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Executive Summary 
In recent years, weather index insurance has gained significant international attention. Multilateral 
agencies and donors are supporting the development of index insurance products and practitioners 
are venturing into this work for the first time. However, designing index insurance products is quite 
challenging and requires strong analytics, significant research, access to sufficient quantities of 
relevant data, capacity building among local stakeholders, legal and regulatory expertise, etc. Based 
on experiences to date, some questioning has begun about the scalability and sustainability of 
weather index insurance — in some cases, these questions are motivated by beliefs that data 
limitations may cause significant geographic constraints to offering weather index insurance, and in 
other cases, that the potential of current index insurance models on poverty reduction is doubtful. 
Thus, the theory and implementation of index insurance is at somewhat of a crossroads. In 
recognition of these emerging questions, this is the first of several documents that describes the 
current state of knowledge on key aspects of index insurance. This State of Knowledge Report (SKR) 
is on the data component of developing weather index insurance. 

We originally envisioned this SKR as a review of the quantity and quality of data needed to support 
weather index insurance offerings — a general guide for practitioners and those in the development 
community. Yet, as we considered basic questions about how much data are required or whether the 
data quality is sufficient, the answers were almost universally, “It depends.” In assessing risk, data 
needs are always contextual. One simply cannot address questions about data in isolation from 
broader questions about the type of weather index insurance product being developed, its target 
market, and its application. Based on this consideration, we approach our analysis of data 
requirements by looking at index insurance designs that tend to be most robust for very limited data. 
In other words, what models are most scalable and sustainable in terms of data limitations? Another 
standard for scalability and sustainability is in regard to economic development — how does the 
insurance product contribute to poverty reduction?  

Our conclusions for overcoming data constraints and contributing to poverty reduction converge to 
three recommendations. From our analyses and field experience implementing index insurance 
projects, we conclude that weather index insurance programs should focus on: 1) consequential 
losses from extreme weather events that extend beyond crop yields; 2) catastrophic losses rather 
than moderate losses; and 3) risk aggregator products instead of, or in addition to, household 
products. 

This document is grounded in both our academic economic research and experiences developing and 
implementing index insurance programs in lower income countries. Our current interest in weather 
index insurance has its roots in analytical work by Skees and Barnett in the 1980s and 1990s in regard 
to the U.S. Federal Crop Insurance Program. Along with J. Roy Black, Skees and Barnett developed 
the first agricultural index insurance product in the United States — an area-yield insurance product 
called the Group Risk Plan (GRP) that is still offered today. Based on our experience in developing 
GRP, our interest turned to how index insurance could be used to protect against agricultural losses 
in lower income countries where traditional loss-based crop insurance was not feasible. Nonetheless, 
area-yield data are quite sparse in lower income countries but weather data, at least in some 
countries, are available. Peter Hazell (then working for the International Food Policy Research 
Institute) had considered this possibility and worked with us to introduce these ideas to the World 
Bank via a project on weather index insurance in Nicaragua, in 1998. Since 2001, GlobalAgRisk has 
been developing and implementing index insurance programs in lower income countries. Currently, 
GlobalAgRisk has projects in Mongolia, Peru, and Vietnam, and examples from our experiences are 
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used throughout the SKR. As academics, we also frequently write articles on index insurance for 
scholarly journals — sharing our evolving understanding of these products and encouraging the 
research efforts of our colleagues to further this work. 

We share our background to demonstrate our extensive experience with weather index insurance 
and our long-term commitment to the fundamental principles on which index insurance is based. 
This journey of discovery has been an iterative process through which theory and practice synergize 
to advance our understanding of index insurance product development. Developing this SKR is 
another step in that process. Writing this document has allowed us to consider our recent 
experiences, lessons learned from other index insurance programs, premises from economic theory 
and research, and the reality of data constraints to advance and formalize new thinking on weather 
index insurance. We freely admit that, as a result, we now critique some of the ideas and methods 
that we once helped develop. Such is the evolution of knowledge. 

Chapter 1 provides introductory material on weather index insurance. We remind the reader that 
evaluating weather risks is a very different process than many scientific endeavors undertaken by 
economists. Whereas much economic research discounts outliers, extreme values are the most 
important observations for weather risk analysis. Thus, when sparse data suggest that an event may 
be an outlier, insurance underwriters will typically use any information they can find to learn more 
about that event. Even so, the available data typically consist of small samples, which can cause large 
estimation errors. For this reason, insurance underwriters try to understand more than simple 
statistical relationships. They may work with scientists who understand the underlying physical 
processes of weather to evaluate patterns and any potential non-stationarity of data.  

In Chapter 1, we also present a conceptual model of how insurance can facilitate poverty reduction. 
We review why traditional loss-based insurance is infeasible in rural areas of many lower income 
countries and present weather index insurance as a potentially viable alternative. The chapter also 
develops a conceptual framework for evaluating potential index insurance contracts under idealized 
conditions — with sufficient access to relevant, high-quality data. In actuality, data constraints create 
a contrast between how index insurance contracts are assessed in theory and how they are assessed 
in practice. Basis risk, an inherent constraint of index insurance, is discussed in detail, and we critique 
some of the methods practitioners use to demonstrate that they have reduced the basis risk 
associated with weather index insurance products.  

Chapter 2 transitions from the conceptual model presented in the introduction to real-world data 
constraints facing practitioners developing index insurance products. In particular, Chapter 2 
describes how, in a data-constrained environment, one can use qualitative information to determine 
relationships between potential weather indexes and realized losses of potential insureds. We argue 
that to gain an understanding of a potential for index insurance products, qualitative data obtained 
from scientifically based risk assessments with participating key stakeholders may provide superior 
insights to sparse quantitative data. 

Chapter 3 describes data needs for weather index insurance. Historical data are needed to evaluate 
and price the risk, and real-time data are needed to make payments. It is here that the contextual 
nature of data requirements becomes most apparent. Rather than proffering absolute minimum data 
requirements, Chapter 3 describes how various contextual elements (e.g., spatial and temporal 
presentation of the weather risk; perceptions regarding the validity, security, and credibility of the 
data source; access to alternative measures of the underlying weather phenomenon; and 
sophistication of the target market) can affect data requirements.  
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Chapter 4 examines the real data constraints associated with using weather stations for index 
insurance. Scaling up their current efforts for weather index insurance, many of the poorest 
countries lack or are unable to maintain this infrastructure. We review these issues using data from 
Africa in addition to cost data obtained from providers of weather measurement instruments. We 
demonstrate why these data constraints are less binding for risk aggregator products. Next, Chapter 
4 develops our assessment of the current state of satellite-based technologies. While we are 
enthusiastic about the promise of these technologies, we conclude that, with the exception of some 
limited applications for pastoral settings using the Normalized Difference Vegetation Index (NDVI), 
further developments are needed before satellite-based data sources can support weather index 
insurance offers. We predict that major breakthroughs are likely once combined information sources 
used to develop index models begin to demonstrate their value in developing insurance products to 
protect against catastrophic risk. 

Chapter 5 presents important lessons derived from preceding chapters and from experiences to date 
developing and implementing weather index insurance in rural areas of lower income countries. We 
begin by evaluating selected aspects of some current index insurance programs. We then present our 
recommendations for advancing weather index insurance given data limitations. As mentioned 
previously, those recommendations are: 1) expand the focus beyond just crop yields to 
consequential losses; 2) transfer catastrophic rather than moderate losses; and 3) initially target risk 
aggregators rather than, or in addition to, households. 

Chapter 6 presents a number of outstanding research questions related to key challenges to demand 
for weather index insurance. We also develop some research questions on both data availability and 
how data can best be used in developing weather index insurance products. This research agenda is 
supported by two technical appendixes. Appendix B, contributed by Dr. Mario Miranda, develops a 
research agenda to test the properties of extreme events relative to moderate weather events. For 
some time, we have hypothesized that the covariance of weather events and losses is likely not 
linear throughout the distribution. Given the correlated nature of weather risk we believe that when 
extreme events occur, classic diversification strategies will break down as the strategies used (e.g., 
having a number of farm enterprises) will all suffer losses at the same time. In short, we will test if 
the variance-covariance matrix changes given extreme weather events. If the answer is “yes,” as we 
suspect, this research agenda will add rigor to our recommendations on catastrophic insurance to 
cover consequential losses. Dr. Upmanu Lall contributes Appendix C, which reviews the potential for 
developing weather index insurance based on global teleconnections using sea surface temperature 
(SST) measures to learn if we can replicate our work on “forecast insurance” in Peru in other areas. 
Appendix A details our use of an SST measure as the basis for an index insurance product that 
protects against extreme flooding in the northern coastal region of Perú. 

Thanks to our grant from the BMGF, we will continue working on research topics described in this 
document. We view this SKR as a work-in-progress. We welcome comments and critiques of the 
ideas presented. Our second SKR focuses on legal and regulatory component of developing weather 
index insurance, in particular, the legal and regulatory challenges of creating index insurance 
products designed to protect against consequential losses. We have experience designing 
consequential loss index products in two very different jurisdictions: Peru and Vietnam. The third SKR 
focuses on evaluating the scalability and sustainability of index insurance products. The fourth, final 
SKR is a synthesis of the previous SKRs, with a more thorough discussion of index insurance as a tool 
for reducing poverty and supporting rural economic development. In each case, our research and 
inquiry is informed by economic theory and empirical analysis that includes our field experiences in 
Peru, Mongolia, and Vietnam, and what we have learned from others’ experiences. 
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Chapter 1   Introduction and Conceptual Model 
This document presents our analysis of the current state of knowledge regarding data systems 
to support weather index insurance. Part of that analysis identifies the limits of current 
theoretical understanding and empirical practice in a developing country context. Additional 
work is needed to make weather index insurance more effective, efficient, sustainable, and 
scalable. This state of knowledge report (SKR) does not address all the challenges and 
constraints to developing index insurance markets. Our goal is to provide a better understanding 
of how index insurance can be developed within existing data constraints with a long-term 
perspective that identifies important research needs.  

We assume that readers of this SKR have at least a basic understanding of index insurance and 
its advantages and disadvantages relative to other forms of insurance. Nonetheless, readers 
may want to refer to more detailed documents to gain a deeper understanding (e.g., Skees et 
al., 2007; Barnett and Mahul, 2007; or GlobalAgRisk, 2006, 2009). The focus of this SKR is 
market-based products — products sold to individuals or firms operating in the private sector. 
Still, many of the key data issues discussed in this document are also relevant to products for 
non-market institutions such as governments and donors. This introductory chapter frames 
elements important to the body of the SKR. 

Designing index insurance in lower income countries involves expert judgment in an 
environment of significant data constraints. Practitioners are increasingly recognizing the 
importance of the contextual nature of weather risk and are adapting their methodologies for 
evaluating data.2

1.1   Methodologies for Insurance Analysis 

 For example, reinsurers are moving away from set, arbitrary data standards —
requirements for at least 30 years of data, or an insured must be within 20 km of a weather 
station, etc. — to more analytic, context-specific approaches that consider how a variety of 
sources can be used to evaluate weather risk. Thus, while we hope that this document is 
straightforward and pragmatic, it will not be a checklist of requirements for data systems that 
support index insurance. Instead, our intention is to discuss key issues that will help 
practitioners understand, identify, and address data constraints and also motivate additional 
important research that may lead to innovation in developing appropriate weather index 
insurance products. 

Our approach to analyzing data issues is, in many ways, similar to that of an insurance 
underwriter. Readers with scientific or statistical backgrounds will be familiar with many of the 
techniques described in this document. For example, many scientific disciplines are interested in 
modeling relationships between variables. Thus, the coefficient in a regression analysis is 
interpreted as, “A one unit change in the independent variable results, on average, in an X unit 
change in the dependent variable.” As with many statistical analyses, the emphasis is on the 
average or central tendency. In contrast, insurance underwriters are generally more concerned 
with what happens in the extremes. They want to know what variables cause extreme losses for 
insureds (e.g., drought for insured crop farmers), the probability that these extreme events will 
occur, and the relationship between the extreme events and insured losses.  

                                                 
2 In this document, “practitioner” refers to those individuals developing and implementing an index 
insurance program such as insurers, reinsurers, international development agencies and firms, etc. 
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Insurance underwriters evaluate risk using both statistics and some knowledge of the underlying 
physical processes that cause extreme events. Therefore, insurance practitioners can benefit 
from scientific findings of other disciplines (e.g., plant growth analysis, climate circulation 
models, household livelihood survey data, etc.) even though the objectives of insurance 
practitioners may be quite different from those of the scientists collecting and reporting raw 
data. For example, extreme events that scientists in other disciplines may commonly omit as 
outliers tend to be among the most important sources of data for insurance practitioners (see 
Collier, Skees, and Barnett (2009) for further discussion of central tendency, outliers, and 
insurance). Likewise, many statistical procedures are helpful for understanding relationships 
around the most frequently occurring outcomes, but are not very helpful for describing the 
extremes. Relationships between variables may be quite different under extreme conditions 
than under typical conditions. Thus, different statistical methodologies are also needed for 
evaluating risk than those typically used in many scientific disciplines. Recognizing the 
distinction between insurance underwriting and typical scientific methods is important for 
scientists and other practitioners who venture into developing index insurance products as the 
misapplication of scientific findings and statistical procedures can lead to inaccurate conclusions 
about the risk. 

A specific problem for insurance practitioners is that extreme events tend to occur very 
infrequently. Fewer data observations of the event mean that 1) the underlying scientific 
processes tend to be less well-understood; and 2) statistical results are much less precise. Given 
the lack of data for extreme events, insurance underwriters turn to numerous other sources of 
information when evaluating insurable risks. For example, to understand extreme rainfall 
patterns, insurers may compare data from weather stations, satellites, airplanes, weather 
balloons, tree-ring analysis, lake-bed analysis, etc. Different data sources tend to agree around 
the most frequently occurring values, but may diverge greatly at the extremes, and insurance 
practitioners must determine how much weight to give each of these sources when estimating 
risk. Thus, insurance analysis must rely on both strong scientific and statistical analysis as well as 
expert judgment. 

1.2   Two Types of Indexes 
Data supporting index insurance products can be classified in two broad categories: indexes that 
aggregate losses over a group and weather-based indexes. Aggregate loss data describe losses 
across many individuals, typically in the same geographic region. The index of group losses 
serves as a proxy for the losses of individual members of the group. The Group Risk Plan (GRP) in 
the United States and the Index-based Livestock Insurance (IBLI) Program in Mongolia are 
examples of index insurance programs using aggregate loss measures. The GRP uses county-
yield data for specific crops as the index for determining compensation (Skees, Black, and 
Barnett, 1997). The Mongolia IBLI uses government-developed estimates of mortality by species 
for concentrated geographical areas as the index for indemnities (Mahul and Skees, 2007). An 
aggregate loss index insurance contract can be considered as a type of valued policy.3

                                                 
3 For a thorough discussion of the insurance classification of index insurance contracts please see 
GlobalAgRisk. 2010.  

 With 
these products, the aggregate data are on a large enough scale to reduce the likelihood that any 
individual insured can significantly influence an indemnity. Thus, these products also have lower 
moral hazard and adverse selection than traditional insurance products. 
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Weather-based indexes use measurements of weather events highly correlated with losses of 
the insured as the basis for an insurance payment. The objective of the index is not to serve as a 
direct proxy for loss, but rather as a predictor or proxy for the insured event itself, e.g., flood or 
drought. Weather-based index insurance can be likened to contingency insurance in that a 
specific event (e.g., death, loss of leg, etc.) can trigger an insurance payment. A commonly used 
weather-based index is rainfall data from local weather stations; however, other measures serve 
as weather-based indexes, as well., For example, the Normalized Difference Vegetation Index 
(NDVI) is a measurement of vegetation density and has been used to provide index-based 
drought insurance (Box 8 in Chapter 4). Another index insurance product uses sea surface 
temperatures (SST) as a predictor of extreme flooding in northern Peru. The SSTs used are 
indicative of extreme El Niño events, the primary cause of catastrophic flooding in that region 
(Appendix A). 

Both types of indexes have their relative merits and shortcomings. Aggregate loss indexes are 
generally easier to develop and scale up than weather-based indexes. However, in lower income 
countries, weather data tend to be more readily available than aggregate loss data. Also, 
weather data are often easier to collect and may be less prone to tampering than, for example, 
subregional yield data, which have sometimes been adjusted to support political agendas. While 
aggregate loss indexes may be feasible in some regions of the world (Carter, Galarza, and 
Boucher, 2007), this SKR focuses on data issues related to weather-based indexes.4

To date, many weather index insurance pilots have been based on weather station data. For 
some of our examples, we use weather stations as a helpful point of reference for readers, but 
we want to emphasize that in most regions of the developing world, weather station 
infrastructure is insufficient to support index insurance. Thus, practitioners need a broader 
vision for what data can be used to support index insurance for many regions, including satellite 
and other forms of remotely sensed data. We develop this vision as the document progresses 
and describe alternative data systems. 

