1	0,	26,92
0.1	0.	26,92
0.1	0.	26,91
0.1	0.	26,9
0.1	0,	26,89
	0.	26,89
0.1	0.	26,88
0.1	0.	26,87
0.1	0.	26,86
	0.	26,84
0	(26,83
D.1	0,	26,82
	0.	26,81
	0,	26,8
	0.	26,8
		26,79
		26,79
0.1	0.	26,78
0.1	0,	26,77
		26,77
		26,76
	0.	26,75
	0.	26,75
	0.	26,74
1		26.74

MC	DP30 ver 1.0.5
	Information of ST.
CODE	1007560
ST. Name	IPO
Watershed	Han riv.
Stream Name	Han riv.
Location	
Year of Data	2016

	Selection of Calculation				
Area Calc.	Coordination				
Discharge Calc. 1	Index velocity Method				
Discharge Calc. 2					
	Start				
Reset	Copyright by Kim, DS., HSC				



• Manual measurements to obtain Vm

- Manual Measurements should be conducted in variant $V_{\mbox{\scriptsize m}}$ range
- Measurement data are managed by DBPAD

	DB of	In	divi	dua	al Me	as.	Reset						
	측정 일시		수면폭 ₩		평균유속 Vm	유량 Q	측정장비	시작-종료 시간	시작수위	종료수위	Available past data		
DM No	(yy-mm-dd hh:mm)	(m)	(m)	(m²)	(m/sec)	(m³/sec)	(Meas, Type)	Start-End time	Hstart	Hend	н	Vi	A
1007660_12_001	2012-10-12 09:58	2,31				168,04	ADVM	12-10-12 09:58 ~ 11:11	2,31	2,31	100,00		,
1007660_12_002	2012-10-30 14:22	2,42				190,26	ADVM	12-10-30 14:22 ~15:29	2,42	2,42	100,00		
1007660_12_003	2012-11-15 10:00	2,37				212,50	ADVM	12-11-15 10:00 ~ 11:06	2,37	2,37	100,00		
1007660_13_001	2013-03-11 16:39	2,26	522, 72	1573,35	0,10	156,93	ADVM	13-03-11 16:39 ~ 17:50	2,24	2,27	100,00		
1007660_13_002	2013-03-18 15:10	2,40	548, 32	1771,96	0,14	245,57	ADVM	13-03-18 15:10 ~ 16:20	2,40	2,40	100,00		
1007660_13_003	2013-04-01 14:01	2,42	544,78	1751,13	0,22	380, 87	ADVM	13-04-01 14:01 ~ 14:30	2,42	2,42	100,00		
1007660_13_005	2013-04-10 13:59	1,92	523, 31	1427,50	0,26	369, 42	ADVM	13-04-10 13:59 ~ 14:17	1,95	1,88	100,00		
1007660_13_009	2013-04-10 15:00	2,07	504,71	1499,40	0,07	105,40	ADVM	13-04-10 15:00 ~ 15:20	2,05	2,09	100,00		
1007660_13_011	2013-04-10 15:30	2,08	508, 10	1503,60	0,26	397,03	ADVM	13-04-10 15:30 ~ 15:37	2,08	2,08	100,00		
1007660_13_013	2013-04-10 16:00	2,01	516,54	1452,07	0,23	328,95	ADVM	13-04-10 16:00 ~ 16:50	2,01	2,00	100,00		
1007660_13_015	2013-05-08 15:30	2,38	513,77	1634,43	0,11	177, 15	ADVM	13-05-08 15:30 ~ 16:40	2,38	2,37	100,00		
1007660_13_016	2013-05-28 14:00	2,53	524,89	1731,08	0,27	463,02	ADVM	13-05-28 14:00 ~ 15:10	2,54	2,52	100,00		
1007660_13_017	2013-06-27 07:45	2,24	527,96	1564,64	0,22	338,27	ADVM	13-06-27 07:45 ~ 08:55	2,20	2,27	100,00		
1007660_13_018	2013-07-03 10:53	2,22	528,67	1616,70	0,22	350, 86	ADVM	13-07-03 10:53 ~ 12:15	2,21	2,22	100,00		
1007660_13_019	2013-07-14 08:14	2,54	515,02	1725,13	0,54	936, 56	ADVM	13-07-14 08:14 ~ 08:45	2,52	2,56	100,00		
1007660_13_020	2013-07-14 13:54	2,39	521,41	1620,25	0,54	876, 30	ADVM	13-07-14 13:54 ~ 14:25	2,39	2,39	100,00		
1007660_13_021	2013-07-15 11:34	2,75	523, 44	1829,43	0,81	1472,80	ADVM	13-07-15 11:34 ~ 12:05	2,75	2,75	100,00		
1007660_13_023	2013-07-16 10:56	3, 35	520,63	2136,23	1,08	2317,20	ADVM	13-07-16 10:56 ~ 11:25	2,22	2,19	100,00		
1007660_13_024	2013-07-16 12:34	3,22	517,36	2075, 95	1,08	2236,81	ADVM	13-07-16 12:34 ~ 13:05	2,12	2,07	100,00		
1007660_13_025	2013-07-16 14:26	3, 10	507,81	1989,85	1,06	2116,96	ADVM	13-07-16 16:37 ~ 17:05	2,95	2,90	100,00		
1007660_13_026		2,93	508,41	1907, 33	1,03	1971,40	ADVM	13-07-16 18:25 ~ 18:55	2,80	2,76	100,00		
1007660_13_027	2013-07-16 18:25	2,78	521,65	1857,93	0, 99	1834,91	ADVM	13-07-16 18:25 ~ 18:55	2,80	2,76	100,00		
1007660_13_028	2013-07-19 11:35	2,14	510, 19	1530,25	0,88	1350, 32	ADVM	13-07-19 11:35 ~ 12:05	2,14	2,14	100,00		
1007660_13_037		2,97	513,07	1899, 53	1,04	1979, 42	ADVM	13-07-24 10:24 ~ 10:55	2,98	2,96	100,00		
1007660_13_038	2013-08-06 16:24	2,37	510,26	1628,13	0,35	566,06	ADVM	13-08-06 16:24 ~ 16:55	2,38	2,36	100,00		
1007660_13_039		2,39	516,23	1632,83	0,09	143,44	ADVM	13-08-21 10:45 ~ 12:05	2,40	2, 38	100,00		
	2013-08-28 10:05	2,40	511,47	1653,02	0,13	212,31	ADVM	13-08-28 10:05 ~ 10:45	2,40	2,39	100,00		
1007660_13_041	2013-08-28 10:55	2,36	511,50	1614,98	0,10	156,02	ADVM	13-08-28 10:55 ~ 11:25	2,39	2,32	100,00		
1007660_13_042		2,32	509,87	1611,74	0,15	245,36	ADVM	13-09-11 16:57 ~ 18:05	2,32	2,31	100,00		
1007660_13_043		2,21	520, 40	1560, 36	0,12	189,43	ADVM	13-09-25 16:25 ~ 17:45	2,21	2,21	100,00		
1007660_13_044		2,33	513,40	1607, 75	0,10	153,43	ADVM	13-10-23 17:05 ~ 18:15	2,34	2,31	100,00		
1007660_13_045		2,21	521,14	1537,88	0,09	130,23	ADVM	13-11-28 12:55 ~ 13:25	2,21	2,21	100,00		
1007660_13_046	2013-12-05 14:34	2,20	527,42	1542,90	0,08	120,86	ADVM	13-12-05 14:34 ~ 15:45	2,20	2,20	100,00		

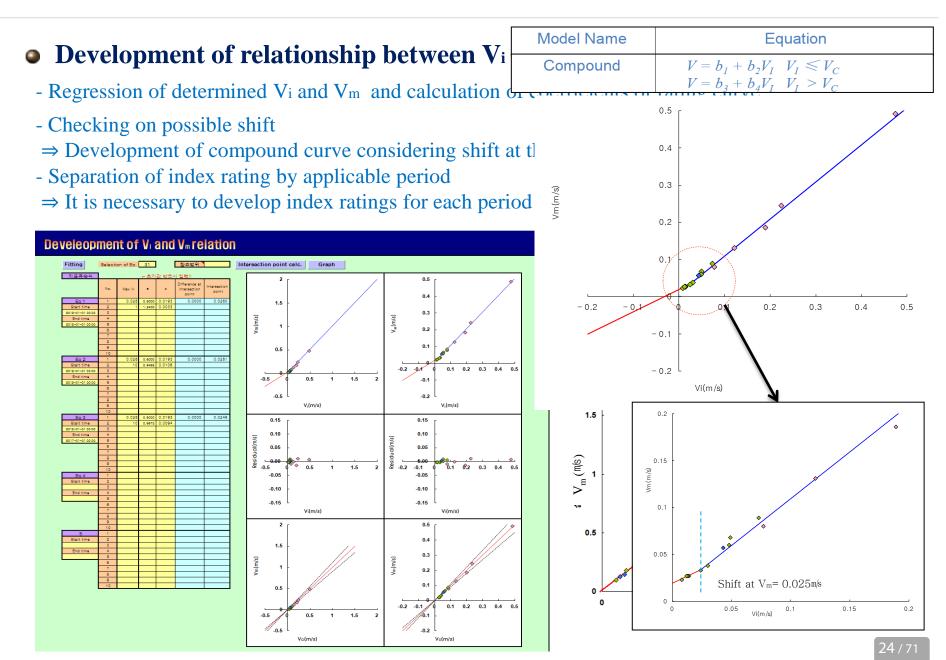
Calculation of cross-section area

Input time series data of Vi from EDpad

- Final data of $V_{\rm i}$ from EDpad are input into the MCDpad to develop relationship with $V_{\rm m}$