  

1.3   Two General Types of Products 
Two general classes of products have been developed for market-based index insurance 
programs: those for households and those for risk aggregators. Household index insurance 
products have often been designed with the intention to protect against crop-yield losses due to 
adverse weather risk; however, other designs are also possible such as contracts that protect a 
household's livelihood portfolio more generally from a specific, severe weather risk. Risk 
aggregator refers to firms such as lenders and agricultural value chain members who are 
negatively affected by the correlated production risks in a geographic region. For example, given 
the correlated nature of drought risk, lenders are affected by the drought exposure of their 
agricultural borrowers. If a drought occurs, many borrowers are likely to experience repayment 
difficulties concurrently. Products designed to protect these risk aggregators are intended to 
protect the solvency of the firms and improve access to their services. As we discuss below, the 
target market for the index insurance product has significant implications for which data sources 
can potentially be used to support the insurance offer. 

                                                 
4 Unless otherwise stated in the SKR, we use the terms “index insurance” and “weather index insurance” 
synonymously to refer to insurance products using weather-based indexes. 
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1.4   Background and Historical Context: Practice and Theory 
In the 1980s, the development community essentially gave up on crop insurance being workable 
in developing countries (Hazell, Pomareda, and Valdes, 1986). Given the characteristics of 
agriculture in developing countries (small farm sizes, intercropping, etc.), developed country 
models of crop insurance were simply not working in developing countries. The potential use of 
index insurance in developing countries started to gain attention in the late 1990s (Skees, Hazell, 
and Miranda, 1999). The history of these developments is available from Skees (2008). Much of 
the literature and experience since then has focused on using index insurance to replace crop 
insurance with an underlying belief that data would be available to develop effective indexes. 
The data requirements for index insurance tend to be less than those for traditional crop 
insurance. Copious data are required for underwriting and rating traditional crop insurance. 
Additionally, while the contract is in force, it may be necessary to send personnel into the field 
to collect data on the activities of insureds and/or data for settling claims. In contrast, weather 
index insurance uses established weather information systems to provide all the data required 
for underwriting, rating, and settling claims, and there is no need to monitor the activities of 
individual insureds. 

Most of the scholarly literature on weather index insurance is based on a traditional agricultural 
insurance framework because weather index insurance was developed to overcome problems 
with traditional crop insurance in developed countries (e.g., Skees, Hazell, and Miranda, 1999). 
As with the traditional crop insurance literature, most weather index insurance studies focus on 
smoothing income from a single crop in a single year (Wright, 2006). This framework does not fit 
for developing countries where small households are engaged in a host of livelihood strategies 
including farming. Instead, much of what is developed in this document is framed with a 
broader consideration of households protecting their wealth positions over time. By framing the 
insurance decision as a portfolio problem for small households striving to protect wealth over 
time, the focus of linking index insurance to a single crop within a single year becomes less 
important. Instead, the focus is on protecting household wealth from catastrophic events that 
have multiple consequences. 

The risk of catastrophic events can also cause risk aggregators to ration the services they 
provide to poor households. Index insurance products targeted to risk aggregators can increase 
the likelihood that service providers throughout the value chain will provide poor households 
with access to their services. In fact, if the objective is to improve the lives of the working poor, 
products targeted to risk aggregators may be the most effective place to start. As will be 
explained later in this document, data constraints are less problematic for index insurance 
products that are targeted to risk aggregators than for those that are targeted directly to 
households.  

1.5   Conceptual Framework 
This chapter describes the conceptual underpinnings of index insurance. Deconstructing index 
insurance allows one to identify critical points where data limitations create challenges for 
successful product development. Chapter 2 builds on this background by discussing strategies 
for addressing these data challenges. 
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1.5.1   Why Insurance? 
Consider a decision maker (a household or a business) with initial wealth 0W  who invests an 
amount K ( )0WK ≤  in various activities which are expected to generate positive net returns so 
that wealth will increase over time. Each activity ( )n2,1,iAi =  generates a periodic expected 
net rate of return ( )irE . In any given period, the realized net rate of return ir  may differ from 
( )irE  due to a number of factors including, but not limited to, variability in weather conditions. 

For example, one of the activities may be production of a particular crop for which realized yield 
depends critically on adequate rainfall.  

The realized periodic net return on the entire portfolio of activities is ∑
=

=
n

1i
iiKrτR  where iτ  is 

the proportion of K that is invested in activity iA  and 1τ
n

1i
i =∑

=

. The variance of net returns for 

the portfolio is calculated as ∑∑
= =

=
n

1i

n

1k

2
ikki

2
R σττσ  where 2

ikσ  is the variance in returns on the single 

activity when ki =  and the pairwise covariance in returns between activities when ki ≠ .Thus, 
the overall variability in net return for the portfolio of activities depends on the variance in net 
return for each of the activities, the proportion of the overall portfolio that is invested in each 
activity, and the covariances in net returns across the different activities. As long as returns are 
not perfectly, positively correlated, engaging in more than one activity provides some 
diversification benefit, reducing the variability in the net returns for the overall portfolio — i.e., 
because the activities are not perfectly correlated, the variance of the portfolio is less than the 
weighted average of the variances for each of the activities. Negative or small positive 
covariances provide significant diversification benefits, while large positive covariances create 
little diversification benefit. A fundamental challenge for rural areas in many lower income 
countries is that many of the available wealth-generating activities are susceptible to the same 
extreme weather events. Thus, increasing the number of activities in the portfolio may provide 
little protection against very low portfolio net returns when extreme weather occurs.  

The impact of extreme weather events is not limited to high variability in single period net 
returns. Extreme weather also has long-term impacts on wealth. Consider a simple two-period 
model for the evolution of wealth 

ALR)(KKWW 01 −++−=  

where the decision maker’s ending wealth 1W  is equal to 0W  minus the level of investment K  
plus the realized return on that investment ( RK + , where R  may be positive or negative) minus 
any asset losses AL  that occur during the period. Simplifying this expression yields 

ALRWW 01 −+=  

The occurrence of an extreme weather event may affect ending wealth 1W  by reducing the 
realized return R  and/or causing losses to assets such as buildings or livestock (i.e., 0AL > ). This 
evolution of wealth model could be generalized from two periods to an infinite number of 
periods. Note that if 01 WW < , the decision maker will have less to invest in subsequent periods, 
reducing the level of wealth in future periods. Extreme events may also reduce the growth rate 
of wealth. If households must reduce consumption or sell livelihood assets to cope with the 
losses of a catastrophic event, it may reduce their expected returns in future periods (Barnett, 
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Barrett, and Skees, 2008).5

Risk-averse decision makers have utility functions that are increasing in expected wealth and 
decreasing in risk (variability in wealth).  

 Thus extreme weather events affect not only single period net 
returns but also the long-run accumulation of wealth. 

That is,  

( )( )2
Wσ,WEfU =  with 

( ) 0
WE
U

>
∂
∂  and 0

σ
U
2
W

<
∂

∂ . 

As risk-averse decision makers recognize their vulnerability to extreme weather events, they are 
likely to allocate their portfolios to activities that are less susceptible to extreme weather (e.g., 
plant cassava instead of maize). But since lower risk activities generally offer lower expected 
rates of return, this decision also affects the long-term trajectory of wealth accumulation. Thus, 
exposure to extreme weather events reduces wealth accumulation whether directly by 
destroying assets and reducing net returns in the period of the shock or indirectly by 
encouraging low-risk, low-return portfolio allocations across all periods. 

Insurance purchasing can be conceived as another activity in the decision maker’s portfolio. 
Insurance purchasing reduces expected wealth ( )WE  because the premium paid by the insured 
must exceed the expected indemnity to compensate the insurer for taking on the risk. However, 
insurance purchasing also reduces the variance in wealth 2

Wσ  because, the decision maker 
receives an indemnity only when R  is lower than expected and/or when asset losses AL  occur. 
Risk-averse decision makers will purchase insurance only if the utility gained from reducing the 
variability in wealth exceeds the utility lost from having a lower expected wealth.  

Consider an example where we assume that a decision maker manages a portfolio that consists 
of only one activity — crop production. Also, assume that there are n+1 possible weather 
outcomes — n types of bad weather, each occurring with some probability iπ plus the 

possibility of good weather occurring with probability 









−∑

=

n

1i
iπ1 .  

These assumptions simplify the presentation without loss of generality. Also assume that with 
good weather there are no yield losses, the realized return is gR and no asset losses occur. Bad 
weather events can cause crop-yield losses iYL  and asset losses iAL . When bad weather occurs, 
returns are presented as the return on investment in good years minus yield losses  
( igi YLRR −= ).  

                                                 
5 We could model this change in the growth rate using a household production function that changes 
functional forms depending on the levels of physical and human capital available to the household. 
Intuitively, if a household sells a productive asset such as a plow or livestock, it is likely to reduce their 
farming productivity. As another example, if households must reduce their caloric consumption, it can 
affect both the physical and intellectual development of children in the household, reducing the future 
labor productivity of the household (Grantham-McGregor et al., 2007). 
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Without insurance purchasing, the decision maker’s expected utility is 

( ) ( ) ( )iig0

n

1i
ig0

n

1i
iNI ALYLRWUπRWUπ1UE −−+++









−= ∑∑

==

 

The decision maker can also purchase an insurance policy at a premium rate p that provides a 
sum insured (maximum possible indemnity) I . Thus, the premium cost is pI . With insurance 
purchasing, the decision maker’s expected utility is 

( ) ( ) ( )IqpIb(I)ALYLRWUπpIb(I)RWUπ1UE iiig0

n

1i
ig0

n

1i
iI +−+−−++−++









−= ∑∑

==

 

where iq is an indemnity function that determines the magnitude of the indemnity conditional 
on an indemnity being triggered and ( )Ib  is the monetary value of any ancillary benefits 
associated with insurance purchasing reducing risk exposure (e.g., improved access to credit), 

thus 0
I
b
>

∂
∂ . 

Define maxp  as the premium rate that would cause the decision maker to be indifferent to being 
insured or uninsured. Then the decision maker would be better off by purchasing the insurance 
if the premium rate is less than maxp . Obviously, maxp  depends on the decision maker’s utility 
function (i.e., how risk averse is the decision maker?), the magnitude of potential yield losses 

iYL relative to gR , and the magnitude of potential asset losses iAL relative to 0W .  

As will be developed later, it also depends on the covariance between iq and iYL , the covariance 
between iq and iAL , the magnitude of any ancillary benefits associated with insurance 
purchasing (which likely also depends on the covariances between iq and iYL and iq and iAL ), 
and the decision maker’s subjective assessment of the probability of loss iπ  and associated 
magnitudes of losses iYL and iAL . 

While we have modeled the above in a household-level expected utility framework, the model is 
generalizable to risk aggregator firms in many contexts. In neoclassical economic models, firms 
are often modeled as risk neutral. These models are built on assumptions that firms can fulfill 
their demand for physical capital and labor and that these factors can easily be replaced. In 
reality, these assumptions often do not apply. Catastrophic weather events can severely disrupt 
rural risk aggregators in developing countries (Box 1). Because of these business disruptions, it 
seems likely that many risk aggregators may be risk averse, especially for catastrophic, 
correlated weather risks.  
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Box 1  Risk Aggregator Portfolios 

Consider a bank that holds a portfolio consisting of n loans. Each loan ( )niLi ,2,1=  generates a 
periodic net return CIntr ii −=  where iInt  is the interest earned on the loan and C  is the bank’s cost 
of capital on the funds that have been loaned (which, for simplicity, we will assume does not vary 
across loans). In a given year, the realized net return for a specific loan is largely a function of whether 
the borrower is able to repay the loan at the agreed terms. In some cases borrowers may experience 
losses that make it difficult or impossible for them to repay their loans. They may be able to repay only 
part of the loan or perhaps they are able to repay the entire loan but only after renegotiating the terms 
so that the net return for the lender is reduced. 

Assume that for each loan iL  there are m  possible discrete levels of net return for the lender. The 

variance of net returns for loan iL  is calculated as ( )[ ]∑
=

−=
m

1j

2
iijij

2
i rErασ  where ijα  is the probability 

of net return level j  for loan iL  and ( )jrE  is the expectations operator. The periodic net return on the 

bank’s entire loan portfolio is ∑
=

=
n

i
iirwR

1
 where iw  is the proportion of the total value of the portfolio 

that is invested in loan iL  and 1
1

=∑
=

n

i
iw . The variance of net returns for the portfolio is calculated as 

∑∑
= =

=
n

i

n

k
ikkiR ww

1 1

22 σσ   where 2
ikσ  is the variance in returns on the single loan when ki =  and the 

pairwise covariance in returns between loans when ki ≠  with 1
1

=∑
=

n

i
iw  and 1

1
=∑

=

n

k
kw . Thus, the 

overall variability in net returns for the bank’s loan portfolio is a function of the variance in net returns 
for each of the loans, the proportion of the overall portfolio that is invested in each loan, and the 
covariances between the net returns for each loan. 

If the net returns generated from the loans are not highly correlated (the covariances are low), the 
variance in net returns for the bank’s loan portfolio will be greatly reduced. However, if the loan net 
returns are highly correlated, the variance in net returns for the bank’s loan portfolio will be quite high. 
This is the problem faced by banks that lend to borrowers who are exposed to spatially correlated, 
catastrophic, weather risks. A single catastrophic weather event could affect a large proportion of the 
bank’s borrowers and result in very low net returns for the loan portfolio.  

1.5.2   Probability Distributions of Loss, Cause of Loss, and the Index 
The above model describes the accumulation of wealth and household decision making in the 
presence of extreme events. Here, we develop a conceptual framework that describes how 
practitioners would approach index insurance product design in an ideal world, if they had 
sufficient quantitative data. However, it is important to remember that in many lower income 
countries, statistical analyses described herein will not be possible due to data insufficiencies. 
Methods to overcome these data constraints are described in the next chapter. 

This framework is an important benchmark for practitioners seeking to design sustainable 
insurance products. It is motivated by two principles. First, the insurance should be priced based 
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on the risk being transferred to the insurer.6 Second, the indemnity should be highly, positively 
correlated with losses of insureds. Otherwise, purchasing the insurance is not likely to benefit 
the insured as it would not effectively reduce the volatility in ending wealth.7

Regarding the first principle, pricing the risk, practitioners need data based on the mechanism 
used for paying insurance indemnities. For weather index insurance, the mechanism 
determining indemnities is the weather index (e.g., rainfall levels at a specific weather station); 
for traditional forms of insurance, the mechanism for determining indemnities is an on-site 
assessment of losses (see Box 2 for a comparison of traditional and index-based insurance).  

  

Box 2  Data Constraints Create the Need for Index Insurance 

In theory, a loss-based insurance product could be offered that makes payments based on losses 
experienced by the insured. In many respects, this would be the most straightforward way to insure 
against losses caused by extreme weather events because payments are based directly on the losses 
experienced by the insured. But this direct connection between the loss experienced by the insured 
and the payment received by the insured also causes significant problems. Some potential insureds will 
have greater loss exposure than others. To offer a loss-based insurance product, the insurer must be 
able to accurately estimate the loss distribution for each potential insured and charge a premium rate 
that accurately reflects the potential insured’s loss exposure. So those with higher (lower) loss risk will 
be charged higher (lower) premium rates. But the data required to estimate a loss distribution for 
every potential insured are often not available. If the insurer is unable to accurately classify potential 
insureds according to their loss exposure, the pool of insurance purchasers will be disproportionately 
composed of those who have been offered premium rates that understate their actual loss exposure. 
This problem, known as adverse selection, will undermine the long-run sustainability of the insurance 
product. 

Another problem with loss-based insurance products is moral hazard — a reduction of insureds’ 
incentives to reduce their exposure to losses since insurance payments will at least partially 
compensate for any realized losses. For example, in flood prone areas, those who purchase loss-based 
insurance may be less likely to invest in building levies or elevating buildings. Moral hazard can be 
controlled to some degree by policy provisions requiring the insured to utilize specific risk mitigation 
strategies, but the cost of monitoring and enforcing these policy provisions can be excessive. 

                                                 
6 The risk being transferred to the insurer, called the “pure risk” is but one component of the cost of 
providing insurance (e.g., administrative costs are another). For market-based insurance products, all 
costs of the insurance must be passed on to those purchasing the insurance. The important point 
regarding pure risk is that the price of the insurance is directly related to the amount the insurer is likely 
to pay in indemnities. Please see Collier, Skees, and Barnett, 2009, for more on insurance pricing 
fundamentals. Returning to our expected utility model, assume that an insurance product is created to 
protect against losses from the m worst weather outcomes ( nm ≤ ). The premium rate p  comprises the 
pure risk g and other costs oc such as administrative costs (i.e., ocgp += ). For insurance to be priced 

sustainably, ∑
=

=
m

1i
iiqπg  where πi is the probability of the insured event i and qi is the rate of insurance 

indemnity for event i. In other words, the pure risk premium equals the (expected) rate of indemnity. 

7 Insurance is priced based on the pure risk as g and other costs oc , and therefore, has a negative 
expected return. Generally, insurance is beneficial to decision makers when 1) indemnities have a large, 
positive covariance with losses, and 2) decision makers are risk averse. Insurance may also create 
additional benefits as described in the expected utility model. 
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Deductible and co-payments are also often used to help control moral hazard. 

A final problem with loss-based insurance is the very high administrative and delivery costs. As 
indicated earlier, the insurer must assess the loss exposure (estimate the loss distribution) for every 
insurance applicant. This often requires traveling to the exact location where any insured losses would 
occur. While the policy is in force, it may be necessary to travel to the location again to make sure that 
the insured is abiding by all relevant policy provisions. Finally, in the event of an extreme event that 
triggers an insurance payment, the insurer would again have to travel to the location to assess the 
magnitude of loss and determine the payment due the insured. These administrative and delivery costs 
are quite high even in developed countries where transportation infrastructure is good, insurers have 
access to the latest computer and communications technologies, and the insured value for a single 
policy may be quite large. In developing countries transportation infrastructure is often not good 
(especially in rural areas), insurers often do not have access to the latest in computer and 
communications technologies, and the insured value for a single policy may be quite small. 

High administrative and delivery costs, along with adverse selection and moral hazard, make loss-based 
insurance infeasible for insuring against extreme weather events in rural areas of most 
developing countries. Index insurance is designed to address each of these problems. With 
index insurance there is little potential for adverse selection or moral hazard because the 
payment is based on the realized value of the index rather than on the insured’s realized 
loss. Administrative and delivery costs are greatly reduced because there is no need to 
assess each potential insured’s loss exposure, no need to monitor for violations of policy 
provisions by insureds, and no need to assess the actual losses experienced by insureds. 
Thus, the lower data requirements for index insurance make it feasible in some regions 
where traditional insurance is not. 

In principle, index insurance could be tailored to each insured, but in practice, sufficient historical data 
are not available and the data that are available lack the spatial specificity, i.e., the spatial resolution 
with which a data system records measurements that would be required to estimate a unique 
probability distribution for each insured. For these reasons, index insurance is based on a generalizable 
index. For example, Figure 1 presents a probability distribution for an index based on November–
December average sea surface temperatures (SST) measured off the northern coast of Peru in the 
composite ENSO Regions 1 and 2, called ENSO 1.2. High SSTs are correlated with flooding in northern 
Peru, so this index is being used as the basis for an index insurance product that protects against flood 
losses (Khalil et al., 2007). 
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Figure 1  November–December Average Sea Surface Temperatures in ENSO Region 1.2 

 

Source: Authors using NOAA historic data from 1979 to 2008 

Whatever the mechanism, the principles are the same. Practitioners need to know the expected 
indemnity of the insurance contract they design, which depends, of course, on the probability of 
an insured event occurring. For example, if an insurance product made payments based on 
flooding, the insurer would need to know the probability of flooding. Practitioners need data on 
historical flood events to assess this probability. Flooding data would be organized based on the 
frequency and severity of flood events into a probability distribution, as shown in Figure 2. From 
the probability distribution, insurers can estimate the expected level of indemnities for the 
insurance product and can, thus, identify a sustainable price for the insurance.  
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Figure 2  Hypothetical Probability Distribution of Flooding 

 

Source: Authors 

In practice, accurately estimating the probability distribution for a weather index can be quite 
difficult. Many data are needed to accurately estimate the statistical characteristics (or 
moments) of the distributions that are of interest to a practitioner (Box 3). In many cases, these 
data are simply unavailable in developing countries.  

Box 3  Estimating the Moments of a Distribution 

Sample data are used to fit a probability distribution. For example, a sample of 30 years of historical 
cumulative rainfall data for the month of June collected at a specific weather station can be used to fit 
a probability distribution. The shape of a parametric probability distribution can be summarized by a 
few standard characteristics called moments. The basic moments of a probability distribution are as 
follows: 

First moment – central tendency: the mean of the distribution. 

Second moment – variance: describes how potential outcomes are positioned relative to the mean. It is 
small when potential outcomes are narrowly distributed around the mean and high when they are 
widely distributed around the mean. The standard deviation (sd) is the square root of the variance. 

Third moment – skewness: characterizes the symmetry of the distribution. Skewness is equal to zero if 
all the data are symmetrical around the mean as with a perfect bell curve. It is negative if there is a fat 
tail (many low probability events far from the mean) on the right and positive when the fat tail is on 
the left. 

Fourth moment – kurtosis: measures how data are stacked over the distribution. With a high kurtosis, 
there is a distinct peak near the mean that declines rapidly. Low kurtosis is relatively flat near the mean 
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so that a larger proportion of the events in the population are found in the tails. 

An approximation used in many applications is that a sample of at least 30 observations is required to 
estimate the central tendency and variance with an acceptable degree of accuracy. But this is just an 
approximation. More specifically, the accuracy with which sample data can estimate the true central 
tendency of a distribution is shown by the square root of n rule. 

n

sd
estimate theof  error standard =  

This shows that the accuracy with which sample data estimate the true central tendency increases with 
the sample size and decreases with the standard deviation of the distribution. Accurately estimating 
higher moments of the distribution requires even larger sample sizes. The sample size needed to 
estimate skewness and kurtosis is much higher than what is needed for mean and variance. Whereas 
the mean and the variance deal with the bulk of the distribution, skewness and kurtosis are essentially 
measures of extreme, rare, events which may be underrepresented or overrepresented in a small 
sample. As a rule of thumb, for a given sample size used to estimate the mean and variance of a 
distribution at some desired level of accuracy, a sample size 6 times larger is required to estimate 
skewness at the same level of accuracy and a sample size 24 times larger is required to estimate 
kurtosis. For example, if 30 years of data are sufficient to estimate the mean and variance of the 
distribution of a weather variable with some desired level of accuracy, approximately 180 and 720 
years of data are needed to estimate skewness and kurtosis, respectively, with the same level of 
accuracy. 

In sample vs. out of sample. When sufficient data are unavailable, practitioners must estimate the 
distribution given the data they have. Regarding the skewness and kurtosis in particular, this practice 
relies heavily on the few extreme values (i.e., catastrophic events) available in the data. In this case, in 
sample values may be very poor predictors of out of sample values (e.g., extreme events in the future). 
In other words, the in sample distribution may not accurately reflect the actual but unknown 
distribution. Ignoring this limitation can lead practitioners to believe that they have accurately 
accounted for catastrophic risk exposure when, in reality, this may not be true. A probability 
distribution fit from limited in sample data may greatly underestimate or overestimate catastrophic 
risk exposure.  

Additionally, if the risk is changing (e.g., due to climate change, multi-year weather cycles, 
hydrological engineering developments on rivers, etc.), practitioners must adjust for this in 
estimating the distribution. Chapter 3 discusses these difficulties more fully; here, we want to 
note that accurately estimating a single probability distribution for a weather risk can be 
challenging because of data constraints (see Box 4 for an illustration of how limited data can 
easily lead to misestimating the probability distribution). 

Box 4  Working with Small Samples 

To further illustrate the sensitivity of getting the correct expected value for the underlying index, we 
demonstrate the standard error of the estimate with a Monte Carlo simulation. Practitioners who 
strive to develop index insurance products would be well-served to consider sampling issues in this 
fashion. What is presented below is a relatively straightforward process that is designed to put some of 
these problems into context.  

Under the strong assumption that a variable is normally distributed, the square root of N rule can be 
extended to demonstrate errors. If the true distribution is known to have a mean of 100 and a standard 
deviation of 50, one can quickly gain perspective on the sampling errors that are possible. Having this 
level of risk is not uncommon for rainfall in many regions of the world. Table 1 provides the lower and 
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upper bound for this distribution at the 95 percent confidence interval, given different sample sizes.  

 

 

 

 

 

 

 

 

 

 

Confidence intervals are a measure of the precision of an estimate. Of course, these errors can be even 
greater when the distribution is not normal or if the distribution is not stationary.  

Working with small samples also creates opportunities for misestimating the pure risk. For illustrative 
purposes, once again we assume that the index is distributed normally and that it is stationary. With a 
normal distribution, two parameters can be manipulated, the mean and the standard deviation. In this 
example, assume the risk is constant as measured by the coefficient of variation CV (CV=sd/mean). The 
only unknown variable is the mean — the sample statistic that requires the least amount of data to 
estimate. 

We test the sensitivity of the pure risk to errors in estimating the mean using a Monte Carlo simulation 
of 1,000 draws given a sample size of 30 and an algorithm to develop the pure premium risk from a 
normal distribution. For a rainfall insurance contract that pays for losses below 80 percent of the 
expected value, the pure premium from the given distribution is 11.5 percent. Running the Monte 
Carlo simulation, about 10 percent of the pure premium values are less than 8.5 percent and another 
10 percent are greater than 14.9 percent. These are quite large errors in the estimates of the 
underlying risk, especially when one recognizes that the only estimate that is allowed to vary is the 
expected value and that we assume the index is stationary and normally distributed (i.e., in this case 
we perfectly know the true parent distribution) — a rather strong assumption! When the sample size 
drops to 20, 10 percent of the pure premium values are less than 7.9 percent and 10 percent are above 
15.7 percent. 

Table 1  Range Boundaries for Confidence Intervals 

Sample Size Lower Bound Upper Bound 

10 53 147 

15 61 139 

20 66 134 

25 70 130 

30 73 127 

Regarding the second principle, data requirements are much higher to ensure that the index 
insurance indemnities are highly correlated with the losses of the insured. Practitioners need 
several types of data from the same time period. The data needed, particularly data on the 
specific risk exposure and losses of individuals in the target market (e.g., households or firms), 
are unavailable in many developing countries. Because of data constraints, practitioners will 
typically have to rely on alternative methods to assess how indemnities relate to losses for the 
insured. In the next chapter, we describe these alternative methods. Here, we discuss how 
practitioners would accomplish this, if they had sufficient data, pointing along the way to the 
types of challenges practitioners are likely to face in data constrained environments 

Practitioners developing index insurance products would like to be able to demonstrate a strong 
relationship between the index and the losses of the insured. To do so, practitioners must work 
across three types of data for index insurance: losses of the insured, the cause of loss, and the 
index. 
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The insured's losses can be conceptualized in many ways: losses in income or consumption, 
reduced profits, yield losses, asset losses, etc.  

The cause of loss is the specific natural phenomenon (typically, a weather risk such as drought) 
that causes losses for the insured during a particular period of time. The index insurance 
product is designed to provide protection against the financial losses caused by this natural 
phenomenon.8

The index is a measure on which the index insurance indemnities are based. It is defined by a 
number of specific characteristics such as: what is being measured, how it is being measured, 
where it is being measured, and over what period of time. 

  

Each of these variables (loss, cause of loss, and the index) has a probability distribution. Ideally, 
a practitioner would like to have sufficient data to accurately estimate these three probability 
distributions. Additionally, practitioners need data on each variable to have been collected 
during the same time period to estimate relationships between the variables. In particular, one 
would like to understand the relationships between these variables when an extreme event 
occurs. Practitioners want to identify the relationship between losses and the cause of loss (e.g., 
low rainfall). We write this as losses  cause of loss, for shorthand. Also, with index 
insurance, the index is an approximation for the cause of loss for the insured so practitioners 
also want to identify the relationship between the cause of loss and the index (cause of loss 
 index). For example, rainfall at the closest weather station may differ from the rainfall a 
household experiences on its farm.  

As an example of these three variables, consider our experience in Peru. We assessed solvency 
risks to rural lenders in Peru, and our analyses indicated that regional floods create borrower 
default losses, liquidity constraints, and increased operational costs for the lender. Furthermore, 
extreme El Niño events are the primary cause of flooding in the region, and the best 
measurement of El Niño is sea surface temperature (SST). Therefore, we designed an insurance 
contract based on SST (the index) that we intend to reduce exposure to catastrophic flood risk 
(the cause of loss) as a means to address bank losses. Figure 1 represents the probability 
distribution of SST. Because this variable is used as the index, insurers price the risk using this 
distribution. For example, if the insurance contract paid when index values were above 24° C, 
the insurer would estimate the probability of the event using the area under the curve for 
temperature values above 24° C. To design the contract so it is relevant to lenders in the region, 
the practitioner would like to know the flood level that is likely to occur for a specific SST and 
the losses that lenders are likely to experience given that specific flood level (Appendix A). With 
this information, the characteristics of the index insurance product could be tailored to optimize 
the protection offered to the insured. 

In statistical terms, practitioners are attempting to identify a conditional distribution. A 
conditional distribution is the probability distribution of one variable given a specific value of 
another variable. For example, we could potentially identify a probability distribution of losses 
based on a specific level of flooding. Suppose from Figure 3, that we are interested in the level 
of losses experienced by a household or firm for a flood that is 3.0 meters above flood stage. 
Figure 3 is a conditional distribution. It shows the distribution of losses given this level of 

                                                 
8 It is also possible to construct more complex weather index insurance products that cover losses from 
more than one cause of loss. Assuming a single cause of loss simplifies the conceptual presentation 
without any loss of generality. 



State of Knowledge Report — Data Requirements for the Design of Weather Index Insurance 
Chapter 1  Introduction and Conceptual Model 

16 

flooding. The expected level of loss is roughly USD 4,000 for this level of flooding; however, 
losses are represented as a distribution because the relationship is not deterministic. A given 
flood level will not always generate the same magnitude of loss. Consider this variation around 
the mean as error, which we call basis risk. This error occurs because many variables may 
influence losses from a specific level of flood (e.g., whether individuals had time to prepare for 
impending floods, whether flooding as due to heavy rains or some other factor such as river 
overflow). These other variables that influence flooding affect the variance of this distribution — 
how precisely flooding can be used to identify losses. Thus, the closer the distribution is around 
the mean of the distribution, the lower the basis risk. 

Figure 3  Hypothetical Probability Distribution of Losses Given Flooding of 3.0 Meters 

 

Source: Authors   

For index insurance, practitioners want to estimate the conditional distribution of losses for a 
specific value of the index — i.e., given a specific value of the index (e.g., SST) what are the 
losses experienced by the insured. Practitioners can then design the insurance contract based 
on the expected value of losses for any given value of the index. The conditional distribution will 
include the errors associated with the ability of the index (SST) to estimate the cause of loss 
(flooding) and the errors associated with the ability of the cause of loss to predict losses of the 
insured (borrower default rates). 

In practice, data limitations create two major challenges with this framework. First, the 
conditional distribution of losses given a specific index value is somewhat unique to each 
individual. Index  cause of loss changes depending on the physical location of the individual 
(e.g., how close a household farm is to the weather station used as the data source for the 
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index). Also, cause of loss  losses is affected by differences in factors such as business or 
livelihood activities and risk mitigation strategies. For example, some business or livelihood 
activities may be less prone to losses from flooding and some insureds may have invested in 
levies or elevated buildings to reduce their exposure to flooding. This is especially likely with 
household products because each household farms different soils, uses different inputs, plants 
different crops, manages different livelihood portfolios, etc.  

Second, practitioners will not have sufficient data to properly estimate the distributions and 
conduct these analyses. As Boxes 4 and 5 illustrate, many data are needed to accurately 
estimate the moments of a probability distribution. However, cause-of-loss data for individual 
insureds are generally not available at all. Some individual loss data may be available for a 
sample of potential insureds but these data are unlikely to include enough observations to allow 
for accurate estimation of probability distributions. Furthermore, to develop a conditional 
distribution of losses for a specific index value, practitioners need several observations of losses 
for each level of the index. Because the insurance products of interest here are designed for low 
frequency, high severity events — the types of events that tend to occur no more frequently 
than say 1 in 15 years — even data for the index may, at best, tend to include only one or two 
high-severity events.  

So, in reality, practitioners can typically only estimate the probability distribution of the index 
(and, as will be discussed later, it is often not easy to identify a variable with sufficient data to 
serve as the index). Because there are insufficient data, it is generally not possible to statistically 
estimate the relationships between the index, the cause-of-loss magnitude experienced by the 
insured, and the losses experienced by the insured. Instead, practitioners will typically make 
inferences based on qualitative sources and limited amounts of available quantitative data.  

Before we proceed with describing how contract design would be approached in practice, it is 
essential to examine in more detail the concept of basis risk that was briefly introduced earlier. 
Basis risk is the foremost limitation of index insurance; therefore practitioners want to estimate 
and minimize basis risk to the extent that is practically feasible. If access to data were not an 
issue, practitioners would learn about the sources and magnitude of basis risk by examining the 
relationship between the probability distributions of the index, the cause-of-loss, and loss. 
However, as noted earlier, these statistical analyses may not be feasible in a real-world setting 
and practitioners will generally have to rely on qualitative information to estimate basis risk.  

1.6   Basis Risk 
In an insurance context, basis is the difference between the loss incurred by the insured and the 
indemnity received. Basis can occur due to factors such as contract characteristics (e.g., 
deductibles or co-payments) or errors that occur in the process of establishing the sum insured 
or in conducting loss assessment. If basis is relatively small and predictable, as would be the 
case with a modest deductible, it is generally not a major concern for an insurance purchaser. 

Variability in basis, or basis risk, on the other hand, can be a major concern and is the primary 
limitation of index insurance. Basis risk creates the possibility that indemnities will not be highly 
correlated with the losses of the insured. As described above, a source of basis risk is the 
imperfect relationships between the index, the cause of loss, and the loss. Consider the 
insurance product equation that is described in Section 1.5.1. If the indemnity Iqi  is not highly 
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positively correlated with yield losses iYL and/or asset losses iAL , insurance purchasing will not 
reduce the variability in ending wealth.9

Basis risk describes the precision with which the index can be used to estimate losses of the 
insured. It can be represented in part by the variance of the conditional distribution of losses 
given a specific value of the index. Because data are insufficient to capture the conditional 
distributions described above, practitioners have used correlations (or covariances) between 
losses and the index to estimate basis risk. 