	put	OT H	, V i	Reset		Çopyri	ight by Kim, DS)., HI
Sele	ction of H	H1(main)						
Input	1							
No.	Time	H1	Hirev.	H2	H2rev.	Vi	Virev.	1
1	2016-01-01 00:00	1.99	1.99	2.14	2.14	0.043	0.043	
2	2016-01-01 00:10	1.99	1.99	2.15	2.15	0.030	0.030	
3	2016-01-01 00:20	2.00	2.00	2.15	2.15	0.033	0.033	
4	2016-01-01 00:30	2.00	2.00	2.15	2.15	0.029	0.029	
5	2016-01-01 00:40	2.00	2.00	2.15	2.15	0.033	0.033	
6	2016-01-01 00:50	2.00	2.00	2.15	2.15	0.033	0.033	
7	2016-01-01 01:00	2.01	2.01	2.16	2.16	0.040	0.040	
8	2016-01-01 01:10	2.01	2.01	2.16	2.16	0.044	0.044	
9	2016-01-01 01:20	2.01	2.01	2.16	2.16	0.035	0.035	
10	2016-01-01 01:30	2.01	2.01	2.16	2.16	0.036	0.036	
11	2016-01-01 01:40	2.01	2.01	2.16	2.16	0.028	0.028	
12	2016-01-01 01:50	2.01	2.01	2.16	2.16	0.043	0.043	
13	2016-01-01 02:00	2.01	2.01	2.16	2.16	0.045	0.045	
14	2016-01-01 02:10	2.01	2.01	2.16	2.16	0.036	0.036	
15	2016-01-01 02:20	2.00	2.00	2.16	2.16	0.044	0.044	
16	2016-01-01 02:30	2.00	2.00	2.16	2.16	0.039	0.039	
17	2016-01-01 02:40	1.99	1.99	2.16	2.16	0.037	0.037	
18	2016-01-01 02:50	2.00	2.00	2.16	2.16	0.043	0.043	
19	2016-01-01 03:00	2.00	2.00	2.16	2.16	0.044	0.044	
20	2016-01-01 03:10	2.00	2.00	2.16	2.16	0.044	0.044	
21	2016-01-01 03:20	2.01	2.01	2.16	2.16	0.041	0.041	
22	2016-01-01 03:30	2.01	2.01	2.16	2.16	0.039	0.039	
23	2016-01-01 03:40	2.01	2.01	2.16	2.16	0.039	0.039	
24	2016-01-01 03:50	2.01	2.01	2.16	2.16	0.037	0.037	
25	2016-01-01 04:00	2.00	2.00	2.15	2.15	0.035	0.035	
26 27	2016-01-01 04:10 2016-01-01 04:20	2.00	2.00	2.15	2.15	0.041	0.041	
27	2016-01-01 04:20	2.00	2.00	2.15	2.15	0.033	0.033	
28	2016-01-01 04:30	2.00	2.00	2.15	2.15	0.045	0.045	
23	2016-01-01 04:40	1.99	1.99	2.15	2.15	0.047	0.047	
30	2016-01-01 04:50	1.99	1.99	2.15	2.15	0.041	0.041	
32	2016-01-01 05:00	1.99	1.99	2.15	2.15	0.035	0.035	
32	2016-01-01 05:10	1.99	1.99	2.15	2.15	0.036	0.036	
34	2016-01-01 05:20	2.00	2.00	2.15	2.15	0.038	0.038	
35	2016-01-01 05:30	2.00	2.00	2.15	2.15	0.045	0.045	
36	2016-01-01 05:50	2.00	2.00	2.15	2.15	0.039	0.039	
	2010 01 01 03:30	2,00	2,00	2110	6.10	0,000	0.000	

• Matching of Vi and Vm

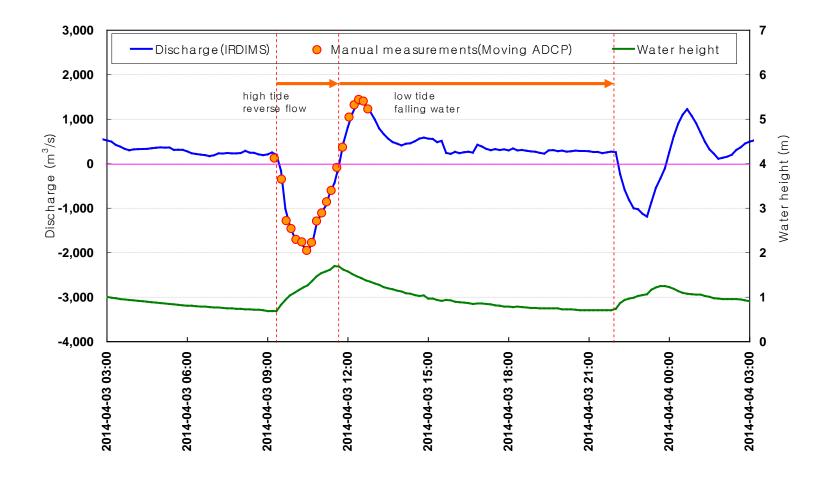

- In order to match V_i and V_m , it is necessary to interpolate V_i at the 1min intervals
- Averaging of the interpolated Vi during the manual measurement
- Using of V_i at the meantime between start and end of manual measurement

Development of V₁ and V_m relation

Reset

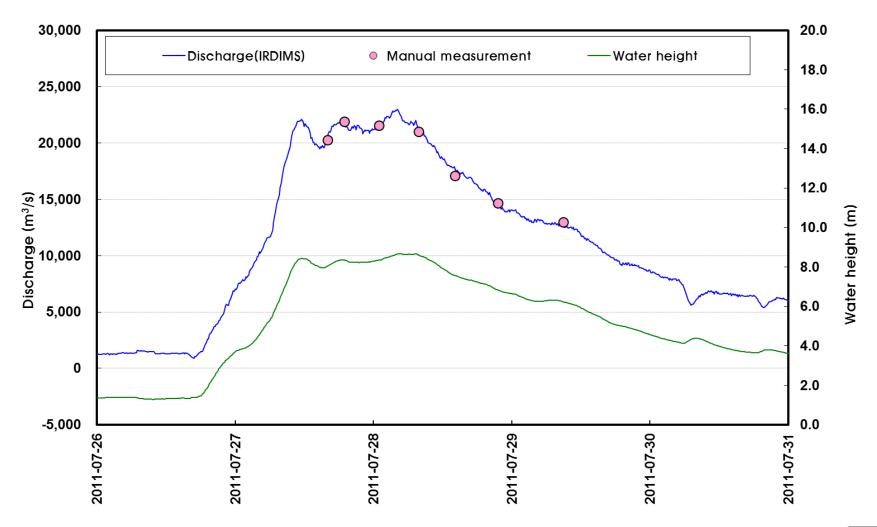
Copyright by Kim, DS., HSC

Load data(all) Load data(selection)		Cal	c.				측정방법 및	년도구분							
Indiv, Meas,	Start No, of	indiv, Meas,	59	┏ 제오	성과는 4	≏위에 "10)0" 입력!!	, 지표유속식	[개발에만	제외는 수	-위에 "20	0" 입력!!			
No.	Start time	End time	Mean time	수위	지표유속 (V;)	단면적(A)	평균유속 (V _E) Q _E /A	환산평균유속 (V₀)	측정유량 (Qm)	환산유량 (Q₀) V₀★A	유량편차 Qm-Qa	편차율(%) (Qm-Qc)/Qm	Vi and V _m Matching	Applied Eq.	Meas, Type
1	2014-12-10 11:49	2014-12-10 12:39	2014-12-10 12:14	2.20	0.043	1649.37	0.057	0.052	93.49	85.77	7.72	8.3%		320	ADVM
2	2015-02-04 14:55	2015-02-04 15:39	2015-02-04 15:17	2,15	0.049	1623.48	0.068	0.058	110.99	94.16	16.83	15.2%		320	ADVIV
3	2015-03-20 10:43	2015-03-20 11:08	2015-03-20 10:55	2.17	0.073	1633.84	0.089	0.082	144.76	133.97	10.79	7.5%		320	ADVIV
4	2015-04-08 15:57	2015-04-08 16:49	2015-04-08 16:23	2.29	0.048	1695.89	0.060	0.057	101.13	96.67	4.46	4,4%		320	ADVIM
5	2015-05-14 15:20	2015-05-14 16:09	2015-05-14 15:44	2.23	0.03	1664.89	0.038	0.039	63.51	64.93	(1.42)	-2.2%		320	ADVN
6	2015-06-08 13:46	2015-06-08 14:23	2015-06-08 14:04	2.15	0.014	1623.48	0.027	0.028	43.06	45.46	(2,40)	-5.6%		310	ADVN
7	2015-07-03 10:38	2015-07-03 11:47	2015-07-03 11:12	2.13	0.013	1613.11	0.027	0.027	44.35	43.55	0.80	1.8%		310	ADVN
8	2015-07-12 15:52	2015-07-12 17:03	2015-07-12 16:27	2,15	0.024	1623.48	0.033	0.034	53.39	55.20	(1.81)	-3,4%		310	ADVN
9	2015-07-26 10:23	2015-07-26 10:54	2015-07-26 10:38	100.00											ADVN
10	2015-08-12 12:16	2015-08-12 12:49	2015-08-12 12:32	100.00											ADVN
11	2015-09-17 10:29	2015-09-17 11:03	2015-09-17 10:46	100.00											ADVN
12	2015-11-11 14:31	2015-11-11 15:08	2015-11-11 14:49	2.12	0.008	1607.93	0.023	0.024	37.65	38.59	(0,94)	-2.5%		310	ADVN
13	2015-12-16 16:17	2015-12-16 17:31	2015-12-16 16:54	2.12	0.012	1607.93	0.027	0.027	43.40	43.41	(0.01)	0.0%		310	ADVN
14	2016-03-17 14:48	2016-03-17 15:26	2016-03-17 15:07	2.14	0.077	1618.29	0.080	0.086	128.72	139.17	(10,45)	-8.1%		320	ADVN
15	2016-04-27 16:21	2016-04-27 17:33	2016-04-27 16:57	2.38	0.189	1742.32	0.186	0.198	324.71	344.98	(20,27)	-6.2%		320	ADVN
16	2016-05-11 15:09	2016-05-11 15:47	2016-05-11 15:28	2.27	0.121	1685,56	0.131	0.130	220.37	219.12	1.25	0.6%		320	ADVN
17	2016-07-13 17:59	2016-07-13 18:44	2016-07-13 18:21	2.38	0.474	1742.32	0.492	0.482	858.08	839.80	18.28	2.1%		320	ADVN
18	2016-07-14 16:43	2016-07-14 17:21	2016-07-14 17:02	2.17	0.224	1633.84	0.245	0.233	399.56	380.68	18.88	4.7%		320	ADVN
19															
20															
21															
22															
23															


Discharge calculation

- Final discharge data is calculated by applying Vi to index rating determined from MCpad