  

Miranda (1991) demonstrated how basis risk affects the efficacy of index insurance by using a 
modified version of the Sharpe-Lintner Capital Asset Pricing Model, or CAPM (Sharpe, 1964) — a 
model that is widely used in finance to describe the relationship between returns for a given 
asset (e.g., a stock) and returns for the aggregate market (e.g., the Standard and Poor’s 500 
Index). Specifically, Miranda describes the relationship between yield outcomes on a given farm 
and a spatially aggregated regional yield as  

( )( ) ( )( ) ittiiit εYEYβyEy +−=−  

where y is farm-level yield, Y is the regional yield, i represents different farms, t represents 
different crop years, and E is the expectations operator. The parameter iβ shows how the ith 
farm’s yield deviations from their expected value vary with regional yield deviations from their 
expected value and is defined formally as 

( )
( )t

tit
i Yvar

Y,ycov
β =  

The error term itε  captures that part of the ith farm’s yield deviations from expectation that are 
not explained by regional yield deviations from expectation. By assumption ( ) 0εE it = and 

( ) 0Y,εcov tit = . 

Thus, Miranda’s model decomposes farm-level yield deviations from expectation, ( )( )iit yEy − , 
into a spatially covariate component, ( )( )YEYβ ti − , and an idiosyncratic component itε . Miranda 
used this model to demonstrate that for a specific farm i, the efficacy of an area yield index 
insurance would depend on the farm’s iβ , which, in turn, depends on the covariance of the farm 
yield and the regional yield. The higher (lower) the covariance between the farm and regional 
yield, the higher (lower) the value for iβ  and thus, the more (less) that an area yield insurance 
policy would protect against farm-level yield losses. Said differently, the higher (lower) the value 
for iβ , the lower (higher) the basis risk. 

Miranda’s model can easily be extended to other types of index insurance. Instead of regional 
yields, the deviations on the right-hand side of the model could be for a weather variable or a 
combination of weather variables. Likewise, the deviations on the left-hand side of the equation 
need not be limited to yields. Instead they could reflect deviations in gross or net revenue from 

                                                 
9 Loss-based insurance products may also entail basis risk due to errors in estimating expected values (or 
sum insured) and losses (Barnett et al., 2005). Additionally, other financial contracts used to manage risk 
such as commodity futures also have basis risk. Nevertheless, the value of these risk management 
mechanisms even in the presence of basis risk is well-demonstrated in the literature and also applies to 
index insurance. Therefore, our discussion focuses on methods used to conceptualize, estimate, and 
manage basis risk that occurs with index insurance. 
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a number of different livelihood strategies or they could reflect deviations in net worth. 
Regardless of the index used on the right-hand side or the losses used on the left-hand side, iβ  
is a simple and convenient measure of the extent to which deviations in the index explain losses. 
The higher (lower) the covariance between the index and the losses, the lower (higher) the basis 
risk associated with the index insurance product.  

To better understand the primary sources of basis risk and relate these to product design, it is 
helpful to break down the covariance between the index and losses into two main components: 
1) the covariance between the cause of loss and the loss; and 2) the covariance between the 
index and the cause of loss. With regard to the first component, if a specific cause of loss (e.g., 
flooding) is responsible for most of the realized losses and a relatively predictable relationship 
exists between the measure of the cause of loss (e.g., severity of flooding) and realized losses 
then the covariance between the cause of loss and losses is likely to be high. If many different 
causes of loss can generate large losses or if the relationship between a specific cause of loss 
and realized losses is highly random, then the covariance between any specific cause of loss and 
realized losses is likely to be low. This covariance between the cause of loss and loss likely differs 
across individuals. 

With regard to the second component, the covariance between the index and the cause of loss 
is affected by various factors. For example, deficit rainfall on the farm of an insured household 
(a cause of loss) is likely not perfectly covariate with deficit rainfall measured at the closest 
weather station (an index). Flooding in northern Peru (a cause of loss) may occur for reasons 
other than El Niño cycles as reflected in SST (an index).  

A limitation of using covariances is that these estimates describe the relationship of two 
variables across all values of each variable. The iβ  above is the same as a coefficient in a 
regression analysis. In the regression context, we would interpret the value of iβ  as “on average 
a one unit increase in the independent variable will cause an X unit increase in the dependent 
variable.” Thus, the iβ  value describes the general relationship between the index and losses. As 
we described in the opening paragraphs of the introduction, insurers are specifically concerned 
with the relationship of these variables in the tails of the distribution, which may differ from the 
general relationship between these variables. These differences may be a result of underlying 
physical processes. Consider a crop growth example. When rainfall is around the optimal level 
for a crop, many other important factors affect crop yields (e.g., soil quality, fertilizer use, 
pesticide use, etc.); therefore, around this level, the correlation between rainfall and crop yields 
would likely not be very strong. When rainfall is extremely low, however, the relationship 
between rainfall and yields is expressed more strongly. At low levels of rainfall, other variables 
such as fertilizer use have very little effect on yields. Therefore, statistical methods for 
estimating basis risk are needed that go beyond simple covariances. Appendix B, developed by 
Miranda, provides this methodology. In brief, Miranda proposes estimating these relationships 
using copulas, which is a statistical technique that can be used to compare covariances in the 
tails of the distributions. 

Basis risk cannot be completely eliminated from index insurance but careful product design can 
reduce basis risk. Additionally, proper marketing of index insurance in light of its limitations is 
critically important to reduce misunderstandings in the target market about basis risk. In 
Chapter 2, we describe the risk assessment process for developing index insurance. The risk 
assessment chapter serves as a reality check to the academic discussion above. As will be clear, 
this estimation of distributions and the statistical relationships between distributions is only 
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possible in a qualitative way in many lower income countries. However, before moving to the 
discussion on risk assessment it is useful to review two important efforts that are sometimes 
made to reduce basis risk. First, when practitioners have yield and weather data, they can work 
extensively to fit models that will provide the best fit as a way to reduce basis risk. As is 
developed below, working with limited data can result in overfitting models that explain the in-
sample farm-yield data. Second, when developers do not have yield data, there have been 
attempts to use plant growth simulation models with local weather data as a means for 
compensating for the lack of data. While this is also a good practice in principle, it can lead to 
wrong conclusions about the quality of the weather index insurance product for protecting farm 
yields if the limitations of this approach are not kept in mind. 

1.6.1   Fitting Models with Limited Data to Reduce Basis Risk 
As indicated earlier, index insurance products are designed around some perception of how the 
index relates to losses. If loss data are available, practitioners may utilize statistical techniques 
such as regression analysis to better understand the relationship between weather variables 
and losses. 

Practitioners have sometimes developed very complex statistical models of the relationship 
between various weather variables and crop yields within the available data. They then use 
these models to create insurance product designs. Practitioners feel more comfortable if the 
underlying index for the index insurance product is based on a statistical model that explains 
much of the variability in losses. 

The problem is that more complex models tend to overfit the in-sample data. In other words, 
while complex models will generally fit the in-sample loss data better than simpler, more 
parsimonious, ones, simpler models will often perform better in predicting out of sample 
events. If an index insurance product is created using the parameters of a complex statistical 
model, it is likely that out of sample indemnities will not match losses as well as the model 
would suggest. The complex, overfit, model will underestimate the basis risk, giving 
practitioners a false sense of confidence in the index insurance product. As a result practitioners 
are likely to “oversell” the benefits of the insurance so that insureds believe that they are much 
better protected than they actually are. 

1.6.1.1   PRODUCT DESIGNS WITH SPECIFIC TEMPORAL CHARACTERISTICS 
Some practitioners have also designed their models using quite specific, discrete time intervals 
to determine indemnities. For example, index insurance products have been designed using a 
dekadal (10-day) rainfall measurement as the basis of indemnities. These measurements 
provide a specific probability distribution across the growing season with which one can 
estimate the pure risk of the contract. The difficulty with these estimates is if the dekadal 
intervals are started two days later, remarkably different indemnities may occur in the historical 
data.10

1.6.2   Using Crop Growth Simulation Models to Compensate for Missing Yield Data 

 In other words, this is just another example of in-sample overfitting. Such a contract 
lacks external validity and increases basis risk relative to a simpler contract. 

Practitioners have also used crop growth models to compensate for missing data. If loss data are 
not available, crop growth models have been used to simulate the relationship between various 
                                                 
10 This finding was shared with our team by professionals from an international reinsurer. 
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inputs (including weather variables) and yields for specific crop varieties and regions. For 
example, practitioners have used these models to estimate the effects of low rainfall values on 
crop yields. They then use this information to design the indemnity structure for an index 
insurance contract. 

Various data sources are used to construct crop growth models. Data on weather variables are 
often collected by creating a test plot at or near a weather station. Crops are planted in this test 
plot and their growth is observed by researchers. Each year, the researchers try to control 
certain inputs (e.g., soil quality, fertilization, pesticide applications, etc.) and observe the 
relationship between the uncontrolled variables (e.g., rainfall, temperature, and sunlight) and 
yields. Over the years, they obtain observations that can be used to estimate how different 
combinations of inputs, including weather variables, affect yields. 

A major concern about building index insurance products around relationships inherent in crop 
growth models is that these models are parameterized for very specific crop varieties and 
regions. One cannot simply assume that the parameters contained in the models are 
generalizable to other crop varieties, regions, or farming practices. 

Another concern is that while crop growth models are quite useful for estimating the effects of a 
change in a variable around the central tendency of the distribution, they are much less useful 
for predicting the effects of extreme weather events on yields. A crop growth model is, in 
essence, a complex regression model that specifies relationships between various inputs 
(including weather variables) and yields. Regression coefficients are interpreted based on the 
relationship across all values and are most accurate near the mean since most observations 
occur around the mean. Regression estimates tend to be least accurate for extreme values 
because extreme values occur much less frequently. When there are very few observations of 
low yields, the regression will be much less accurate in predicting the relationship. Also, with 
few observations of extremely low yields (e.g., a typical model may have one or two cases) it 
also becomes quite difficult to isolate the effects of one weather variable versus another. 

There is a common theme to our concerns about building weather index insurance by overfitting 
available data or relying on exclusively on crop growth models. That theme is the danger of 
“overselling” the potential benefits of index insurance. Both models that overfit in-sample and 
crop-growth models are likely to underestimate the true basis risk that will occur out of sample. 
If index insurance is sold based on unrealistic representations about the true magnitude of basis 
risk, practitioners will lose credibility with increasingly frustrated insureds — potentially 
undermining any efforts at long-run scalability and sustainability. 

1.6.2.1   IMPLICATIONS 
In response to problems associated with overfitting and reliance on crop-growth models, some 
development economists have questioned the value of index insurance investments citing that 
basis risks seems unacceptably high, development costs for these programs are significant, and 
opportunities for scalability and sustainability are minimal — especially given the complicated 
statistical approaches of some practitioners. However, the problem is not index insurance. Index 
insurance is built on sound economic principle, and new applications for this class of products 
continue to emerge. Generally, problems emerge when practitioners ignore the consequences 
of the data limitations by: 1) relying too heavily on a small data sample to provide an accurate 
estimation of the underlying probability distributions and the relationships across distributions; 
and 2) using scientific models intended to explain physical processes under general conditions to 
identify relationships during extreme events. 
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Chapter 2   Working under Real-World Constraints: Data, Product 
Design, and Risk Assessment 

The conceptual model presented in the introduction describes the underlying framework for 
index insurance product design. In practice, product design is quite challenging, marked by 
uncertainty, and often, qualitatively approximates this theoretical framework. Vast data 
constraints in lower income countries limit the techniques available to practitioners. Consider, 
for instance, the task of estimating the loss distribution. Historical, quantitative data on losses in 
many lower income countries simply do not exist, especially data on household losses. Sparse or 
missing quantitative data greatly limit what can be done in estimating probability distributions. 
Mapping relationships between imprecise distributions results in more error. Thus, practitioners 
are left with insufficient quantitative data to determine how measurements of a weather event 
translate into losses for potential insureds. 

Index insurance developers rely heavily on what little information may be available and employ 
several approaches to overcome these data constraints. In this chapter, we describe an 
approach that we believe is most likely to create products that are in line with the priorities of 
the target market. 

The basic requirements for an index insurance product are 1) an index that is highly correlated 
with the insured risk; 2) historical data on the index to establish the pure risk being insured; and 
3) some indication of how the index relates to the consequential losses and costs of the 
potential insureds in the target market. The index must be based on a secure and objective data 
source because indemnities are based on this measure. Accurate premium rating requires 
sufficient historical data to estimate the probability distribution of the index. The first two items 
in the list above are discussed further in Chapter 3. The focus of this chapter is on the third item 
— determining how the index relates to losses given that limited quantitative data in many 
lower income countries make it particularly challenging to estimate this relationship statistically. 

The dearth of loss data in lower income countries leads to the question of how to begin product 
design. Because weather index insurance bases indemnities on the measure of a weather event, 
an appropriate starting point is identifying what weather risks are of greatest concern in the 
region. This approach focuses on the types of risks that can be insured with weather index 
insurance. It also allows for the possibility that the weather risk causes more than one type of 
loss. Thus when developing weather index insurance, the following is the logical sequence of 
questions: 

1. What weather risk (cause of loss) causes the greatest/most disruptive losses? 
2. What losses are associated with this weather risk? What risks should the insurance 

target? and  
3. How well can the causes of loss for different insureds in the target market be 

approximated with a generalizable weather index? 

To address these questions the practitioner utilizes any available quantitative data but must also 
usually rely on qualitative data collected from local stakeholders through risk assessment. 
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2.1   Risk Assessment 
As a critical step of product design, we recommend a risk assessment process that is informed 
by scientific inquiry into weather risk in the region and enhanced by local knowledge collected 
through focus groups or other interview techniques to supplement any available quantitative 
data. Scientists with specialized knowledge of the region provide an invaluable starting point for 
practitioners. The findings of these researchers may be particularly important for identifying a 
suitable index, targeting vulnerable populations, and guiding focus groups. Local stakeholders 
who have lived through previous extreme events tend to have a clear picture of how households 
and businesses in the region have been affected and often have assessments regarding how 
vulnerable their community is to future catastrophic events.  

Risk assessment identifies the major risks affecting households and businesses and 
systematically develops a model for understanding the risk. The risk assessment process 
operates under the recognition that weather risk and resulting losses occur in a larger system 
affected by many components: household livelihood strategies, geography, weather patterns, 
population dynamics, industry growth, cultural values, etc. Risk assessment attempts to 
estimate the cost of a specific risk in this context. The process includes assessing how 
households and businesses currently “pay” for this risk. Households pay directly when a 
catastrophic risk event causes yield, revenue, or asset losses or increased costs; however, 
households also pay indirectly for catastrophic risk by foregoing business opportunities because 
the risks are too high. For example, a bank may ration lending in a region exposed to flood risk, 
or a household may avoid higher-risk, higher-return production strategies because it deems 
drought risk too great. Often, weather events result in many concurrent consequences. For 
example in Vietnam, when coffee farmers in the Central Highlands are exposed to drought, they 
suffer losses in yield and quality, increased irrigation costs, and the death of coffee trees.  

Risk assessments identify where existing risk management strategies are ineffective and/or 
inefficient for catastrophic risk, and where index insurance might be appropriate. As 
practitioners develop an understanding of risk in the local context, themes are likely to emerge 
that guide priorities in product development. For example, risk assessments will identify critical 
periods in which the target market is most vulnerable to specific weather risks. In our work in 
Vietnam we learned that rice farmers in the Mekong Delta are particularly vulnerable to 
flooding during the June and July rice harvest. An index insurance product was designed for 
lenders in the region based around a two-week critical window early in this harvest period (see 
Chapter 3 in GlobalAgRisk, 2009). 

Another common theme that arises during risk assessments is the impact of catastrophic events 
on risk aggregators. Risk aggregating firms (e.g., banks, agricultural input suppliers, output 
processors, etc.) are exposed to the disaster risks of the communities they serve. As a result, 
catastrophic risk exposure can limit the role of these firms in the region and limit access to their 
services (Skees and Barnett, 2006). For example, a theme that emerged for our team during risk 
assessments in northern Peru is that, despite significant growth in financial services in the 
region, El Niño significantly limits access to credit for agricultural borrowers. 

Risk assessment is likely to begin an ongoing process of product development with the target 
market. Practitioners can return to focus groups to assess the feasibility of using a specific 
weather index as the basis for the insurance. For example, the target market may not trust data 
collected by the national meteorological association, or they may not be willing to pay for an 
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insurance product that makes payments based on satellite data such as NDVI. An important 
consideration regarding the index is potential insureds’ perceptions of the basis risk. The target 
market can also be consulted regarding how they might use the proposed insurance product, 
which can have important implications for design and delivery. For example, index insurance 
products targeted to households in Malawi have been designed to protect against events (low 
rainfall) that create losses on the principal of an agricultural loan; in India, to protect household 
income from losses occurring to a specific crop; and in Mongolia, to protect household 
livelihood assets, such as livestock (Hellmuth et. al., 2009). 

In this fashion, local knowledge can be used to partially overcome the data constraints that exist 
in many lower income countries. Index insurance is designed using qualitative data regarding 
how the index maps onto losses for the target market. While the practitioner may be unable to 
fully validate this aspect of the index insurance design with quantitative data, the process of 
developing the index insurance with local stakeholders increases the relevance of this product 
for the target market and reduces the likelihood of significant misunderstandings about the 
purpose of the index insurance. 

Given all the challenges to stakeholders revealed in the risk assessment, practitioners must 
decide whether scarce funds should be used to develop index insurance or used to address 
other development priorities. In our experience, there are many positive externalities of index 
insurance market development beyond the development of a specific insurance product. The 
market development process can improve the risk management strategies of households, firms, 
and governments through education; strengthen legal and regulatory institutions to facilitate 
broader insurance market development; develop capacity among local partners such as insurers 
and banks; and advance other economic development efforts through the findings of risk 
assessments. Still, in some situations where weather risks are not severe, funds are likely better 
spent elsewhere. Also, if conditions are not amenable to index insurance (e.g., if data systems 
are severely underdeveloped), other investments are likely better. Thus, the opportunity cost 
should certainly be considered before practitioners pursue index insurance product 
development efforts — especially if significant infrastructure investments would be required to 
facilitate offering index insurance. 
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Chapter 3   Data Needs for Indexes 
To estimate the loss distribution of the insured and to determine how losses tend to relate to 
the cause of loss (the weather risk), practitioners supplement available quantitative data with 
risk assessments conducted through focus groups and consultation with local experts, as 
described in Chapter 2. However, to actually develop an index insurance product, sufficient 
quantitative data are required to: 1) develop the price of the insurance based on the expected 
frequency and magnitude of indemnities; and 2) serve as the index for calculating the insurance 
payout.  

It is necessary to review the desired attributes of data systems and place them within the 
context of challenges facing practitioners in the field. Data requirements for estimating the pure 
risk and calculating insurance payouts are contextual, in that they are influenced by the 
characteristics of the weather event and the physical environment in which the event occurs. In 
particular, data needs are largely determined by the spatial and temporal presentations 
(patterns) of the weather risk. Different weather risks tend to follow different spatial and 
temporal patterns that vary by region. These patterns have a direct influence on data 
measurement needs.  

3.1   Data Needs Are Influenced by the Weather Risk 
Data needs for both estimating the pure risk and for settlement of the insurance are largely 
influenced by the characteristics of the weather risk itself. The spatial and temporal 
presentations of the weather risk are the most salient features. Spatially, it is important to 
understand how large an area an extreme weather event tends to influence as this will 
determine how geographically precise data measurements must be. A basic precondition for 
index insurance is that the weather event must result in correlated losses; therefore, some 
spatial correlation must exist for any weather event suitable for index insurance. Still, these 
patterns may differ by type of weather event and by region. Excess rainfall will usually present a 
different spatial pattern than drought. Topography is an important determinant of the spatial 
presentation of a weather risk. For example, flood risk of an area can depend on its elevation 
relative to a flood risk source, such as a river, but also on the aspect and slope of the land such 
that heavy rainfall can produce inundation. Mountains alter weather patterns over short 
distances or generate microclimates. Such regions are often poorly suited for index insurance 
because the spatial correlations of weather events are so low. 

Weather risks tend to follow temporal patterns as well. In some regions, daily rainfall in the 
afternoon is common; in others, it rains for most of the day every few days; and in others, 
several days or weeks of sustained rainfall are followed by prolonged periods of no rain. 
Seasonal patterns also occur throughout the world. Some regions near the Indian Ocean receive 
almost all their rainfall during the monsoon season from roughly June to September. August is 
considered the start of the hurricane season in the Caribbean. Finally, interannual patterns also 
occur. The Sahel, a region in Africa south of the Sahara, experiences multi-decade cycles of 
drought. El Niño also follows an interannual pattern in that atmospheric conditions make it 
unlikely for two extreme events to occur in consecutive years. In conclusion, identifying 
appropriate data systems for index insurance requires careful consideration of the many 
contextual influences to the presentation of weather events. 
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3.2   Estimating the Pure Risk 
To price insurance sustainably, practitioners must accurately estimate the expected value of the 
payouts, also called the pure risk or pure premium, of an insurance policy. To do this, 
practitioners first fit a probability distribution to the historical weather data during the cover 
period, which describes the likely frequency and severity of the event in probability terms. The 
probability distribution can sometimes be estimated using a known distribution, such as a 
Gaussian, or by using kernel smoothing procedures of the empirical distribution of the weather 
observations. The pure risk is found by integrating the probability distribution times the payout 
rate determined by the contract thresholds and finally multiplied by the sum insured. Thus, the 
pure risk is a function of the distribution of the weather event during the period of interest, the 
thresholds and limits of the index where payments begin and end, and the total amount of 
coverage desired. The payment structure may take any form but is most frequently a linear 
function of the index. Figure 4 shows the probability distribution for a hypothetical index 
insurance contract. For example, Figure 4 could be the estimated probability distribution of 
rainfall at a specific weather station with the index insurance designed to protect against excess 
rain above the predetermined threshold of 18. The shaded area for values greater than or equal 
to 18 represents the expected value of the index insurance. In calculus, the area is integrated to 
take the value of the area relative to the entire area under the pdf. The expected value is also 
referred to as the pure risk.   
Figure 4  The Pure Risk of a Hypothetical Index Insurance Contract 

 
Source: Authors 

When estimating the probability distribution, practitioners must also assess the historical data 
for trends and other systematic changes in the data over time. Figure 5 shows historical average 
rainfall for June, July, and August in the Sahel and is a dramatic example of trends in weather 
data, as average rainfall changes significantly over the time series. Data for June, July, and 
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August are used because of the importance of these months in this region for agricultural 
production. These data were collected from the rain gauges mapped in Figure 6. Practitioners 
are particularly worried about trends that are likely to increase the pure risk (see Box 5, which 
describes how these trends can affect the pure risk). 

Trends in the data are a signal that the underlying probability distribution is non-stationary (i.e., 
the risks are changing). As a result, the probability distribution developed from the historical 
data must be adjusted based on this trend. How practitioners adjust the probability distribution 
relies heavily on their perceptions of the underlying physical process that is causing the change 
in weather risk. For example, practitioners may assume a stronger, more permanent trend if 
they believe the changes are due to climate change than if they believed the changes were 
largely due to multi-year cycles (as in the case of the Sahel).  
Figure 5  Sahel Rainfall for June, July, and August, 1900–2006 

 
Source: Authors, based on data provided by International Research Institute for Climate and Society, Columbia University 
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Figure 6  Location of Rain Gauges Used in the Sahel Dataset 

 
Source: International Research Institute for Climate and Society, Columbia University 

 

Box 5  Potential for Misestimating the Pure Risk: A Sahel Example* 

This case illustrates the potential consequences of misestimating the underlying probability 
distribution of a weather risk. It also demonstrates that probability distributions are heavily 
conditioned on a snapshot in time. The historical data used at that point in time can significantly 
misrepresent the current or future weather risk. 

Consider the case of a practitioner developing an index insurance product for drought with an 
indemnity triggered at 425 mm. For levels of rainfall below 425 mm, indemnities increase in a linear 
fashion until 200 mm, below which the insured receive 100 percent of the sum insured. Suppose that 
the practitioner was designing such a contract in 1962, using the 1900–1961 Sahel data shown in Figure 
5. Assume that the practitioner does not expect any trends in the risk. The green, dashed probability 
distribution in Figure 7 is based on this historical data (for simplicity we use a normal distribution for 
this illustration). For the contract described above, the pure risk would be 2 percent. The actual rainfall 
experience in the Sahel was much different in the following 26 years. While the variance of rainfall did 
not change, the average level of rainfall fell significantly. A probability distribution using data only from 
1962–1989 (the blue, solid distribution in Figure 7) would estimate a 44 percent pure risk for this 
insurance contract. Insurance is neither an efficient nor sustainable solution for managing such a large 
portion of the insured’s risk. From 1962 onward, insurers would incorporate the new rainfall 
experience each year and adjust the pure risk for trend. Given how different the estimate of pure risk is 
from the actual risk experienced during the following 26 years, whatever adjustments the insurer made 
would likely be insufficient and the insurer would continue to lose money until it decided to stop 
offering the product.  

*See Collier, Skees, and Barnett, 2009 for more details of this example. 
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Figure 7  Comparing Rainfall Distributions and Indemnities, Created Using the Vantage 
Points of 1962 and 1990 

 
Vantage Point Data Central Tendency Standard Deviation Pure Risk 

1962 1900–1961 510 77 2% 

1990 1962–1989 328 76 44% 

Source: Collier, Skees, and Barnett, 2009; The figure is based on data provided by International Research Institute 
for Climate and Society, Columbia University.  

 

Practitioners also examine the data for clustering. Clustering describes the tendency of some 
catastrophic events to occur in a temporal pattern. For example, in some regions it may be that 
if drought occurs in one year, it is more likely to occur in the next year as well. If such 
interannual cycles occur, individuals will use this information when making the decision to 
purchase insurance, which creates an adverse selection problem for insurers. In some cases, 
insurers can adjust for this by offering multi-year contracts or by pricing the insurance assuming 
that individuals will use these signals in making a purchase decision. Both of these alternatives 
can cripple the insurance market: multi-year contracts require long-term commitments that may 
discourage potential buyers while pricing the insurance based on the assumption that people 
will only buy when the risk is high will increase the price of the insurance, also reducing 
insurance purchasing. 

In assessing the pure risk, it is best to consider an estimated distribution as a snapshot at a 
particular point in time. The following year, new observations will emerge and may change the 
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distribution. Practitioners are in the difficult position of interpreting the implications of new 
observations. Emerging trends are particularly difficult to identify. For example, if two extreme 
events occur in consecutive periods, it may be an unusual sequence of events, or it may indicate 
a new regime for the weather risk. Practitioners can adjust the price of the insurance each year 
based on new experiences. Still, such uncertainty often leads insurers to add an ambiguity load 
to the cost of insurance to protect against the possibility that they have misestimated the pure 
risk due to misestimating the moments of the distribution or clustering. In the next chapter, we 
describe some of the key characteristics for choosing a data source to estimate the pure risk. 

3.2.1   Key Characteristics for Estimating the Pure Risk 
Five characteristics of the data source help practitioners evaluate if it is suitable for estimating 
the pure risk: 1) historical length; 2) spatial specificity; 3) temporal specificity; 4) completeness; 
and 5) validity. 

Historical Length. The length of time series determines how well the distribution can be 
estimated. A general benchmark for index insurance has been at least 30 years of data. While 
this standard is somewhat arbitrary, it has some implications for understanding the distribution 
of a weather variable (Box 2 in Chapter 1).  

A growing number of alternative data systems have emerged to replace or supplement data of 
short time series. Some forms of satellite-based data, such as NDVI, were developed in the late 
1970s and early 1980s and so have generated a length of time series data that may be suitable 
for estimating distributions. Reanalysis data (a term used to describe products that combine 
weather data from many sources) are often used to supplement short time series of weather 
station data. Chapter 4 contains more detailed descriptions of some of these alternative data 
sources. 

Spatial Specificity. Spatial specificity describes the level of detail with which the data system can 
assess the weather risk in the region. As discussed above, spatial requirements for the weather 
risk depend on the spatial correlation of the event. For data sources on the ground such as 
weather stations, spatial specificity refers to the distance between weather stations. For 
satellite-based data, spatial specificity is the level of resolution of the index. For example, NDVI 
is often measured using pixels representing areas of approximately 1 km2 (Box 8 in Chapter 4). 

Temporal Specificity. Temporal specificity, the frequency with which a data system records 
measurements, has important implications for estimating some weather events and for 
mapping the index on to losses. The temporal specificity of some data systems may be 
inadequate to capture certain weather risks. For example, potential insureds in the target 
market may report sudden extreme rainfall that causes flash flooding within a few hours. There 
may be weather stations in the region but if the data are only collected on a weekly or 10-day 
basis, they will lack the temporal specificity needed to identify sudden extreme rainfall. 

Completeness. Missing values in a data series can occur for many reasons — civil unrest, loss of 
funding for meteorological services, human error, etc. Missing values can be estimated using 
statistical methods such as interpolation or using other data sources. Sometimes data are 
missing due to a catastrophic event (e.g., a flood washes away a weather station). Dealing with 
missing data in these cases is problematic. Observations of extreme events are very important 
for estimating the tail of the probability distribution and the statistical methods used to replace 
missing values tend to underestimate extreme values. 
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Validity. Having trust in the validity of data is important for both practitioners and target users. 
Ideally, historic data would have been collected by an institution that is not likely to be 
pressured into altering data values. Typically, national meteorological associations can fulfill this 
role sufficiently, but sometimes the target market may prefer an alternative data source. 

Practitioners must also consider possible effects of changing technology on data values. For 
example, new rain gauges may provide data more regularly and more accurately than older 
technology. Likewise, many of the satellite-based technologies are regularly updated and care 
must be taken to ensure the data used throughout the time series are consistent. 

3.2.2   Supply Priorities 
Practitioners working to supply index insurance are concerned that historic data provide an 
accurate estimation of the pure risk. They are particularly concerned with the possibility of 
underpricing the risk which can create large losses. As a result, reinsurers typically add 
ambiguity loads to premiums when limited data increase the likelihood that the pure risk will be 
estimated incorrectly. In some cases, practitioners may decide the potential for misestimating 
the pure risk is so great that they are unwilling to offer index insurance. 

3.2.3   Demand Priorities 
While the target market may not be exposed to the methods used to price the pure risk, it is in 
the interest of the target market for the data to be a long and accurate time series. When 
practitioners can confidently price the pure risk, premium loads will be lower, reducing the cost 
of the insurance product to potential insureds.  

3.3   Settlement Index    
The index used to settle the insurance payment is the core element of index insurance. It is the 
contractually binding mechanism used to determine insurance payments. It is also the index 
that the insured must evaluate when deciding whether to purchase the insurance. Therefore, 
insurers want to choose this index carefully. In many cases this index will be based on the same 
data source that is used to estimate the pure risk, such as if weather station data are used for 
premium rating and as the index for indemnities. But this need not always be the case. For 
example, the index used for settlement of payments may be based on a relatively new weather 
station while the pure risk has been estimated using longer series of historical data from 
surrounding weather stations. 

3.3.1   Key Considerations for the Index 
Following are some of the key characteristics that help practitioners evaluate if a data source is 
suitable to serve as the index. 

Relationship between the Pure Risk Estimate and the Index. Given the importance of 
accurately pricing the pure risk, it is crucial that practitioners understand the relationship 
between the data source(s) used for estimating the pure risk and the index used for loss 
adjustment.11

                                                 
11 If the index used for loss adjustment is the same as the index used for calculating indemnities, no action 
is needed in this regard. 

 This is especially important for extreme values.  
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Spatial Specificity. Spatial specificity has significant implications for basis risk, and is probably 
the biggest constraint to index insurance scalability. The two most prominent index insurance 
programs that rely on weather stations, India and Malawi, have both been constrained by 
insufficient weather station infrastructure. Many regions of the world, especially much of Africa, 
have even less developed weather station infrastructures. 

Temporal Specificity. Many regions may also be constrained by weather stations that report 
data too infrequently (e.g., biweekly or monthly) to be useful for many weather risks. It is worth 
repeating that the spatial and temporal specificity demands on an index depend specifically on 
the spatial and temporal presentation of the weather event and the type of contract designed. 

Validity/Security/Credibility. Both the target market and the suppliers of index insurance must 
rely on the index used for loss adjustment. Potential insureds are not likely to buy the insurance 
if they do not trust the validity and objectivity of the data source on which the index is based. 
This can occur because potential insureds do not understand the data source. It may also be 
that potential insureds understand the data source but believe that the data may be 
manipulated for political or other purposes.  

It is also important to note that basing indemnities for an insurance product on a particular data 
source may create new threats to the security of the data source. Obviously this is a bigger 
concern with weather station data sources than it would be with satellite-based data sources. 
Regardless, threats to the security of the index should be anticipated and addressed proactively. 

Completeness/Permanence. Practitioners want to choose an index that is certain to be 
available for the upcoming season. For example, if an insurance product uses rainfall gauges 
managed by a national meteorological institution as the index and the national government 
reduces funding for data collection and maintenance, the credibility of the index insurance 
program is challenged. Additionally, practitioners commit substantial resources to designing a 
product so they typically want to use an index that is likely to be available for many years into 
the future. 

3.3.2   Demand Priorities 
The core concern of the target market evaluating the product is how well it is likely to insure 
their risk. Basis risk is a major component of the consideration, but as we have described, basis 
risk is a complex issue. Many researchers have estimated basis risk in terms of household-level 
weather and crop-yield correlations. Obviously this is not an appropriate measure of basis risk 
for a risk aggregator product. But we would argue that it is also not necessarily an appropriate 
measure for a household product. Our experience has demonstrated that extreme weather 
events affect stakeholders in many ways. Because of the diversity of risk management strategies 
of households in rural areas, it is not convincing that weather/yield correlations adequately 
capture the ground-level consequences of a catastrophe. Farmers may save their yields but lose 
quality, or they may irrigate at substantial cost. No researcher or practitioner can hope to 
identify the effects of all of these management and coping strategies, especially for 
heterogeneous households. 