Calculation		Start 2016-01-01 00:00		-01.00:00		Selection of H		H1(main)				
Calculation		End 2017-01-01 00:00		결측기간	확인 니			in the second				
No.	Time	Н	Hrev	Q	Qrev	A	Vm	비고	결측보완			
1	2016-01-01 00:00	2.14	2.14	84.15	84.15	1618.29	0.052					
2	2016-01-01 00:10	2.15	2.15	63.32	63.32	1623.48	0.039					
3	2016-01-01 00:20	2.15	2.15	68.19	68.19	1623.48	0.042					
4	2016-01-01 00:30	2.15	2.15	61.69	61.69	1623.48	0.038					
5	2016-01-01 00:40	2.15	2.15	68.19	68.19	1623.48	0.042					
6	2016-01-01 00:50	2.15	2.15	68.19	68.19	1623.48	0.042					
7	2016-01-01 01:00	2.16	2.16	79.80	79.80	1628.66	0.049					
8	2016-01-01 01:10	2.16	2.16	86.32	86.32	1628.66	0.053	Door	ult of Die	oborgo		
9 10	2016-01-01 01:20 2016-01-01 01:30	2.16 2.16	2.16	71.66 73.29	71.66 73.29	1628.66 1628.66	0.044	Resi	lt of Dis	cilarye	Reset	Copyright by Kim
11	2016-01-01 01:30	2.16	2.16	60.26	60.26	1628.66	0.045					CODELLERCOS AL
12	2016-01-01 01:40	2.16	2.16	84.69	84,69	1628.66	0.057					
13	2016-01-01 02:00	2.16	2.16	87.95	87.95	1628.66	0.052	01-1 0010 0	2 10 00 00			-
13	2016-01-01 02:00	2.16	2.16	73.29	73.29	1628.66	0.034	Start 2016-0 Duration	5	Refresh	>>	
15	2016-01-01 02:10	2.16	2.16	86.32	86.32	1628.66	0.053	End 2016-0	7-15 00:00			
16	2016-01-01 02:30	2.16	2.16	78.18	78, 18	1628.66	0.048					
17	2016-01-01 02:40	2,16	2.16	74.92	74.92	1628.66	0.046					
18	2016-01-01 02:50	2.16	2.16	84.69	84.69	1628.66	0.052	1,300				10
19	2016-01-01 03:00	2.16	2.16	86.32	86.32	1628.66	0.053					9
20	2016-01-01 03:10	2.16	2.16	86.32	86.32	1628.66	0.053	1,100				
21	2016-01-01 03:20	2.16	2.16	81.43	81.43	1628.66	0.050			mandmanananahan	Next	- 8
22	2016-01-01 03:30	2.16	2.16	78.18	78.18	1628.66	0.048	900	Mr. mar and March March 1940 - 1871	and and mander that the server	1) With which we want the	7
23	2016-01-01 03:40	2.16	2.16	78.18	78.18	1628.66	0.048				Www.M	promoting proven
24	2016-01-01 03:50	2.16	2.16	74.92	74.92	1628.66	0.046					6
25	2016-01-01 04:00	2.15	2.15	71.43	71.43	1623.48	0.044	(\$/ _C 700 E) Ø				
26	2016-01-01 04:10	2.15	2.15	81.17	81.17	1623.48	0.050	5				m - 5
27	2016-01-01 04:20	2.15	2.15	68.19	68.19	1623.48	0.042	500				
28	2016-01-01 04:30	2.15	2.15	87.67	87.67	1623.48	0.054	000 000 0100 0100				1
29	2016-01-01 04:40	2.15	2.15	90.91	90.91	1623.48	0.056	بل 200				3
30	2016-01-01 04:50	2.15	2.15	81.17	81.17	1623.48	0.050	ä 🐝 🛴			~~~~~	
31	2016-01-01 05:00	2.15	2.15	68.19	68.19	1623.48	0.042					2
32	2016-01-01 05:10	2.15	2.15	73.06	73.06	1623.48	0.045	100				
33	2016-01-01 05:20	2.15	2.15	73.06	73.06	1623.48	0.045					1'
34	2016-01-01 05:30	2.15	2.15	84.42	84.42	1623.48	0.052	-100				o
35	2016-01-01 05:40	2.15	2.15	71.43	71.43	1623.48	0.044	9	Ŧ	2	-13	15 14
36	2016-01-01 05:50	2.15	2.15	77.93	77.93	1623.48	0.048	3-07	2016-07	2016-07	2016-07	2016-07- 2016-07-
37	2016-01-01 06:00 2016-01-01 06:10	2.15	2.15 2.15	77.93	77.93	1623.48 1623.48	0.048	20 ¹⁶	201	10	5	5 5

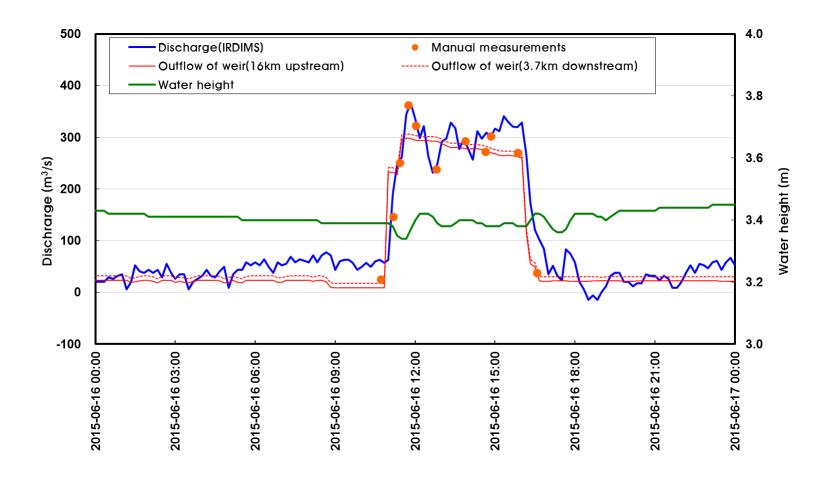

4 Discharge measurement in tidally affected area

- Beginning high tide flow, discharge at the station decreased rapidly and flow direction changed to reverse, while water height was rising. After negative peak, reverse flow returned to natural direction and discharge increased and gradually decreased until next tidal period

4 Discharge measurement of flood flow

Maximum value : discharge 23,000m³/s, water level 10.7m, EL., velocity 2.5m/s
* maximum record since IRDIMS began to operate

- **4** Discharge measurement in backwater condition by sluice in river estuary
 - Gate operation of the sluice result in flow change of this station.


4 Discharge measurement under backwater condition caused by section-crossed structure

- Discharge was directly affected by outflow of the weir controlled by gate operation

4 Discharge variation between two weir

- Goryong st. located between 2 weirs at 15km upstream and 4km downstream

Comparison between IRDIMS and H-Q

4 Backwater at the junction caused by main stream

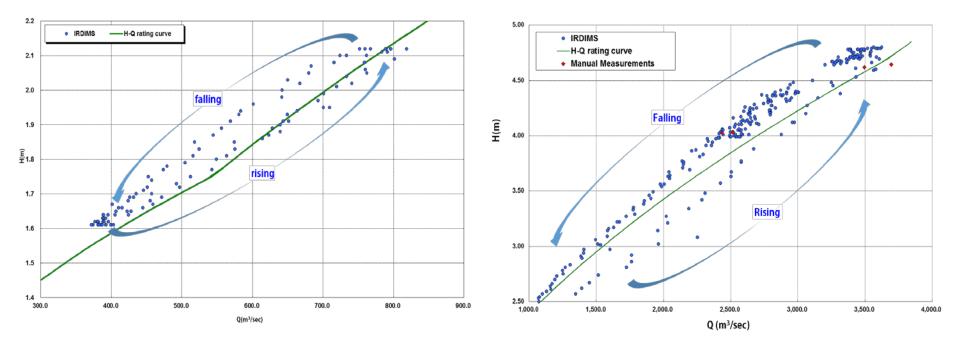
- Hapgang st. is located in 1km upstream of junction with Geum river and affected by backwater only when discharge of main stream increase significantly

Comparison between IRDIMS and H-Q

4 Backwater at the junction caused by main stream

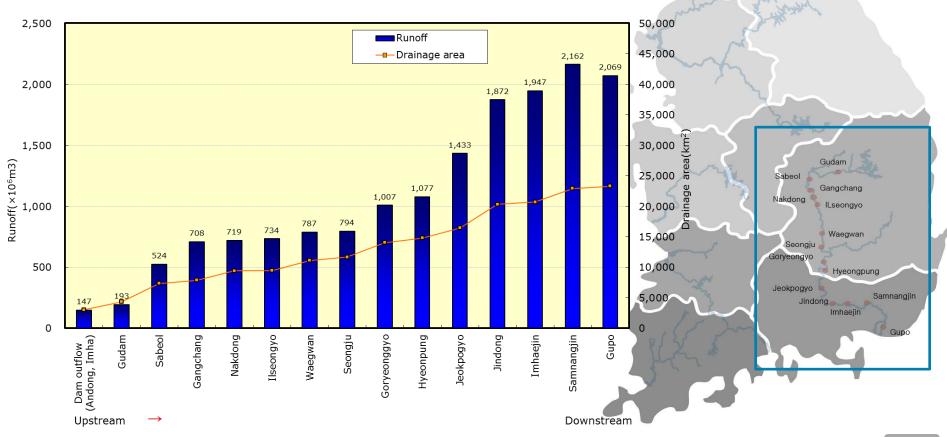
- It is affected by backwater only when discharge or water height of main stream increase
- Results of discharge by IRDIMS and H-Q had a similar trend when there was no backwater
- However, as it started to be affected by backwater from mainstream, discharge by H-Q was showing difference and bigger than IRDIMS and manual measurements.

Comparison between IRDIMS and H-Q


4 Measurement in Loop condition

- 2 rainfall events : 300~900m³/s, 1,000~4,000m³/s

H-Q for $H = 1.6 \sim 2.0$ m had been developed using data measured during rising flow condition


H= 2.5~4.5m had been developed using data measured during rising and falling flow conditions

- Difference of discharge under same H were 15~20% similarly in both events

4 Comparative analysis on runoff of IRDIMS stations

- Runoff at each IRDIMS station from upstream to downstream for specific period in Nakdong river
- Runoff of each station(blue bar) gradually increased from upstream to downstream, and its trend was similar with increasing of drainage area(yellow line).

ACTIVITIES

Hydrometric measurements with quality and accuracy

• Improve sediment measuring techniques

- This Activity is to provide a technical information about sediment measurement and each methodology, and case study on sediment in various conditions
- There are two sub actions have been conducted in this action plan, these are
 (1) Collection of technical information related to sediment measurement and analysis
 (2) Case study on sediment measurement in various conditions

ACTIVITIES

Hydrometric measurements with quality and accuracy

(1) Collection of the technical information related to sediment measurement and its analysis

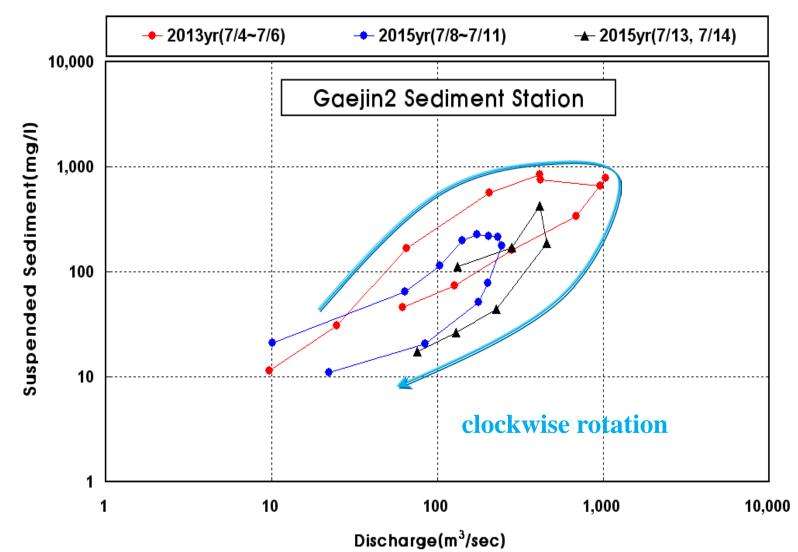
- (a) The status of existing sediment measurement technique
 - Measurement equipment, methodology and procedure
- (b) The status of new technology and its application
- (c) Techniques of analysis on sediment

(2) Case study on sediment measurement in different conditions

(a) Analysis on characteristics of sediment load during rising & falling water level(Loop)

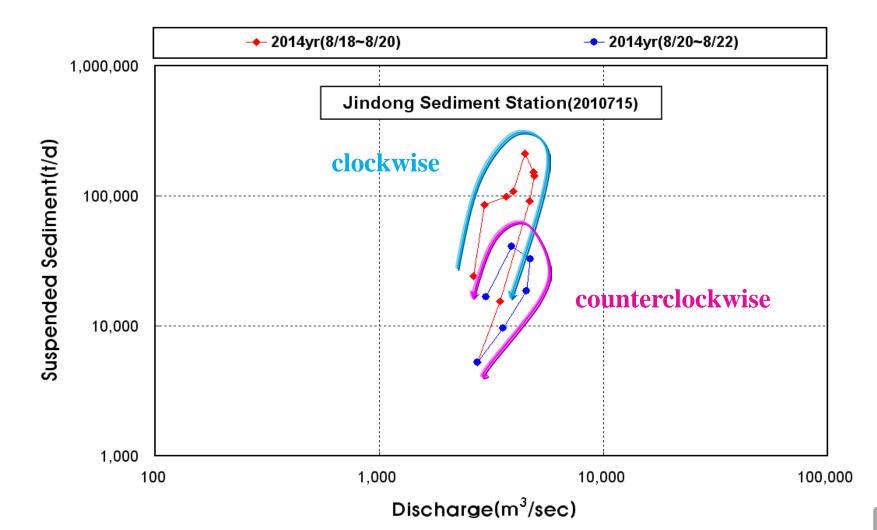
(b) Analysis on river construction effect on characteristic of sediment load, focused on 4major river project in Korea

(c) A comparative analysis on sediment load by sequence of rainfall event.

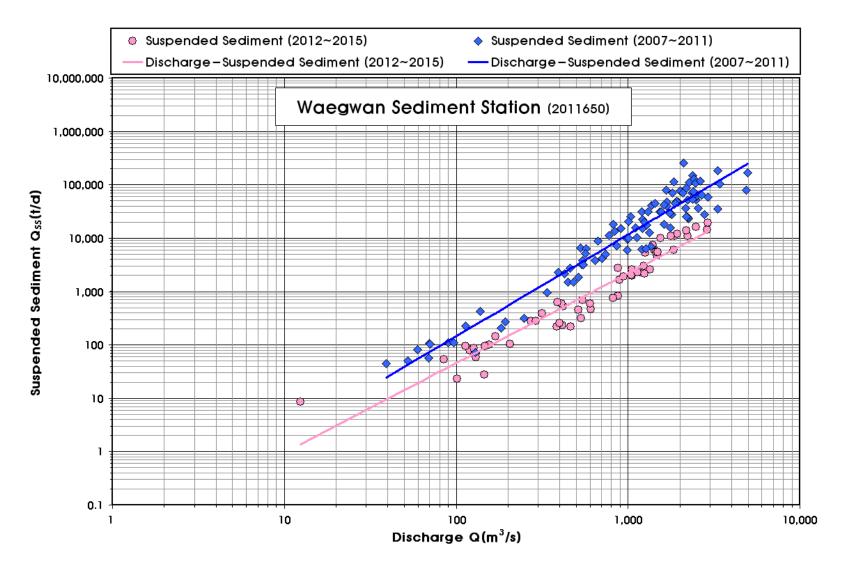

4 Loop characteristic of suspended sediment in the Gaejin2 station

4 Analysis on characteristic of C-Q rating in the rising and falling flow

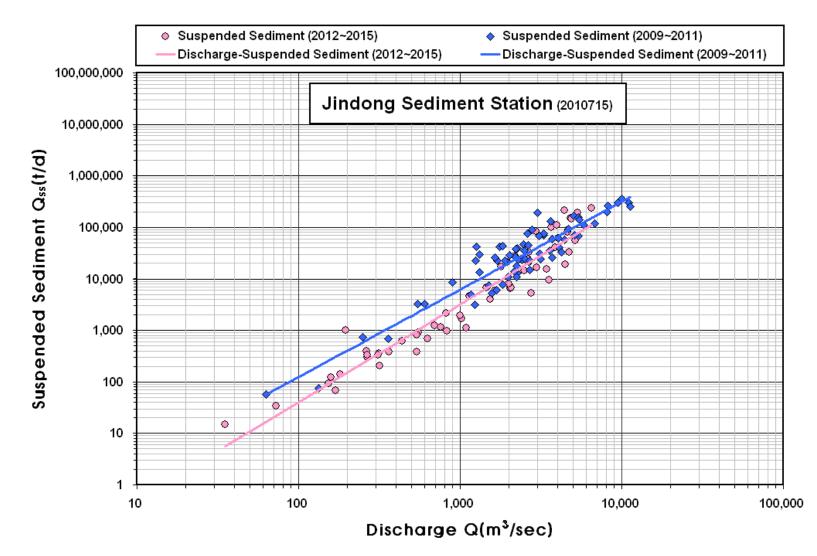
4 Loop characteristics of suspended sediment in the Gaejin2 station


4 Gaejin2 station showed characteristics of clockwise loop

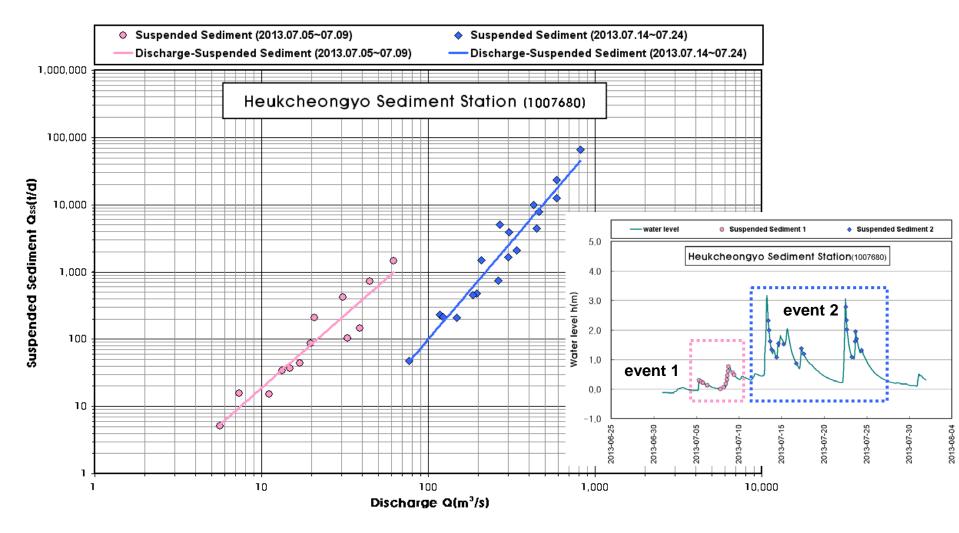
38/71


4 Loop characteristics of suspended sediment in the Jindong station

 Jindong station showed clockwise and counterclockwise loop together during successive 2 rainfall events


4 Effect of large weir construction on Sediment load

4 Comparison of C-Q rating before and after construction of large weir


4 Effect of large weir construction on Sediment load

4 Comparison of C-Q rating before and after construction of large weir

4 Suspended sediment characteristics of successive rainfall events

4 A comparative analysis on suspended sediment by sequence of rainfall event

ACTIVITIES

Hydrometric measurements with quality and accuracy

• Focus on the development of rating curve

- This Activity is to provide a report outlining procedures for developing the optimal rating curve under various conditions in Korea
- The main purpose of this action is providing **technical information** about

improved **development procedure** and introducing development tool of rating curve also providing development of **rating curve cases** in various conditions.

There are two sub actions being conducted in this action plan, these are
(1) Collection of the existing technical information
(2) Case analysis with various field conditions

ACTIVITIES

(1) Collection of the existing technical information

This action is collection of existing technical information, which include
(a) Procedure of rating curve development, (b) Development tool of rating curve

(a) **Procedure of rating curve development**

- Pre-investigation
- Discharge measurement and calculation
- Evaluation of measurement
- Quality Control (QC)
- Confirmation of data
- Evaluation of rating curve

(b) Software tools to develop and manage of rating curve and its application

- Data management and QC
 - HDQMS (Hydrological Data Quality Management System)
 - HDIMS (Hydrological Data Information Management System)
- Data analysis and rating curve development (DBPAD, CalPAD)

ACTIVITIES

(2) Case analysis with various field conditions

- This activity is to introduce **many cases of rating curve** development and its practical experionce in **various specific conditions** and suggest adequate methodology and evaluation of results by runoff anlysis etc.

(a) Development of rating curve in backwater effect

- Weir, stream junction
- (b) Guideline for development of rating curve considering **vegetation**
 - Method and procedure of vegetation monitoring
- (c) Analysis on effect of **stream environment change** on rating curve
 - Bed change, river construction

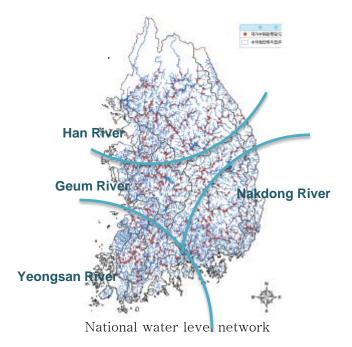
Stage-discharge rating curve (Rating)

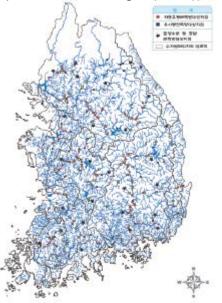
4 This continuous record of stage is translated to river discharge by applying the stagedischarge relation (also called rating)

Stage-discharge relations are developed for streamgages by physically measuring the flow of the river with a mechanical current meter or ADCP at a wide range of stages; for each measurement of discharge there is a corresponding measurement of stage (<u>http://water.usgs.gov/edu</u>)

$\mathbf{4} \mathbf{Q} = \mathbf{a} \mathbf{X} (\mathbf{h} \mathbf{-} \mathbf{b})^{c}$

(h : stage (water level), b : Gauge Height os zero flow : GZF, c: slope)The stage-discharge relation depends on the shape, slope, and roughness of the channel at the streamgage and is different for every streamgage

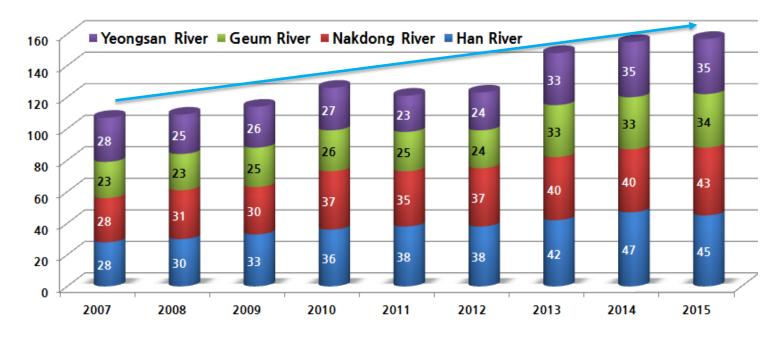

HSC(MLIT) is conduction the **flow measurement more than 130 stations per year**. Also rating curves was developed from measuring stations per year except a few stations due to tidal or back water effect etc.