Potential insureds consider the effects of extreme weather events on a variety of factors 
including the long-term health, safety, and well-being of family members. In short, they evaluate 
an insurance product simply in terms of whether or not they are likely to be better off having 
purchased the product. This process may be a complex evaluation of their risk exposure and any 
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alternative risk management strategies, and can also include the recognition that, in many 
cases, an imperfect insurance instrument can be better than no insurance at all. 

Credibility of the index is also a concern of the target market. We have already mentioned the 
possibility that potential insureds may not trust data provided by the national meteorological 
service. In other cases, they may not be willing to rely on data collected from satellite-based 
platforms. Field research in Kenya regarding an index-based livestock insurance (IBLI) pilot using 
NDVI has included assessments of potential buyer response to this product. (Chantarat, 2008; 
Chantarat et al., 2009). In early 2010, some 2,000 Kenyan herders purchased the IBLI.  

3.3.3   Supply Priorities 
The primary concern of those supplying index insurance is the validity and security of the data 
source as it serves as the basis of the insurance. Practitioners will want to dialogue with 
reinsurers during product development to make certain the index of interest is acceptable to the 
reinsurer. A second priority is the permanence of the data source. Insurers will not invest in 
building a market for an index insurance product unless they are confident that the underlying 
data source for loss adjustment is likely to be available into the future.  
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Chapter 4   Real-World Data Constraints: Limited Weather Station 
Infrastructure and Opportunities for Satellite-based 
Technologies 

This chapter extends the conceptual framework of Chapter 1 and the real-world focus in 
Chapters 2 and 3 to identify some pragmatic implications regarding index insurance product 
development. It is divided into two subsections. First, we note that weather stations are 
underdeveloped in many regions and describe considerations for evaluating if weather station 
infrastructure is sufficient to support an index insurance product. As part of this discussion, we 
consider the potential cost of populating a region with weather stations and maintaining this 
data system. Second, we evaluate practices of some current index insurance programs. The 
findings in each of these subsections motivate our conclusions for advancing weather index 
insurance, given the prevalent data limitations. 

4.1   Data Availability: Weather Stations 
Weather station (or rain gauge12) data have been the primary data source for weather index 
insurance programs thus far. Yet the weather station infrastructure in many regions of the world 
is underdeveloped, and may be insufficient to support index insurance products based on 
weather station data. The U.S. National Climatic Data Center (NCDC) archives weather station 
data as part of the World Meteorological Organization (WMO) World Weather Watch Program 
according to WMO Resolution 40 (Cg-XII).13

                                                 
12 A rain gauge is a device used for measuring rainfall and can be much smaller and less expensive than a 
weather station. Weather stations may also measure rainfall (through a rain gauge) but may measure 
other weather variables as well, such as temperature or wind speed. 

 This data source reveals very limited weather station 
coverage in some regions of the world, in particular for parts of Africa. For example, for stations 
reporting daily values NCDC provides data on 37 stations in South Africa, 12 in Sudan, 4 in 
Botswana, and 1 in Congo. Still, the NCDC archives tend to underreport the actual number of 
weather stations in some countries. Many reasons may motivate countries to underreport to 
international archives. Low data quality from some stations is one. Civil and political unrest and 
the very limited budgets of many African countries would contribute to low quality data. But 
also countries may prefer not to publicly share all of their weather data. In some cases, country 
meteorological offices maintain a policy of charging for data. Thus, from archives such as that 
held by the NCDC, it can be quite difficult to estimate what data the country has actually 
collected. Another source reports that in Africa, there are roughly 1,000 quality-controlled 
weather stations (Funk et al., 2003). If weather stations were uniformly distributed, it would 
indicate a weather station density of roughly one weather station every 60,000 km2 (Funk et al., 
2003). These weather stations are not uniformly distributed, of course, yet their density and the 
NCDC archives are stark indicators of how severe data constraints are in Africa. Moreover, the 

13 NCDC maintains at least two sources of data collected from weather stations around the world. Global 
Summary of the Day (GSOD) surface data can be accessed at 
ftp://ftp.ncdc.noaa.gov/pub/data/gsod/  
Global Historical Climatology Network (GHCN) daily data can be accessed at 
http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/index.php?name=data 
These data archives are among the most comprehensive sources of publicly available weather data in the 
world. 

ftp://ftp.ncdc.noaa.gov/pub/data/gsod/�
http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/index.php?name=data�
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existing weather station infrastructure in some regions, such as the Sahel, has deteriorated since 
the 1980s due to the costs of data collection and systems upkeep (Ali et al., 2005). For example, 
in recent work performed in Mali, we learned that, of some 85 weather stations that were in 
service at some level during the time period of 1951 to 2007, only 10 were operational in 2007 
(Hartell and Skees, 2009). 

Estimates on data that are may be particularly telling for index insurance. Consistent with our 
emphases on the reliability and validity of data sources, practitioners should question whether 
data that do not meet the following standards are a suitable for supporting an index insurance 
product: that the data are quality controlled, reported based on some minimum standards, and 
publicly accessible. When the data used to generate the index for an index insurance product 
must be purchased, these ongoing costs must be passed on to the insured, and if the data are 
not publicly accessible, the insured will not be able to verify the index value unless they too pay 
for the data. 

4.1.1   Evaluating the Sufficiency of the Weather Station Density 
Given that we know the density of weather stations in a region, the logical next question 
becomes: is this density of weather stations sufficient to support an index insurance product? Of 
course, this is a difficult question and motivates much of the work in this document. It is 
ultimately a question of basis risk. Returning to our conceptual model, practitioners are working 
with three probability distributions (losses, cause of loss, and the index) and two mapping 
functions (losses  cause of loss and cause of loss  the index). Chapter 2 describes how 
to qualitatively assess the distribution of losses and its relationship to the cause of loss. . 
Chapter 3 discusses considerations for selecting an index — that is, it discusses characteristics of 
a data system that would improve the estimation of the probability distribution of the index. 
The current question, whether the density of weather stations is sufficient, is a question of the 
relationship between the cause of loss and the index data (cause of loss  the index). 
Specifically, it is a question of how close a geographic point of interest has to be to a weather 
station for the weather station to adequately measure the weather phenomenon at the point of 
interest. Of course, the answer to this question will depend on the specific weather 
phenomenon being measured. We use rainfall to illustrate these principles but other weather 
phenomena (e.g., temperatures) are likely more spatially correlated and would thus require less 
density of weather stations. Box 6 provides an empirical example for a weather index insurance 
pilot in Vietnam. 

Box 6  Vietnam: Weather Station Infrastructure and Product Offerings 

Our ongoing work in Vietnam provides a good illustration of how the lack of rainfall stations can 
influence what is possible in terms of product design. Vietnam generally has a strong infrastructure for 
weather stations. Authorities have been particularly diligent about putting weather stations near major 
crop production regions. As a centrally planned economy, Vietnam policy makers have influenced 
where certain crops are grown. The project focuses on the important Robusta coffee producing region 
of Dak Lak Province. Station information and rainfall observations were obtained from eleven weather 
stations throughout the coffee growing area. Of these, five stations were selected for the initial pilot   
because their available rainfall data were considered adequate to support a drought insurance 
product. The insurance is designed to compensate coffee growers for the consequential losses of 
severe drought occurring at the beginning of the normal monsoon season.  
Concentric circles are drawn around the pilot stations at 5, 10, and 15 kilometer radii. Given the 
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contract design and our analysis of the spatial presentation of the risk, the insurable area would ideally 
encompass an area no more than 10 kilometers from a weather station in order to minimize basis risk. 
However, the resulting “islands” of insurable areas were also considered to be problematic from an 
insurance operation standpoint. Consequently, the insurable area is expanded to +/− 15 kilometers 
depending on the lay of commune boundaries to develop a single contiguous insurable area.  
Insurable Zones in Dak Lak Province 

 
Source: Authors 
Note: Hatched area indicates where insurance is feasible in the initial pilot 

This area represents some of the densest coffee plantings in the region, approximately one half of the 
total area planted. To cope with the possibility of increased basis risk, insured growers in areas that 
intersect two stations at the 15 kilometer distance are given the choice of which station to associate 
with, based on their knowledge of local weather conditions. In addition, the threshold for payouts is 
set at significantly catastrophic levels to help avoid the possibility of payments without loss. This 
project demonstrates that, even in a country that has a strong weather observation infrastructure such 
as Vietnam, difficulties are frequently encountered due to data quality and density of observation 
points that limit insurance possibilities. The project also demonstrates how it is often necessary to find 
innovative solutions to technical limitations in order for an insurance to be operationally feasible. 

An important area of meteorological research is comparing the accuracy of alternative data 
sources in estimating rainfall values. Thus, an important question for this research is how well a 
data system (e.g., a grid of weather stations) is likely to predict rainfall values in the region. In 
this context, the basis risk associated with differences between the cause of loss and the index is 
described as estimation error. Consistent with the theme of this of this document that weather 
is context specific — it depends on topography and other factors influencing the spatial and 
temporal presentation of a weather event — the meteorological literature identifies many 
variables that hinder rainfall estimation. Lebel and Amani (1999) report that the following 
factors contribute to this estimation error:  
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1. Size of the area of estimation; 
2. Number of weather stations; 
3. Geometry of how the weather stations are dispersed; 
4. Spatial presentation of rainfall; 
5. Temporal presentation of rainfall (e.g., rainfall accumulation); 
6. Mean rainfall depth; 
7. Type of rainfall; 
8. Meteorological conditions; and 
9. Season. 

These researchers develop an error function that captures many of these variables (Ali, Lebel, 
and Amani, 2005). They use this error function for making comparisons across rainfall data 
sources (e.g., weather stations to satellite data sources, Ali et al., 2005). It should be noted that 
Ali, Lebel, and Amani (2005) develop the error function to be a general form for comparisons 
across regions and data sources; however, their research is in applications in the Sahel and thus 
the function may have unforeseen regional influences. As noted above, the presentation of 
rainfall can vary greatly across regions of the world, and even across seasons in the same region. 
We provide their error function here to illustrate the relationship between this form of basis risk 
(error) and these important variables. 
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where e is the error, A is the area in km2, gN is the number of weather stations, TK  is the 
number of rain events during the period of measurement, TP  is total rainfall during the period of 
measurement, and the C  elements are parameters fitted based on local conditions (e.g., 
topography, geometry of the weather station dispersion, etc.). 

Many of the relationships in the error function are not surprising but are worth noting. We 
consider the marginal effect of each variable — that is, the effect of increasing this variable 
holding all other variables constant. First, increasing the area assessed A  increases the error 
term. The number of rain events and total rainfall are inversely related to error so rainfall 
estimations in regions that experience generally few rainfall events and low rainfall tend to have 
higher error than rainfall estimations in regions generally experiencing more events and higher 
rainfall (Ali, Lebel, and Amani, 2005). Perhaps the most important implications are that the 
number of weather stations gN  is inversely related to the error term and the error term is 

convex in gN .14

                                                 
14 That is, 

 This implies that increasing the number of weather stations decreases the 
magnitude of rainfall estimation errors but each additional weather station contributes less and 
less to decreasing the magnitude of the error. 
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Lebel and Amani (1999) estimate the error associated with using 10-day cumulative rainfall 
values for a 100 km by 100 km area with 10 weather stations in the Sahel. If weather stations 
are distributed to provide equal coverage across the 10,000 km2 area, any point in the area 
should be within approximately 18 km of a weather station.15

4.1.2   Estimated Costs of Populating and Maintaining Weather Stations 

 Estimation error tends to be 10 to 
15 percent for this scenario. In other words, under these assumptions, the actual 10-day 
cumulative rainfall at any point within 18 km of the weather station may differ from the rainfall 
measured at the weather station by as much as 10 to 15 percent. Lebel and Amani also note 
that weather stations are of much lower density than this for almost all of the Sahel.  

What would it cost to increase the density of weather stations on which index insurance could 
be based. Instruments for measuring weather phenomena come in a wide range of prices. As an 
example, consider that a simple plastic rain gauge can be purchased for as little as USD 5.00 
while more advanced automatic weather stations with rain gauges cost between USD 12,000 
and USD 15,000.  

At a minimum, a basic automatic rain gauge would cost several hundred dollars (US). In 
addition, several add-ons would likely be required. Data loggers are not standard equipment on 
most automatic rain gauges. Data loggers come with a variety of features that influence the 
price. The most simple data loggers, that do not have remote access, cost around USD 130 but 
they also require software that costs anywhere from USD 55 to USD 125. To access the data 
logger remotely, more complex data loggers are required. These are priced from USD 435 to 
USD 1,440. The user may also need to purchase additional software that can cost as much as 
USD 600. Remote access to the data logger also requires that the data logger be equipped with 
either a landline phone, mobile phone, radio, satellite capability, or some other mechanism for 
transmitting data from the data logger to a remote computer. 

Automatic rain gauges also require a power source. Some rain gauges are battery powered, 
though battery life can be limited to one year. The more advanced gauges are electric or solar-
powered with backup batteries. Solar panels cost around USD 135 for 5 watts, which is enough 
to power some rain gauges, but others might require more power and more expensive panels. 
Other add-ons include mounting plates and brackets (USD 40–USD 90), wind screens (USD 465), 
stands (USD 100–USD 300), calibrators (USD 125), and various types of cables and adapters (USD 
100–USD 300). 

For most automatic rain gauges, regular maintenance is required to clean out any debris (leaves, 
sticks, etc.) from the rain gauge and wipe out mud and dirt. Sensors may need to be replaced on 
a regular schedule (e.g., every six months or annually). Regularly scheduled recalibration is also 
required. While parts (such as washers and bearings) will occasionally need to be replaced, rain 
gauges typically last between 5 and 20 years. The lifespan of a rain gauge depends on the 
location; a location with many storms (sandstorms, windstorms, rainstorms, etc.), will wear a 
rain gauge more than one with only occasional storms.  

Based on this information, it seems that a basic automatic rain gauge with remote access to the 
data logger would cost, at a minimum, between USD 1,500 and USD 2,000. A weather 
                                                 
15 Each of the 10 weather stations would cover an area of 1,000 km2. Any point within the 1,000 km2 area 
of a circle around the weather station should be within approximately 18 km of the weather station; 

2radiusπarea ×=  so if area = 1,000, the radius is 17.84. 
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observation station that measures weather phenomena other than just rainfall would cost 
significantly more. This estimate does not include the cost of installing the rain gauge, the power 
source, the remote access mechanism (e.g., internet or mobile phone), or any security measures 
(e.g., fencing). Nor does it include the cost of shipping the equipment and materials to the site. 
Also not included are the recurring costs for routine maintenance. These recurring costs can be 
quite significant. Many lower income countries have weather stations that have been 
abandoned because of an inability to pay for the recurring costs of maintenance and upkeep.  

So, what quality of rain gauge is required to support an index insurance offer? For example, 
would all the rain gauges used for index insurance offers in a given area need to be fully 
automatic with data loggers that support remote access? Unfortunately, there are no 
straightforward answers to these questions. While reinsurers would like weather index 
insurance to be based on the best possible weather measuring instruments, they may be willing 
to utilize data from something other than the most advanced weather stations if cross-
verification can be done using data from nearby fallback (or “buddy”) stations. Alternatively, 
satellite or reanalysis data can sometimes be used for cross-verification. 

The answer to the “how good is good enough” question may also depend on various 
characteristics of the insurance contract. If the contract triggers indemnities for relatively small 
rain shortfalls (e.g., 10 percent below the expected value), reinsurers are likely to insist on more 
sophisticated rain gauges. If the contract triggers indemnities only for the most extreme 
droughts (e.g., 40–50 percent below the expected rainfall value), reinsurers may accept less 
sophisticated rain gauges because they can cross-verify such catastrophic events using other 
data sources. If the contract is for a relatively short period of time, e.g., cumulative rainfall over 
a 10-day period, reinsurers will want better rain gauges. If the contract is for cumulative rainfall 
over a seasonal period of 60–90 days, reinsurers may accept less precise instruments.16

Thus, there is no clear cut answer to the question of what it would cost to populate a region 
with weather stations that are adequate to support index insurance offers. Instead the answer 
depends to the characteristics of the insurance contract and the availability of alternative data 
sources that can be used for cross-verification. For automatic weather stations with data loggers 
than can be accessed remotely, one must also consider the costs of shipping, installation, 
providing a power source, providing a remote access mechanism, and any security measures. It 
is also critically important to recognize that this is not just a one-time cost. Any weather station 
must be maintained. Fully automatic weather stations must be maintained by highly skilled 
professionals. The recurring cost of performing maintenance on automatic weather stations 
located in rural areas of lower income countries is likely to be quite significant. 

  

4.1.3   Spatially Interpolated Weather Station Data 
The discussion in the previous chapters suggests that the availability of weather index insurance 
will be severely limited if each index must be based on actual data from a single weather station. 
In areas where a weather station is not available, an alternative might be to create indexes 
based on spatially interpolated data from surrounding weather stations. 

                                                 
16 For temperature-based index insurance, reinsurers will require very sophisticated weather stations if 
insuring against minimum or maximum temperatures during a window of time. Less sophisticated 
instruments may be acceptable for contracts based on average temperatures or cumulative temperatures 
(e.g., growing degree days). 
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Spatial interpolation describes the process of using data from weather stations to estimate 
weather variables (e.g., rainfall) at a specific point between these stations. The most basic 
spatial interpolation models assume that the available data are distributed independently 
according to the normal distribution, meaning that taking an average of the observed data 
points should give a reliable estimate of the value at the unobserved target point. However, 
weather variables are not always normally distributed or independent. Cumulative rainfall, for 
example, is frequently modeled using a Gamma distribution and during certain times of the year 
the amount of rainfall in one area may be highly correlated with the rainfall in a neighboring 
area.  

Kriging is a spatial interpolation technique designed to correct for these correlations and give a 
weight to each observed data point based on its expected relationship to the unobserved point 
whose value is being estimated — this expected relationship depends on geographic distance, 
topography, etc. (see Bohling, 2005, for a general introduction to kriging). Kriging is a linear 
regression model, which provides not just an estimate of the unknown value but also a rough 
approximation of its accuracy. While there are many types of kriging, each distinguished by the 
way it assigns these weights, the easiest way to think about kriging is to imagine that you have 
the set of observations (lettered A–E) and are trying to measure a value at some unobserved 
target point X as illustrated below: 

 

In this case, rainfall data from point E would have a low weight in the equation (Ali, Lebel, and 
Amani, 2005; see the equation in Section 4.1.1) because it is far from X. Points A, B, and C will 
also be discounted because they are located so close to each other that there is likely a high 
covariance between the observations taken at each of these points — meaning that they are, to 
some degree, redundant. Point D will likely have the highest weight because it is both close to X 
and is not overlapping with other values from the same neighborhood (low covariance with 
other observed values). 

There are a few basic types of kriging that may prove useful in constructing weather indexes. 
Simple kriging assumes a single mean for the entire area of interest (similar to estimating based 
on the normal distribution). In ordinary kriging, the weights that are assigned to various data 
points reflect the assumption that individual regions each have a local mean. The boundaries of 
those regions are determined by a variogram, a statistical measure specific to the spatial 
distribution. In universal kriging, these local means are replaced by linear functions that 
estimate how values change as they approach the estimation target point. Finally, indicator 
kriging uses some underlying variable that can be measured at the target point as well as the 
known data points and tries to create an index relating the easily observed variable to the data-
scarce target variable (rainfall). Sophisticated kriging models sometimes also use the general 
pattern of the spatial and temporal presentation of the weather event to enhance point 
estimates.  
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While kriging is a very robust estimation process in many circumstances, giving estimates with 
low mean squared errors, it suffers from one particularly important drawback. Kriging 
systematically underestimates the likelihood of extreme values at unobserved target points. It is 
by definition a weighted average of observed results. Consequently, its estimates tend to be 
drawn down by averaging the extreme observations with less extreme observations in the data. 
This is an important shortcoming for potential index insurance applications. 

4.2   Reaction and Looking Forward 
The data available from the NCDC (and others) indicate that weather station infrastructure is 
underdeveloped in many regions, especially regions of Africa, to a degree that likely prevents 
weather index insurance products based on weather stations or at least limits the types of 
products that could be offered. Our analysis of the cost of purchasing, installing, and 
maintaining new weathers stations indicates that these costs can seem quite high if the sole 
purpose is to support a weather index insurance program. A several thousand dollar per station 
investment could take years to recuperate based on the premium payments from poor 
households in the rural regions that the weather station would serve. Nonetheless, it is certainly 
worth noting that systems which provide publicly available weather data are public goods that 
can provide countries with many positive benefits beyond the potential for a weather index 
insurance program.  

It is the ongoing mission of WMO and others to help governments appreciate the many social 
benefits of strong weather data, for example, for improved disaster response. WMO (2008) 
developed a report highlighting the challenges of, and rationale for, developing adequate 
weather information systems in developing countries. We describe some of the WMO findings 
in Box 7. 

Box 7  World Meteorological Organization (WMO) Perspective: The Needs of 
National Meteorological and Hydrological Services (NMHS) Providers in Africa 

WMO developed a report highlighting the challenges of adequate early warning systems in developing 
countries. Records of accurate and frequent weather observations provide countries with the ability to 
predict and plan for hazardous weather events. Natural disasters often result in casualties and resource 
losses, and 90 percent of the disasters from 1980 to 2005 were weather or climate related (WMO, 
2008, p. 2). Weather related disasters are particularly devastating to lower income countries where 
early warning systems also tend to be underdeveloped and underfunded (p. 18). Instead of risk 
assessment and efforts that prevent casualties and economic disaster, these countries tend to focus on 
actions to take after a weather crisis (p. 16). Early warning systems include weather analysis, 
forecasting, and warning capacities and data collection (e.g. from observations, radar, satellite, etc.) 
and analysis by skilled workers, data storage through computer systems and information technology, 
infrastructure maintenance, and information dissemination. The WMO reports that ongoing funding is 
needed for these services provided by the National Meteorological and Hydrological Services (NMHS). 
Having a coordinated system that has clear technical guidelines implemented by a well-trained staff 
and information technology to support the communication and data transfer needs can protect the 
people and properties of every country (p. 17). 

If they have suitable technology and funds, NMHS providers can provide essential services such as 
warnings for weather related hazards, assistance to emergency response organizations, data analysis 
for development and crisis preparation, education of the public on potential disasters and the actions 
to take before, during, and after such disasters, and recommendations to improve emergency 
notification and response (p. 6). These services can also help scientists monitor trends to guide 
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investment policies, provide methods for improving crop production by indicating prime sowing and 
harvesting periods, indicate areas of land that are vulnerable to flooding, and prevent the loss of life 
and resources through emergency preparedness and response data. However, less-developed areas, 
including many of the countries in Africa, are not able to fund these services.  

Underdeveloped early warning systems exist in almost all lower income countries; however, since 33 of 
the 50 countries the United Nations considers “least developed” (p. 37) are in Africa, the most 
significant NMHS needs are there. In a survey given by WMO to African NMHS providers, 100 percent 
of the respondents report that technical improvements to the warning systems would enable them to 
improve their disaster prevention capabilities (p. 30). Ninety-two percent of respondents also say that 
a better prepared staff would also improve the risk assessment ability of NMHS providers (p. 30). Most 
(92 percent) of the responding NMHS providers in Africa also think that government needs to recognize 
the importance of the NMHS in reducing weather risks (p. 36). According to the WMO report, 96 
percent of respondents claim that they are unable to provide the best services because of a lack of 
resources and a weak infrastructure, with limited funds and well-trained staff cited as the biggest 
problems (p. 37). The report concludes that many African NMHS providers need to improve record-
keeping, policy guidelines, organizational partnerships and memberships, observation networks, 
telecommunications, warning systems, quality control, and risk assessment tools, among others (pp. 
39–42). These improvements cannot be made without continued assistance from organizations and 
governments. Most projects that have attempted to assist African NMHS providers have a limited 
timeframe, but the improvements needed in Africa require long-term support that typically must come 
from government (p. 43). 

Source: WMO, 2008 

Given the high costs of purchasing, installing, and maintaining new weather stations, it may be 
difficult to scale up weather index insurance offers into areas that have sparse weather stations. 
This is particularly true for products that require estimating rainfall at a specific point (e.g., 
household products). In response, we arrive at two conclusions to guide future index insurance 
product development. First, in many regions, due to data constraints the development of risk 
aggregator products will be more feasible than for household products. While some regions may 
have data systems sufficient to support the development of scalable household products, these 
are likely to be the exception rather than the rule. Instead, we encourage the development of 
risk aggregator products, which tend to have much lower data requirements. Second, since 
weather station infrastructure is likely inadequate to support scaled-up index insurance offers in 
many lower income countries, it is important to investigate the potential for using data collected 
from alternative sources, such as satellites. We discuss special considerations associated with 
remotely-sensed data, and consider the potential index insurance applications of these data. 

4.2.1   Data Constraints Are Less Binding for Risk Aggregator Products than 
Household Products 

The spatial specificity demands of index insurance depend greatly depend on product design — 
risk aggregator products require regional data (e.g., each data point represents an area of, say, 
50 km × 50 km or 100 km × 100 km) while household products tend to require location-specific 
data. Risk aggregator products and household products tend to be quite different in terms of 
the cause of loss, which in turn has implications for the index. As an illustration, consider two 
insurance product designs in the same region — a household product and a risk aggregator 
product, both protecting against deficit rainfall. For the household product, the cause of loss is 
deficit rainfall at the site where the household lives and works (for simplicity, suppose 
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households tend to own and live on small farms). Thus, the household product needs an index 
that approximates deficit rainfall at a specific, geographic location (e.g., the site of the 
household’s farmland). The risk aggregator product is designed for a bank that lends to 
households and firms in a rural region. The bank is exposed to extreme deficit rain that results in 
high levels of loan defaults and savings withdrawals. This, in turn, leads to liquidity constraints 
and large losses for the bank. Thus, the cause of loss is extreme deficit rainfall over the whole 
region where its clients live and work. For the risk aggregator product, the index needs to 
approximate rainfall in the region, not at a specific location within that region. 

This difference in data needs result in much less challenging data requirements for risk 
aggregator products. There are several reasons for this. First, it is easier to estimate regional 
values than to estimate the value at a specific geographic point in that region. Second, as 
indicated earlier, using several weather stations tends to lower estimation error compared to 
using a single weather station (Ali, Lebel, and Amani, 2005; see the equation in Section 4.1.1). 
Ali, Lebel, and Amani (2005) analyze two scenarios of comparable weather station density in the 
Sahel, one weather station in a 1° × 1° (latitude by longitude) area and six weather stations in a 
2.5° × 2.5° area. They find that using the six weather stations results in lower error than using 
the single station. Third, risk aggregators tend to be affected by the most extreme events and so 
risk aggregator products are likely to be designed around extreme events. We propose a 
research agenda for the SKR based on our hypothesis that losses from extreme events tend to 
be more highly spatially correlated than for moderate losses (Chapter 5 and Appendix B).  

In sum, risk aggregator products are likely to be a “low hanging fruit” for practitioners facing 
significant data constraints. Many regions of the world simply do not have the data capabilities 
to support household products, and the cost of developing weather station infrastructure is 
likely to be so expensive that the opportunity costs of weather index insurance development 
may exceed the benefits. As will be developed in a subsequent SKR, risk aggregator products 
have the potential to provide immediate positive benefits through enhanced performance of 
risk aggregators — providing important services to the region as well as the longer-term benefit 
of insurance market development, which may lead to a broader range of insurance products in 
the future. 

4.2.2   Alternatives to Use of Weather Stations 
Given the constraints associated with existing weather stations both in terms of the sparsity and 
the high maintenance cost, alternative data sources are needed to improve the scalability of 
weather index insurance. One promising source is the variety of observational measurements 
obtained from satellite-based or aircraft mounted remote sensors. In some cases there is as 
much as 30 years of data covering much of the globe. Other practical advantages of data 
collected from satellite platforms are the uniformity of the measurements and the systems, and 
the ability to standardize the data acquisition contracts. These factors improve the potential 
scalability of index insurance products using remotely sensed data. One limiting factor in the 
past was the computational power and data storage requirements needed to effectively and 
routinely use remotely sensed data. As these constraints ease, and as the science of these 
information systems advances, there may be significant opportunities to advance index 
insurance product development. As with any climate observation system, remotely sensed data 
has its own set of limitations and constraints. 
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4.2.2.1   ADDITIONAL CONSIDERATIONS FOR SATELLITE-BASED TECHNOLOGIES 
The considerations discussed in Chapter 3 also apply to remotely sensed data. However, 
because of challenges associated specifically with using satellite-based data for assessing the 
pure risk and for making contract settlement, we provide several considerations here that 
extend the discussion in Chapter 3. 

Length and Continuity of Time Series. Some of the initial satellites collecting ongoing 
meteorological data went online in the late 1970s and early 1980s. Thus, they have an 
approximately 30-year length of available historical data. Satellite classification is related to the 
potential length and continuity of an observational data series. Net continuity in a data series, 
which can be related to satellite failure risk or the end of a specific program, must be evaluated 
during the design phase of an index program based on remote sensing. Understanding 
operational capacity, of having a continuity plan in place in case of satellite or sensor failure, will 
help in assessing the risk that index settlement data will not be collected. There are four classes 
of satellites (Hipple, 2010): 

• Experimental: characterized by a limited time series and operational life. 

• Research: data series may be lengthy or short although data cost may be low. Usually no 
continuity plan is in place so there exists insurance settlement risk from satellite failure. 
All NASA satellites are research orientated although they may feature lengthy data 
series, such as those from MODIS. 

• Non-commercial operational: government operated systems, such as the NOAA-N Series 
(AVHRR), characterized by low cost data with continuity plans which reduces insurance 
settlement risk.  

• Commercial operational: characterized by good continuity providing there is sufficient 
demand, and the possibility of high resolution imagery. Data are priced to incorporate 
operational costs and capital recovery which may be too expensive for some index 
insurance programs that do not have scale or adequate external support. 

Calibration between and within Sensor Systems. Zenith angle changes due to drift and orbit 
changes, aging of the sensor, and other variables can create variations in the observations of a 
satellite-based device over time and must be detected and compensated for in the algorithms 
used to interpret the radiometric readings. Such challenges are especially true for data collected 
in the 1980s and early 1990s (e.g., see Box 8 for a review of AVHRR). Newer sensor arrays 
correct for some of these problems (Fensholt et al., 2009). A much investigated challenge is 
matching data collected from one sensor system with data collected from another (e.g., Ali et 
al., 2005; Fensholt et al., 2009; Uppala et al., 2005). Comparing across satellites using the same 
technology also requires calibration; however, the most challenging calibration is comparing 
across technologies. While newer technologies overcome problems with older satellite-based 
technologies, these changes can also create discontinuities in the data. While multiple systems 
created data redundancy, one must also ask how much variation is acceptable in index values 
across different technologies. In a related matter, the algorithms used may differ in subtle ways 
such that when applied to the same raw data they produce different results. Changes in the 
algorithm may also not be routinely reported, particularly from research satellites so 
understanding and documenting the algorithms used is an important part of the insurance 
design process. As Chapter 3 discusses, accurately assessing the pure risk is crucial to the 
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longevity of the index insurance program so practitioners will want to make certain their data 
are consistent across time. 

Spatial Specificity. Increasingly, new applications for satellite-based data are emerging. Much of 
the increase in data demand is associated with climate change analysis. While climate change 
and weather index insurance overlap in terms of important weather variables such as 
temperature and rainfall, climate models can often use data with low spatial specificity, e.g., 1° 
latitude × 1° longitude or greater. One degree of latitude or longitude is roughly equivalent to 
111 km at the equator. Thus, a 1° x 1° spatial resolution provides one data point about every 
12,300 kmPP2PP. Newer sensor systems, particularly those of commercial vendors, offer much 
finer spatial resolution, as small as 1 m. 

Calibration to Ground Level. Similar to calibrating across sensor systems, researchers conduct 
perhaps even more analyses matching satellite-based data with ground-level data. Such 
calibrations can depend on the climatic and topographical features of a region. Thus, 
researchers make these comparisons for specific locations. Perhaps because they are calibrated 
based on the mean, satellite-based technologies tend to measure extreme events poorly (Kahel, 
2009), an unfortunate feature for index insurance. 

4.2.3   Evaluating Satellite-based Technologies 
We consider several satellite-based data sources in the context of index insurance. While we 
have already discussed some of these data sources, this section provides a further review of the 
potential usefulness of these technologies. However, this is meant as an example of some of the 
main sources and is not an exhaustive review of instrumentation or potential applications. In 
particular, vendors of satellite-based data products and vendors of commercial operational 
satellite services are not reviewed. 

4.2.3.1   VEGETATIVE INDEXES: NDVI 
Vegetative indexes comprise a whole class of optical measures of the photosynthetic potential 
of the observed vegetative canopy as a result of total leaf area, chlorophyll levels, cover and 
plant structure. The measurements are used as proxies in estimating these and other plant 
canopy state variables which can be understood as an estimate of plant health (Heute et al., 
2006). There are in excess of twenty different vegetative indices with most derived from sensor 
readings of either an Advanced Very High Resolution Radiometer (AVHRR) or a Moderate-
resolution Imaging Spectroradiometer (MODIS) (Yang, Z. Willis, P., and R. Mueller, 2008). Other 
indexes can be created using a combination of optical and other sensory data such as moisture 
or thermal readings. The choice of vegetative or related index to use as a proxy for loss in an 
index-based insurance product will depend on how well the index correlates with the 
phonological cycle during critical time frames for a particular crop. As with any index, validation 
with in situ historical data is necessary, particularly for those years known to have generated 
significant losses. 

The Normalized Difference Vegetative Index (NDVI) is one of the most commonly used satellite-
based vegetative indexes for weather index insurance (Box 8). It has high spatial specificity, and 
a relatively long time series. It is frequently used as a proxy for drought conditions based on the 
estimate of plant health. An index insurance pilot based on NDVI is currently being developed to 
insure against drought risk for pastoralists in northern Kenya (Chantarat, 2008). The United 
States Risk Management Agency has since 2007 offered a pilot Pasture, Rangeland and Forage 
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(PRF) insurance product which is an area based vegetative index using NDVI data. In addition to 
the PRF product that is currently offered in nine states, a pilot apiculture insurance product has 
been developed that also utilizes NDVI data (Alston, 2010). 