National Hydrological Survey Network in Korea

4 Status of NHSN in Korea

Division	Water level	Streamflow	Realtime streamflow	Sediment load	Soil Moisture	Evapotranspi ration
Number of sites	645	380	97	138	25	25

* Final NHSN is planned to finish by 2020(Currently 80% completed and managed(2012))

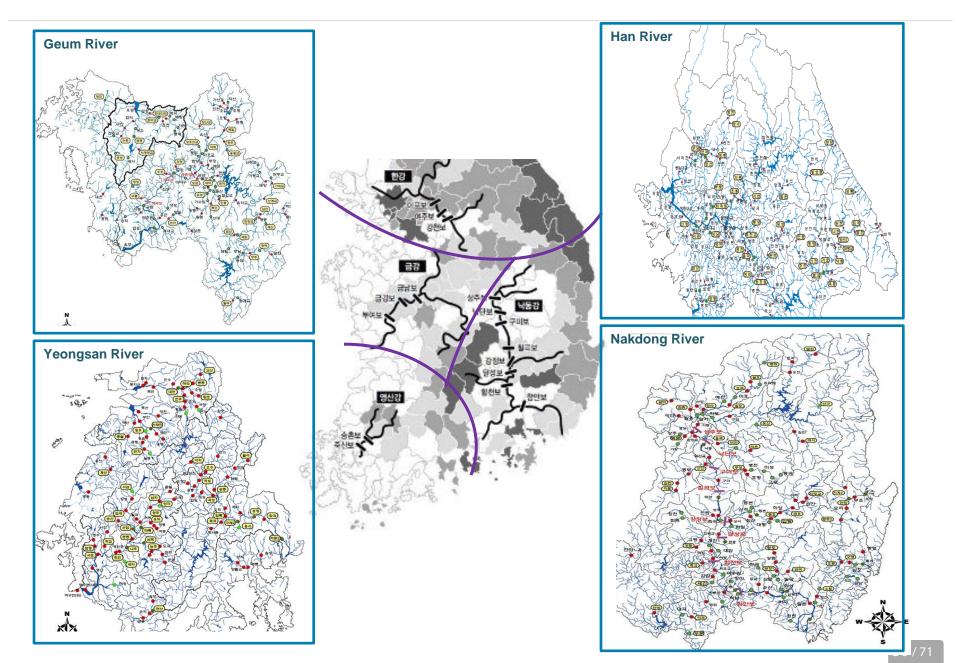

Realtime streamflow, sediment load, soil moisture, evapotranspiraion network

The status of discharge measurement (2007-2015)

4 Status of flow measurement the past 2007-2015 years

by the Report of Hydrological Survey

Flood Control Office	2007	2008	2009	2010	2011	2012	2013	2014	2015
Han River	28	30	33	36	38	38	42	47	45
Nakdong River	28	31	30	37	35	37	40	40	43
Geum River	23	23	25	26	25	24	33	33	34
Yeongsan River	28	25	26	27	23	24	33	35	35
Total	107	109	114	126	121	123	148	155	157


The status of discharge measurement (2011-2014)

4 Status of discharge measurement the past 2011-2014 years

Hydrological Annual Report in Korea (by Ministry of Land, Infrastructure and Transport)

Year	Flood Control Office	Total St.	Discharge Measurement	Automatic Discharge Measurement	Development of Rating Curve
	Han River	47	38	9	44
	Nakdong River	44	35	9	40
2011	Geum River	29	25	4	29
	Yeongsan River	27	23	4	26
	Total	147	121	26	139
	Han River	49	39	10	38
	Nakdong River	58	41	17	35
2012	Geum River	31	27	4	27
	Yeongsan River	35	28	7	25
	Total	173	135	38	125
	Han River	52	40	12	42
	Nakdong River	60	38	22	39
2013	Geum River	37	30	7	33
	Yeongsan River	40	33	7	33
	Total	189	141	48	147
	Han River	57	47	12	47
	Nakdong River	61	40	22	40
2014	Geum River	38	33	7	33
	Yeongsan River	43	35	8	35
	Total	199	155	49(6)	155

Location of discharge measurement stations

The status of development of rating curve (2011–2013)

4 Status of Sites (Rating curves effected by controls in various field conditions) Hydrological survey Report (by HSC_Ministry of Land, Infrastructure and Transport)

Year	Weir	Backwater of main river	Discharge of Dam	Sea wall & Tide	River Construction	Vegetation	Curved Channel	Development of Rating curve
2011	34	17	39	7	25	8	4	139
2012	34	21	13	1	12	17	5	125
2013	19	13	30	2	22	9	3	147
2014	29	17	35	1	23	16	9	155

streamflow measurement

4 Streamflow measurement

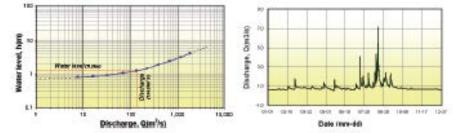
Step1) Water level measurement

(measuring stream stage)

Step2) Discharge measurement (Over 130 sites per year)

Acoustic Doppler

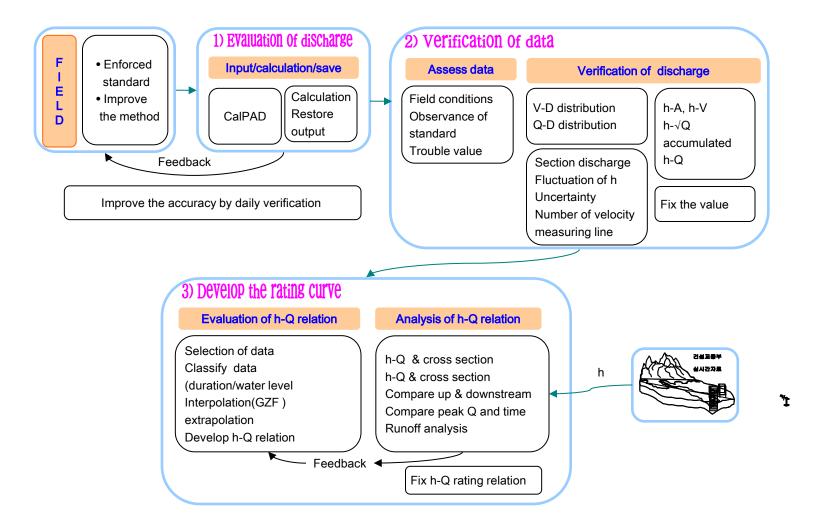
Current Profiler (ADCP)


Current-meter discharge

measurement

Measurement by floats and bridge board

Step3) Development of H-Q rating curve and Discharge hydrograph


Procedure of rating curve development

4 Procedure of rating curve development is

 $Pre-investigation-flow\ measurement-QC\ of\ measured\ data-Development\ of\ rating\ -\ Evaluation$

Major Procedure	Main Contents
Pre-Investigation	 Collecting of past material, Pre-investigation for field measurement Planning for hydrological observation considering the field conditions
Discharge Measurement and Calculation	 Standards compliance and decision of measuring method, measurement location considering the field conditions Calculation using standard-calculation sheet
Evaluation of data	 Compliance with standards about measured data, Uncertainty evaluation Error review of survey method and calculation
Quality Control(QC)	 Error analysis and supplementation according to results of valuation of data Reflected on future measurement
Confirmation Of data	Confirmation of data through the data revaluation
Evaluation of rating curve	 Development of rating curve Accuracy evaluation of rating curve Runoff analysis etc.

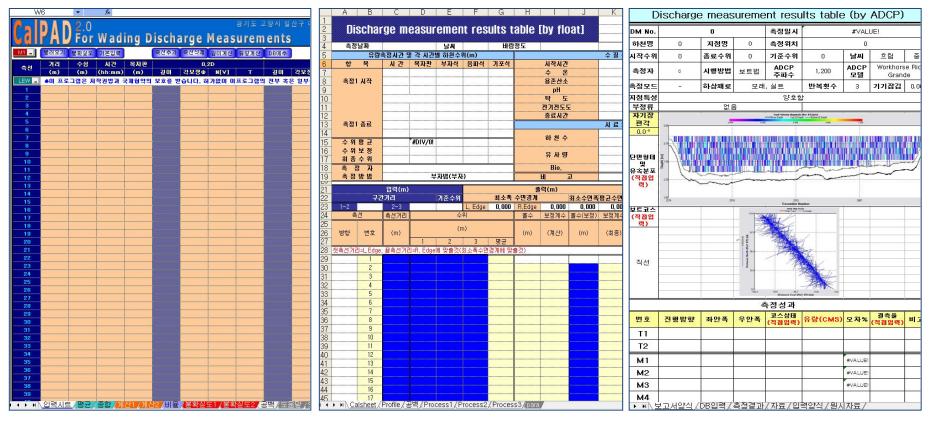
HDQMS (Hydrological Data Quality Management System)

HDIMS (Hydrological Data Information Management System)

Copyright © 2008 HYDROLOGICAL SURVEY CENTER Inc. All Rights Reserved

Main Screen (Log-in)

수위/유량	유사량	,	자동유량	수 질	중발산	당 토양수분	당 횡단면도	. 7	1점유지정보	자료실	운영관리
		자동류	·량측정성과								
수위/유량			수위/유량 >	유량측정성과	> 측정성과 검토	= > 김토할 자료					
유량측정성과											
측정성과 겸토 ···자료등록	×.	겁	토요청 🔽 2	015-01-07	¹ ~ 2015-04-0	8 👕 대권역 💽	•전체:: 🗸	::전체::	~		개산파일 조 회
·····································	-	선택	상태	대권역	지점	겸토묘청일시	측정일시	종류	상세정보		계산파일
측정성과 확정			자료제등록	금강	계산	2015-04-07 10:29	2015-02-26 10:30	Calpad	상세정보	계산_계산파일_3	04680_15_003_1.xle
측정성과 현황	÷.		3차검토	금강	공주	2015-04-06 11:31	2015-03-13 11:29	ADVM	상체정보	공주_계산파일_01	12820_15_002.xls
관할	-		3차검토	금강	세종보상류	2015-04-06 11:31	2015-03-11 16:38	ADVM	상세정보	세종보상류_계산3	11_8012506_15_002.
- 지점			3차겁토	금강	공주	2015-04-06 11:31	2014-08-18 10:25	ADVM	상세정보	공주_계산파빌_0	12820_14_014.xls
· 월별 자료검색	_ +-		3차검토	금강	부강	2015-04-06 11:31	2015-03-11 14:42	ADVM	상세정보	부강_계산파일_8	10860_15_002.xla
사토감액 전체자료조회	*		3차검토	금강	벽제보상류	2015-04-06 11:31	2015-03-12 13:40	ADVM	상세정보	백제보상류_계산4	a_3012582_15_002.
검토의견	÷.		3차겁도	금강	상조천교	2015-04-06 11:31	2015-03-19 14:50	Calpad	상체정보	상조점교_계산파5	1_8011875_15_004.xk
			3차검토	금강	합강	2015-04-06 11:31	2015-03-19 13:07	ADVM	상세정보	학광_계산파일_01	011695_15_003.xls
위-유량 관계곡신	1 🖬		3차경도	금강	의당	2015-04-06 11:31	2015-03-19 16:30	Calpad	상세정보	의당_계산파일_3	12625_15_003.xls
관계곡선 검토			3차건로	금강	도암	2015-04-06 11:31	2015-03-20 12:10	Calpad	상세정보	도압_계산파일_8	12607_15_002.xls
···자료등록(파일 ···자료등록(직접			3차검토	금감	청양	2015-04-02 13:32	2015-02-25 15:07	Calpad	상세정보	친간 계산자의 미	12855_15_003_xls
김토할 자료	"		3차감도	금강	신양	2015-04-02 13:32	2015-03-10 14:58	Calpad	상세경보		12855 15 004.xla
검토한 자료			3차겁토	금강	구를	2015-04-02 12 22	2015-03-10 16:08	Calpad	상세정보		12865_15_003.xls
관계곡선 조회			3차건도	금강	논산		2015-03-11 11:25	Calpad	상세경보		13870_15_003.xls
					12 23	2010-04-02 13-32	2010-02-11 11-20	Conbad	3438	EN_4648_0	100/0_10_003.XIS


Request of data review

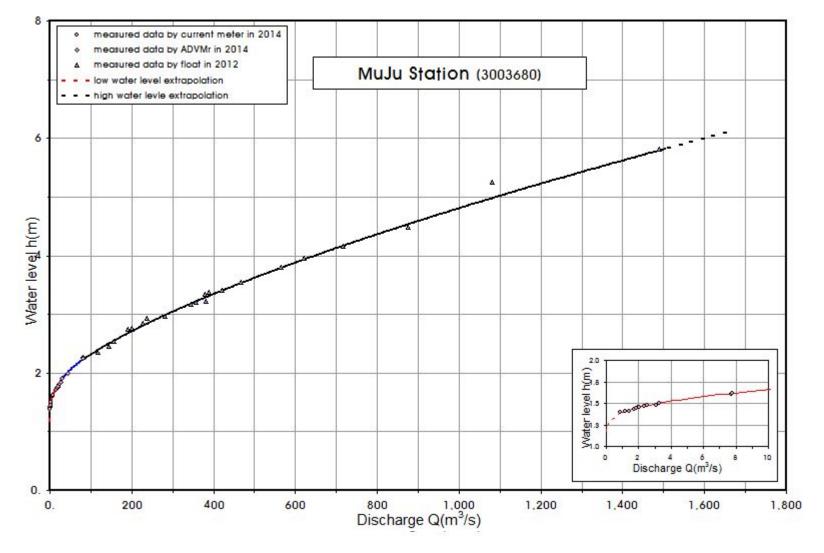
Examination of data (Electronic system)

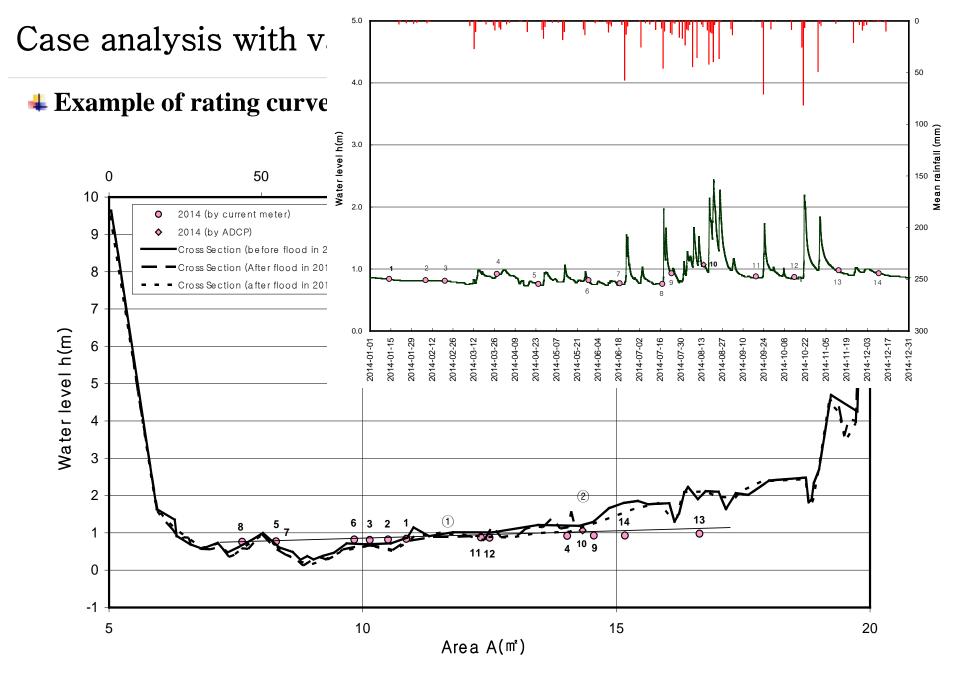
·위/유랑	유사량	자동유량	수 질	중발산량	토양수분량	횡단면도	지	범유지정보	자료	8	운영관리
	_						보고서	논문	발표자로	회의자료	기타
자로심		> 자료실 > 기 타									
3 보고서											
] 논문		20			:	통합 :: 🗸			1 2	4	27
] 발표자료											
3 회의자료		변호			제목					등목자	날짜
3 기타		48 🛛 유량축	영성과 제외 기준 :	데시(0)						정찬용	2015-01-27
		47 🚥 2015년 !	도 유량조사 야장	및 계산시트 샘플(2	(0)					정완용	2015-01-27
		46 😐 2015년 !	도 유랑조사 야장	및 계산시트 샘플(1)(0)					정환용	2015-01-27
		45 📫 수위-유	량관계곡선 개발	매뉴얼(0)						심은증	2014-08-11
		44 🙂 [품질정	책실] 수문조사 7	술교류를 위한 실	무 워크습(0)					정완용	2014-05-09
		43 🗰 Calpad	수정 프로그램(0)							이기성	2014-04-01
		40 💼 [품질정	책실] HDIMS 곡;	d식 등록 및 전송 3	철차(0)					정찬용	2014-03-19
		39 🛛 [풍질정	책실] 부서간 업무	P협의 결과(0)						정찬용	2014-03-13
		38 😐 [풍질정	책실] 2014년 수용	문조사 표준양식(0)						심은증	2014-01-10
		37 📫 [품질정	책실] 수문자로 잘	돌질관리 지침(0)						정찬용	2013-12-20
		36 🛛 [풍질정	책실] 보고서 매용	-월(0)						정찬용	2013-12-11
		35 🛛 [풍질정	책실] 식생지점의	측정 및 분석 가이	드라인(0)					심은증	2013-11-26
		33 🚥 test(0)								관리자	2010-12-14

Upload of relevant materials

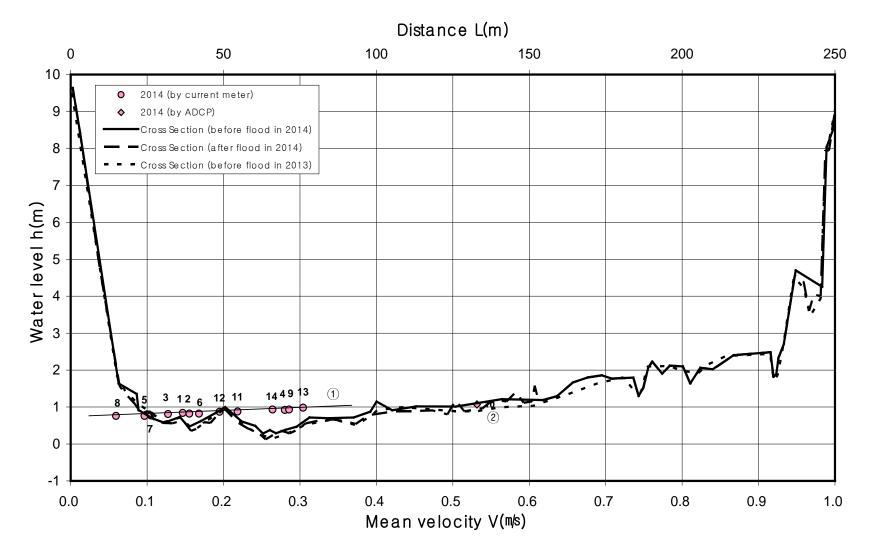
Data analysis and rating curve development (DBPAD, CalPAD) Computation sheet of discharge by measuring instrument

CalPAD (measured by current meter)

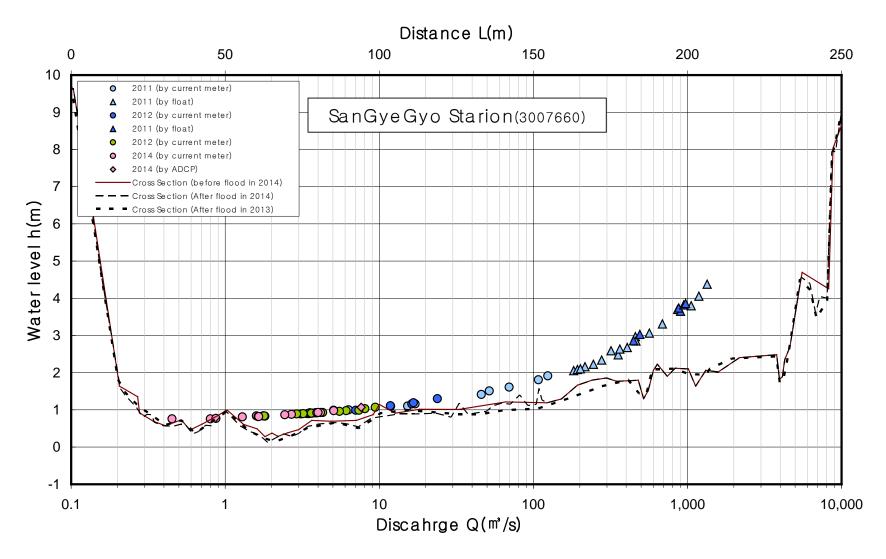

FloatPAD (measured by float)

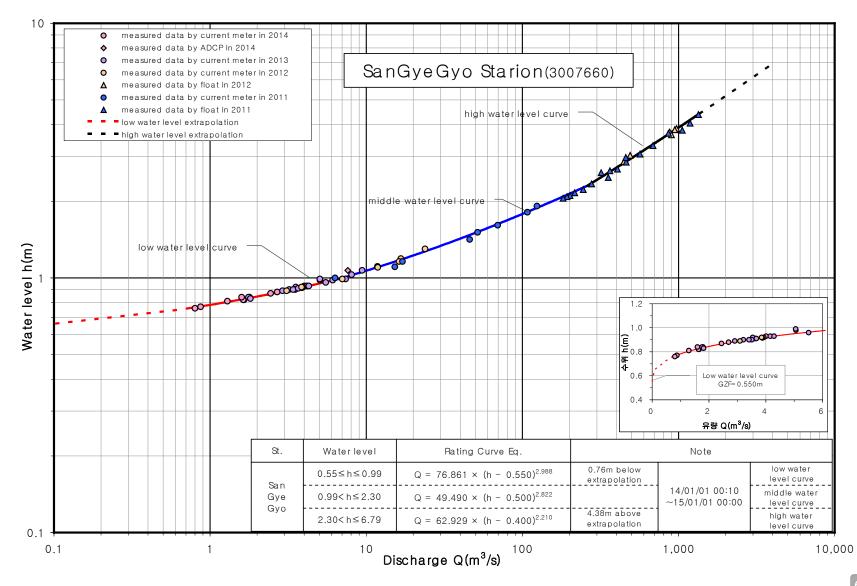

ADVM sheet (measured by ADCP)

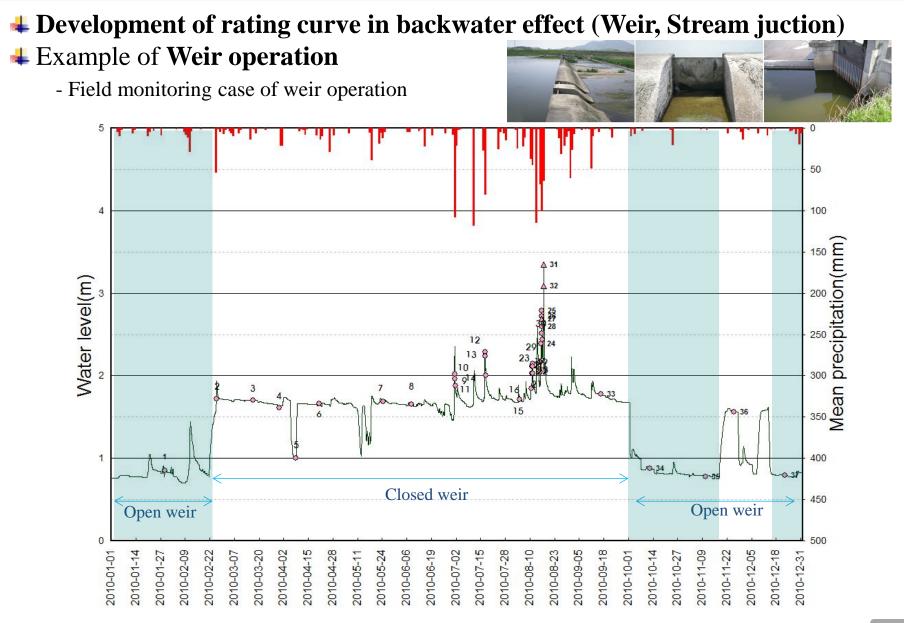
4 Data analysis and rating curve development (DBPAD)


유령		명 영	8	1	(지점명)	HSC2 자료추기		Lee	환산 (H=				최대	1,3	최저	0, 13 0, 13		Я
	측정 일시	수위 ዘ	수면폭	단면적	평균유속	유량	측정장비	유속	구간	유량비	(%)	무작위		계통		X'a	Xa	
DM No	(yy-mm-dd	(m)	(m)	(m²)		(m³/sec)	(유속계종류)	측선수	최대	최소	평균	X'm	Х.,Р	Xq	X''c	무작위	계통	2
3101640_14_001	hh:mm) 2014-01-23 14:20	0.20	56.00	5.82	0,21	1.20	Flow-Tracker	38	6, 38	0.87	2,63	(%) 2,00	(%) 0,50	(%) 0,50	(%)	4.08	1,22	불3
3101640_14_002	2014-02-13 13:26	0,21	55,50	5,67	0,21	1,21	Flow-Tracker	34	6,81	0,79	2,94	2,20	0,50	0,50	1,00	4,32	1,22	
3101640_14_003	2014-02-26 16:20	0,19	56,00	5,31	0,18	0,97	Flow-Tracker	34	6,08	0,26	2,94	2,20	0,50	0,50	1,00	4,38	1,22	
3101640_14_004	2014-03-25 14:50	0,20	55,50	5, 32	0,18	0, 98	Flow-Tracker	34	6, 34	1,00	2,94	2,20	0,50	0,50	1,00	4,41	1,22	
3101640_14_005	2014-04-15 15:51	0,16	55,50	3,91	0,16	0,61	Flow-Tracker	34	7,77	0,83	2,94	2,20	0,50	0,50	1,00	4,63	1,22	
3101640_14_006	2014-04-25 11:40	0,18	56,00	4, 39	0,19	0,82	Flowtracker	35	6,11	0,27	3,23	2,00	0,50	0,50	1,00	4,29	1,22	
3101640_14_007	2014-05-13 12:00	0,25	55,50	7,74	0,25	1,94	Flowtracker	35	5,81	0,94	3,23	2,00	0,50	0,50	1,00	4,16	1,22	
3101640_14_008	2014-05-28 16:25	0,19	55, 70	5,13	0,15	0, 78	Flowtracker	37	7,24	0,70	3,03	2,00	0,50	0,50	1,00	4,48	1,22	
3101640_14_009	2014-06-17 15:25	0, 19	55,50	4,90	0,18	0,90	Flowtracker	34	6,90	0,82	3, 33	2,20	0,50	0,50	1,00	4, 39	1,22	
3101640_14_010	2014-06-24 12:03	0,22	56,50	6,81	0,22	1,53	Flowtracker	36	5,61	1,56	3,13	2,00	0,50	0,50	1,00	3, 96	1,22	
3101640_14_011	2014-07-02 14:22	0, 15	55, 50	3,14	0,13	0,40	Flowtracker	36	7,53	0,04	3,13	2,00	0,50	0,50	1,00	4,52	1,22	
3101640_14_012	2014-07-10 14:00	0,22	55,50	6,46	0,21	1,36	Flowtracker	34	8,11	1,11	3, 33	2,20	0,50	0,50	1,00	4,34	1,22	
3101640_14_013	2014-07-17 12:50	0,13	55,00	2,31	0,09	0,21	Flowtracker	43	5,93	0,00	2,56	2,00	0,50	0,50	1,00	4,23	1,22	
3101640_14_014	2014-07-23 14:42	0,54	56,00	21,06	0,78	16,49	프라이스 AA	37	4,79	0,67	3,03	2,00	0,50	0,50	1,00	3,61	1,22	
3101640_14_015	2014-07-23 15:34	0,51	56,00	20,17	0,75	15,05	프라이스 AA	37	4,81	0,65	3,03	2,00	0,50	0,50	1,00	3,61	1,22	
3101640_14_016	2014-07-23 16:30	0,49	56,00	19,66	0,69	13,64	프라이스 AA	37	5,00	0,61	3,03	2,00	0,50	0,50	1,00	3,62	1,22	
3101640_14_017	2014-07-24 13:31	0,31	56,00	10,57	0,36	3, 76	Flowtracker	36	6,64	0,80	3,13	2,00	0,50	0,50	1,00	3,97	1,22	
3101640_14_018	2014-07-25 11:40	0,40	56,00	15,04	0,50	7,49	Flowtracker	35	6,34	0,55	3,23	2,00	0,50	0,50	1,00	3,87	1,22	
3101675_14_019	2014-08-03 14:34	0,27	55,50	8,99	0, 31	2,78	프라이스 AA	36	5,52	0,82	3,13	2,00	0,50	0,50	1,00	3, 71	1,22	
3101640_14_020	2014-08-13 15:20	0,25	55,00	8,74	0,29	2,53	Flowtracker	34	6,57	0,57	3, 33	2,20	0,50	0,50	1,00	4,13	1,22	
3101640_14_021	2014-08-18 12:06	0, 33	56,00	11,57	0, 39	4,50	프라이스 AA	35	5,92	0,99	3,23	2,00	0,50	0,50	1,00	3,83	1,22	
3101640_14_022	2014-08-19 13:26	0, 30	56,00	10,85	0,39	4,28	프라이스 AA	35	6,56	0,67	3,23	2,00	0,50	0,50	1,00	3,84	1,22	
3101640_13_023	2014-08-21 13:20	1,05	39,06	64,26	1,05	67,20	부자	14	11,23	4,93	8,33							
3101640_13_024	2014-08-21 17:58	1,11	39,21	68,12	1,05	71,82	부자	14	9,89	5,14	8,33							
3101640_13_025	2014-09-03 14:05	0,80	38,51	50, 37	0,84	42,26	부자	13	13,80	4,22	9,09							
3101640_13_024	2014-09-03 14:36	0,78	38,46	49,32	0,84	41,34	부자	13	12,63	3,88	9,09							
3101640_13_027	2014-09-03 15:21	0,75	38,40	47,74	0,80	38,08	부자	13	14,75	5,54	9,09							
3101640_13_028	2014-09-03 16:00	0,72	38, 33	46,75	0,70	32,89	부자	14	14,64	4,87	8,33							
3101640_13_029	2014-09-03 16:40	0,70	38,28	45,69	0,70	32,14	부자	14	14,65	4,86	8,33							
3101640_14_030	2014-09-17 11:52	0.28	55,50	9,92	0.33	3,32	Flowtracker	35	5.17	0.73	3.23	2.00	0.50	0,50	1.00	3,94	1,22	
3101640_14_031	2014-10-16 12:00	0,23	55,90	7,04	0,23	1.60	Flowtracker	38	5,49	0.05	2,94	2.00	0,50	0,50	1,00	3,91	1,22	
3101640_13_032	2014-10-21 13:51	1,13	39.25	68,90	0.92	63,19	부자	14	15.08	5.13	8.33							
3101640_13_033	2014-10-21 15:08	1,23	39,48	74,40	0,98	73,12	부자	14	15,42	5,31	8,33							
3101640_13_034	2014-10-21 15:58	1.25	39,52	75,50	1.01	76,29	부자	14	15,46	4.46	8,33							
3101640_13_035	2014-10-21 16:40	1,30	39.63	78.26	1,03	80.71	부자	14	15,18	5.00	8,33							
3101640_13_036	2014-10-21 18:30	1.25	39,51	75.22	1,08	81,16	부자	14	15,50	4,96	8,33							
3101640_14_037		0,28	56,00	9,41	0,30	2,83	Flowtracker	36	5,96	0.47	3,13	2,00	0,50	0,50	1.00	3,93	1,22	
				24,000	√과거웨이!		Classique alson	25	F 07	0.00	2,00	0.00	0.00	0.00	1.00	4.00	1.00	
► N <u>DB</u> (H_A	,v,Q,(JEF,(JE	IZ 단면	(과거谷	[파(DR)	∠과거레이!	닁 <u>∕</u> 수위-유	랑(과거)_산대 /	수위-유임	<u>(파가)</u>		<u>(</u> 수위·	-규당_스	!대 / 수	키르뷰	s'_ui	< III		

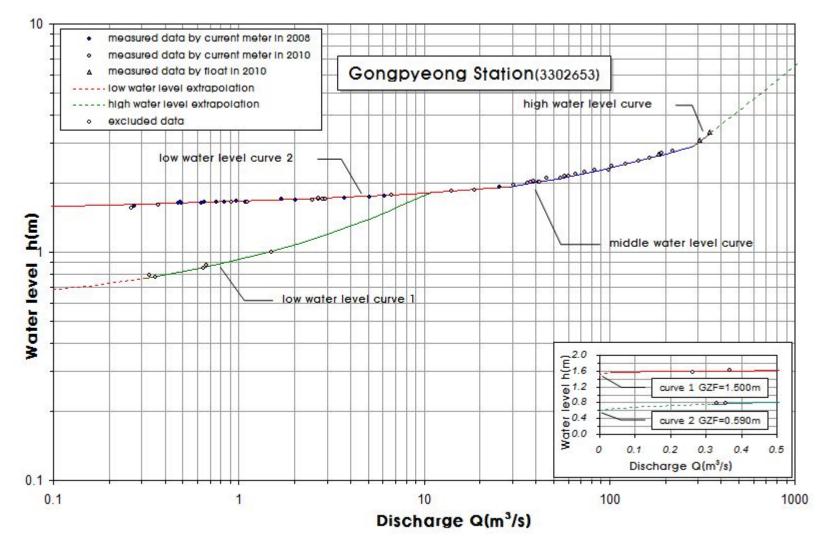
4 Rating curve standard form in HSC



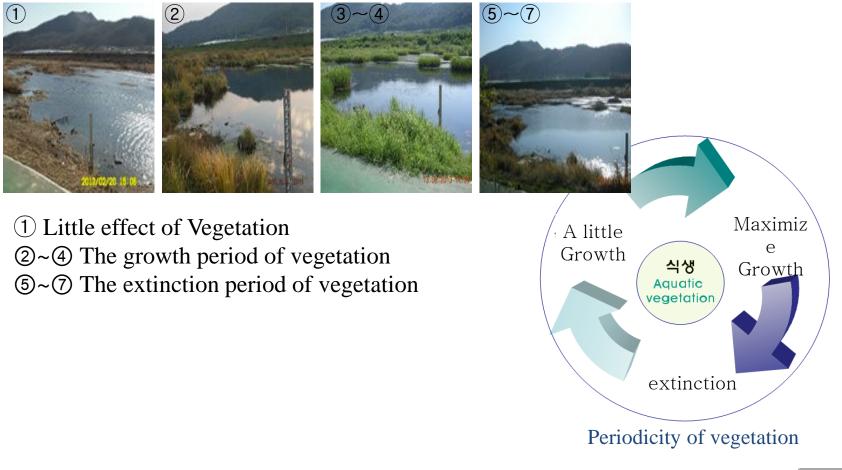

4 Example of rating curve development(SanGyeGyo St.)



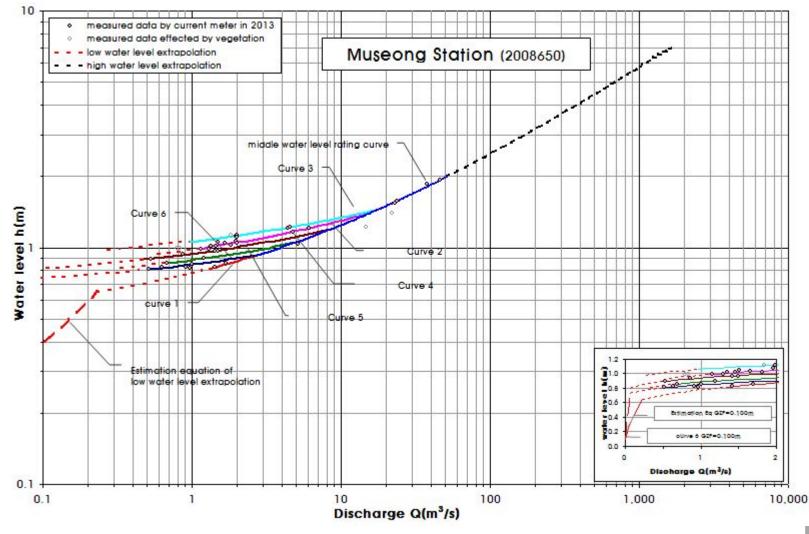
4 Example of rating curve development(SanGyeGyo St.)



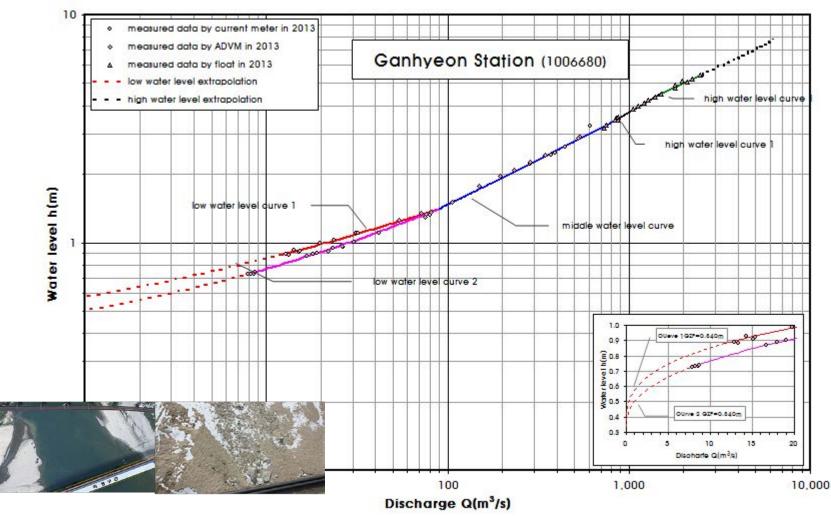
4 Example of rating curve development(SanGyeGyo St.)


Development of rating curve in backwater effect (Weir, Stream juction) Example of Weir operation

4 Development of rating curve Considering Vegetation


Example according to the monitoring of vegetation growth and development of rating curve by vegetation.

- Separation of period by growth(Circulation) of vegetation



4 Development of rating curve Considering Vegetation

Example according to the monitoring of vegetation growth and development of rating curve by vegetation.

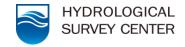
4 Analysis on effect of stream environment change on rating curve

Work Plan, output and future plan

4 Work plan_1. IRDIMS

Activities	Actions	Outputs	Resources	Milestones	Linkages	Progress
1. Hydrometric measurements with quality and accuracy (2.2.2)	 Provide guidance on the use of appropriate instruments and methods of observation in diverse conditions (Priority A) Collection of existing technical information in IRDMIS Measurement instrumentation (ADVM) Methods of discharge calculation Construction and operation of IRDIMS Case study on measurement by IRDMIS (52 sites) Measurement of tidal influenced discharge Measurement under backwater conditions caused by weirs, sluice gates, and river junctions Evaluation of measurement results Development of index velocity ratings Writing Technical report about construction and management by field characteristics 	Technical report and guideline to design, install and operate facilities for Integrated Real- time Discharge measurement system (IRDIMS) • Software System for developing index rating		 Provide Technical report and guideline with case studies - Nov 2016 Collection of the existing technical information of IRDIMS - Dec 2015 Collection of construction, measurement cases and management of IRDIMS (52 sites more) - Dec 2015 Writing technical report about construction and management by field characteristics Nov 2016 → Dec 2016 	• CHy • ROK	 Writing technical report Technical information of IRDIMS Installation and operation Discharge calculation including development of index rating Software tool for development of index rating Case study on various conditions

Work Plan


4Work plan_2. Sediment

Activities	Actions	Outputs	Resources	Milestones	Linkages	Progress
	 Improve sediment measuring techniques (Priority B) Collection of existing technical information The status of existing sediment measurement techniques The status of new technologies and their applications The status of analysis methods Case studies on sediment measurements under various conditions (15 - 20 sites) Analysis of river construction effect on characteristics of sediment load, focused on 4 major river projects in Korea A comparative analysis on sediment load by sequence of rainfall event Writing Technical report about sediment measurement method and analysis of field characteristics 		 Republic of Korea(ROK) 	Provide technical report and guideline with case studies Nov 2016 → Dec 2016	• CHy • ROK	 Writing technical report Technical information of sediment measurement Case study on sediment measurement various conditions

Work Plan

4 Work plan_3. Rating curve

Activities	Actions	Outputs	Resources	Milestones	Linkages	Progress
2. Hydrometric measurements with quality and accuracy (2.2.2)	 Focus on the development of rating curve Collection of existing technical information (Priority B) On major procedures for rating curve development On tools for rating curve development Case analysis with various field conditions On development of rating curves when backwater conditions exist (weir, junctions) Writing technical report on rating curve development 	 Report on methods to develop rating curves 	Republic of Korea (ROK)	 Provide Technical report and guideline with case studies Nov 2016 → Dec 2016 	• CHy • ROK	 Writing Technical Report Status of flow measurement the past 3 years Procedure of H-Q rating development Software tools to develop & manage of H-Q rating curve Case study on development of H-Q rating curve in various conditions and its guideline (backwater by weir, bed change, vegetation)

Thank you for your attention!