Box 8  Normalized Difference Vegetation Index (NDVI) 

NDVI is a measure of vegetation density. Data are collected by Advanced Very High Resolution 
Radiometer (AVHRR) sensors on polar orbiting satellites managed by the U.S. National Oceanic and 
Atmospheric Administration ([NOAA]; NationalAtlas.gov, 2009). AVHRR measures both the visible light 
spectrum and the near infrared light spectrum. While plants absorb visible light for photosynthesis, 
they reflect near infrared light. Thus, discrepancies in the reflection of visible light to near infrared light 
are an indication of plant life (Weler and Heming, 2010). Researchers use an algorithm that transforms 
light wavelengths into estimates of vegetation density. Less healthy plants absorb less visible light so 
NDVI is also an indicator of plant health. By comparing historical NDVI values to present values, NDVI is 
being used to assess drought in some contexts (Bayarjargal et al., 2006; Peters et al., 2002). Satellite 
data also provide estimates of rainfall and temperature, which have been used in conjunction with 
NDVI data to create other drought estimation models; however, these different models yield differing 
results. Determining which NDVI-based models are most appropriate depends on the potential 
application of the model (Bayarjargal et al., 2006; White and Walcott, 2009). 

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a newer sensor technology than 
AVHRR and is implemented on two polar orbiting satellites, Terra and Aqua, which are managed by the 
U.S. National Aeronautics and Space Administration (NASA, 2010c). MODIS has a higher spatial 
resolution and overcomes some problems experienced by AVHRR (Weler and Heming, 2010). Studies 
comparing NDVI data from AVHRR and MODIS find important differences in these data sources (e.g., 
Fensholt et al., 2009). Newer sensor technologies (e.g., the Visible Infrared Imaging Radiometer Suite) 
are being advanced to replace MODIS in 2013 (NASA, 2010c). 

Spatial specificity:  AVHRR, 1 km2

   MODIS, 250 m2 

Temporal specificity:  Daily (both AVHRR and MODIS) 

Length of time series: AVHRR, 1981 to present (NationalAtlas.gov, 2009) 

MODIS, 1999 to present (NASA, 2010a) 

AVHRR and MODIS have several data collection problems: imaging can be blocked by cloud cover and 
aerosols in the atmosphere, glare from the sun can saturate the color spectrum, and the satellites can 
malfunction (Weler and Heming, 2010). Because of these problems, researchers often use composite 
NDVI data that combines data from several days (e.g., a 10-day index; Chen et al., 2004) and several 
data pixels (e.g., 8 km resolution; Tucker et al., 2005). 

Application of NDVI should be done with care. Despite its high spatial resolution, NDVI may not 
be useful for identifying drought conditions in a specific location. The method for predicting 
drought with NDVI depends on comparing the current value of NDVI for that location and time 
of year to NDVI values in previous years, which collectively is termed “normal.” On a small scale 
this approach can be problematic because land use may change. The biggest challenge in this 
regard is that different crops have different light requirements. Comparing across different 
crops, Thenkabail, Smith, and DePauw (2000) found crop growth was optimally modeled using 
different light bandwidths for different crops. NDVI values in a specific location may change if 
farmers plant a different crop than in previous years, or intercrop in some years and not others. 
One could envision a scenario in which a certain commodity price increases and the crop profile 
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for a whole region alters, affecting NDVI values. Likewise, if farmers anticipate drought and plant 
different crops, it may change the NDVI assessment of drought in that location. 

NDVI may also be problematic in situations where there is significant upper tree canopy or brush 
cover such that it becomes difficult to accurately estimate crop plant health. NDVI may also not 
be the most appropriate choice for an index product that focuses on yield outcomes when 
photosynthetic capacity is not the main yield determinant.  

As a result, NDVI is perhaps best used as a gross indicator of plant health in a region. This lends 
itself well to the use of NDVI for pastoralists who are concerned about grassland vegetation in 
regions such as northern Kenya. Index insurance using NDVI is likely most appropriate for 
insuring against extreme droughts that are likely to have widespread effects. Additionally, it may 
be most useful for risk aggregators that are particularly vulnerable to regional effects. 

4.2.3.2   SATELLITE MEASUREMENT OF RAINFALL 
Over the past 10 to 15 years, several high-resolution products for estimating rainfall from 
orbiting satellites have been developed and implemented (Box 9). Satellite rainfall products use 
algorithms that combine data from multiple satellites to estimate ground-level rainfall. It is 
important to remember that these observations are made from orbit, looking down on and 
through clouds. To identify how much it rains from this perspective requires identifying both the 
intensity and duration of rainfall, yet because satellites are in orbit they are sometimes unable 
to observe a cloud for the duration of a storm. 

Satellites estimate rainfall using infrared and passive microwave radiation data. Infrared 
temperature observations of the tops of clouds provide an estimate of the intensity of rainfall. 
Passive microwave radiation can be measured through clouds, identifying the energy emitted by 
rain drops to estimate the intensity and vertical distribution of rainfall. Infrared rainfall 
estimates tend to be less accurate than the passive microwave data; however, infrared data can 
be collected by more satellites. Given the coverage of orbiting satellites, infrared data can be 
measured continuously across the globe and are used to “fill in the gaps” when passive 
microwave data on rainfall are unavailable (NASA, 2010d). 

Comparisons of satellite estimates of rainfall to ground-level observations show that satellite 
estimates contain significant error, but these estimates are improving. Generally, satellite 
rainfall products tend to correlate better to gauge-based data in warm seasons than in cold 
seasons, and correlate better in wetter regions than drier regions (Shen, Xiong, and Xie, 2008). 
Complex, varying terrains also challenge satellite rainfall products (Dinku et al., 2008).  
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Box 9  Satellite Estimates of Rainfall 

We profile four satellite rainfall products that use algorithms to combine infrared, microwave, and 
(sometimes) rain gauge data to estimate rainfall. One of the satellites, TRMM, is the only satellite with 
weather radar and so has additional rainfall estimation capabilities (NASA, 2010b). One of the other 
satellite rainfall products, PERSIANN, also includes TRMM as part of its algorithm. 

Product* 
Spatial 

Specificity 
Temporal 
Specificity Time Series 

Geographic 
Area Data Type 

CMORPH 0.07° x 0.07° 
(8 km at the 

equator) 

30 minutes December 3, 
2002 to 
present 

Global 
60°N–60°S 

MW, IR 

TRMM 3B42 0.25° x 0.25° 3 hours January 1, 
1998 to 
present 

Latitude 
50°S–50°N 

MW, IR, RG 

PERSIANN 0.25° x 0.25° 30 minutes 
accumulated 

to 6 hours 

1997 to 
present 

Global 
50°S–50°N 

IR, MW, RG, 
TRMM 

Africa RFE 2.0 0.25° 6 hours January 1, 
2001 to 
present 

20°E–55°W 

40°S–40°N 
(Africa) 

IR, MW, RG 

Intercomparisons of these rainfall products indicate that CMORPH tends to perform best (Sapiano and 
Arkin, 2009). However, CMORPH tends to significantly overestimate rainfall during warm seasons 
(Zeweldi and Gebremichael, 2009). In other studies, CMORPH underestimates rainfall. For example, 
Shen, Xiong, and Xie (2008) find that in China, CMORPH and PERSIANN underestimate rainfall, while 
TRMM 3B42 overestimate rainfall. In that study, the mean biases of satellite rainfall products ranged 
from -10 to +5.7 percent, depending on the product — the least biased product is one of the TRMM 
products and was -3.7 percent. A comparison of rainfall products in Africa indicates RFE 2.0, CMORPH, 
and TRMM satellites perform comparably overall (Dinku et al., 2008); however, on complex terrain, 
RFE 2.0 and TRMM 3B442 perform best and PERSIANN performs worst (Laws, Janowiak, and Huffman, 
2004). Laws, Janowiak, and Huffman (2004) found satellite rainfall products tended to be positively 
biased for low daily rainfall values (values under 11 mm) and negatively biased for high daily rainfall 
(values greater than 20 mm). 

Satellite-based estimates of rainfall are expected to improve in the future, especially as passive 
microwave sensors become more prevalent among orbiting satellites. For example in 2004, 6 passive 
microwave sensors were used by CMORPH (Joyce et al., 2004); as of December 2009, CMOPRH used 9 
passive microwave sensors (CPC, 2009). 
*This table was developed from product descriptions on NASA and NOAA websites. In the last column IR 
is infrared, MW is passive microwave, RG is rain gauge, and TRMM is the satellite Tropical Rainfall 
Measuring Mission. 
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4.2.3.3   SAR 
Synthetic aperture radar (SAR) is used to map contours of geospatial environments such as fault 
lines in earthquake-prone regions (Box 10). More importantly for index insurance, it can be used 
to map the contours of extensive flooding. Satellite-based systems for collecting SAR data share 
all the advantages of other satellite-based data systems (e.g., low marginal cost and large 
coverage areas). However, SAR has the unique advantage of being able to penetrate cloud 
cover.  

Satellite-based SAR data also share a problem of other satellite-based data systems. There are 
gaps in the data collected because the satellite is only in a position to collect images for a given 
location for a few days out of every orbit cycle. This means that there are necessarily gaps in the 
historical record of images that may include key moments in weather or natural disaster events 
(Holecz, 2009). The question of SAR data coverage is further complicated by the fact that SAR 
satellite images are made to order. While a SAR satellite may be in position where it could be 
taking images of flooding in a given delta in Vietnam, for example, it may instead be recording 
data from other regions within its field of view that have a higher priority. This means that there 
is no guarantee that index insurance professionals can access a continuous historical record of 
SAR data for any given point on earth (MDA, 2009).  

Researchers have begun using existing SAR systems for new purposes such as satellite-based 
measuring of wind speed in hurricanes. Such measurements remain in development and are not 
yet widely available (Schiermeier, 2005). 

Box 10  Synthetic Aperture Radar (SAR) 

Just as ship navigators use radar to map the contours of their environment regardless of fog or 
inclement weather, geoscientists use radar to monitor geospatial change when other imaging 
technologies would be obscured by cloud cover. In the past, the resolution of radar-based images was 
limited by the size of the antenna used to send and receive radar signals. The roughly hundred meter 
long antennas needed to produce high resolution images simply could not fit on an aircraft or satellite. 
The Synthetic Aperture Radar (SAR) process solves this problem, simulating long antenna by recording 
the echoes of radar beams emitted at regular intervals and compiling the resulting data as though it 
came from one long antenna (Sandia National Laboratories, 2008).  

While areas of particular interest to geoscience, such as the major fault lines of California, are now 
monitored by SAR using unmanned aircraft, most SAR data relevant to index insurance come from one 
of the handful of SAR equipped satellites (Radarsat-2, Envisat, ALOS, TerraSAR-X, among others) 
orbiting the earth (NASA, 2010e; Lotsch, Dick, and Manuamorn, 2009).  

Spatial specificity: Varies by satellite and mode 

• Wide beam mode: image field covers 500 km2 with a pixel size of 100 m2 

• Spotlight mode: image field covers 50 km2 with a pixel size of 1–3 m2 (Schiermeier, 2007; MDA, 
2009) 

Temporal specificity: The orbit cycles of existing satellites range from 11 to 41 days. While most of the 
newer satellites can record images of a given location during multiple days in every orbit, there 
remains some significant percentage of each orbit for which images of a given area are not available. 
With newer satellites that black out period is as short as 4 days (Holecz, 2009; Schiermeier, 2007).  

Length of time series: Various SAR equipped satellites have been in continuous operation since 1991. 
However, as mentioned above, not all regions of the globe were under continuous monitoring during 
this time so historical coverage varies by location (Schiermeier, 2007). 
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Many additional SAR equipped satellites are planned for launch in the upcoming years. In particular, 
the European Space Agency Sentinel-1 satellite, scheduled in 2011, promises to make a significant 
contribution to the problem of sporadic data availability. It will acquire SAR images covering the whole 
planet every 6 days (Holecz, 2009). 

4.2.3.4   REANALYSIS DATA 
Reanalysis data describes a class of data products that combines and calibrates observations 
from many sources — weather stations, satellites (infrared and microwave imagers), weather 
balloons, ocean buoys, aircraft, and ships (Uppala et al., 2005). Each data source has its own 
time series so there are certain points in these models where there are fewer observations than 
at other points. Reanalysis models use periods of overlap across data sources to “assimilate” the 
data, i.e., to calibrate across data sources. 

First- and second-generation reanalysis models (Box 11) do not seem suitable to act as the index 
for an index insurance program. First, the spatial specificity of these models tends to be too 
coarse (generally 120 km to 210 km). Second, these models tend to inaccurately estimate 
rainfall, especially first-generation models such as NCEP/NCAR (Funk et al., 2003). NCEP/NCAR 
does not use rain gauge data, which likely decreases the accuracy of its rainfall estimates (Funk 
et al., 2003). These first-generation models have discontinuities and biases throughout the time 
series. Poccard, Janicot, and Chamberlin (2000) analyzed NCEP/NCAR for Africa. They found an 
abrupt shift in the data in 1967 that affects data for almost all of tropical Africa. NCEP/NCAR 
tended to underestimate rainfall during the peak of the rainy season across regions in Africa. 
These authors conclude that NCEP/NCAR is useful for studying “large-scale climate dynamics” 
but significant problems restrict the use of NCEP/NCAR for studying “regional long-term 
variations.” Newer reanalysis models seem to be much improved including higher spatial 
specificity. However, accurately estimating rainfall is quite difficult for these models, too. For 
example, ERA-Interim tended to overestimate rainfall during the rainy season for eight tested 
regions in Africa (Sylla et al., 2009). 

Specialized data products that incorporate reanalysis models (e.g., CMAP and CHARM) tend to 
show some improvement over the pure reanalysis models, but also seem too inaccurate to 
supply data for an index insurance product. Using data from the Sahel, Ali et al. (2005) show that 
the reanalysis models used in that study (which included CMAP) tend to show regression to the 
mean for both types of extreme events (an underestimating of excess rainfall and an 
overestimation of deficit rainfall). Additionally, Funk et al. (2003) compared CHARM to 
interpolated rain gauge data for two regions, one in southern Mali and another in western 
Kenya. CHARM tended to underestimate extreme events in Mali and Kenya. CHARM showed 
positive bias for rainfall in Kenya, and negative bias in Mali. Funk et al. (2003), who developed 
CHARM, conclude that “neither the CHARM nor a [pure satellite] product is likely to be skillful at 
a mesoscale resolution.” (p. 59) 

Reanalysis models have come a long way in a short period of time, and reanalysis models 
developed in the not too distant future may be sufficient to generate data for index insurance 
products. Models under current development are reaching a level of spatial specificity 
(approximately 35 km for Climate Forecast System Reanalysis and Reforecast {CFSRR]) that may 
be sufficient to support some index insurance products. Climate modelers are likely to continue 
to improve the accuracy of reanalysis models, making them more feasible for index insurance 
applications. 



State of Knowledge Report — Data Requirements for the Design of Weather Index Insurance 
Chapter 4  Real-World Data Constraints: Limited Weather Station Infrastructure and 

Opportunities for Satellite-based Technologies 

51 

For index insurance, reanalysis products are currently most useful for analyzing the historical 
weather risk. Since even newly developed reanalysis models tend to misestimate rainfall, these 
models would probably not be accurate enough to act as the sole data source for estimating the 
pure risk. 

Box 11  Reanalysis Data 

Reanalysis models typically develop values for their weather-related variables for the entire world. 
Many weather related variables are included in reanalysis models including upper-air and surface wind, 
temperature, humidity, sea surface temperature, land surface temperature (at 2 meters), soil 
temperature, snow depth, infrared and microwave radiances, surface pressure, and oceanic wave 
height (Uppala et al., 2005). The following are the main atmospheric reanalysis models: A 

 

Spatial 
Specificity 

(Approximate)B

Temporal 
Specificity 

(Hour Intervals) Time Series Vintage Status 

NCEP/NCAR 210 km 6 1948–present 1995 Ongoing 
NCEP-DOE 210 km 6 1979–present 2001 Ongoing 
CFSRR (NCEP) 35 km 6 1979–present 2009 In progress 
C20r (NOAA) 220 km 6 1891–present 2009 In progress 
ERA-40 125 km 6 1957–2002 2004 Done 
ERA-Interim 80 km 6 1989–present 2009 Ongoing 
JRA-25 120 km 6 1979–present 2006 Ongoing 
JRA-55 60 km 6 1958–2012 2009 Underway 
MERRA (NASA) 55 km 1–6 1979–present 2009 In progress 

The NCEP/NCAR is one of the first-generation reanalysis models developed in the late 1990s (Kalnay et 
al., 1996; Trenberth et al., 2009) and is often included as a component of more recently developed 
reanalysis models. NCEP/NCAR includes over 80 variables (UCAR, 2010). These first-generation models 
have been widely used but experienced many problems (Trenberth et al., 2009). These models have 
biases that change in magnitude and direction over time. For example, Funk et al. (2003) found for 
Africa the NCEP/NCAR tended to consistently overestimate rainfall in the tropics from 1961 to 1996; 
however, in the northern and southern subtropical regions, the pattern of bias in the 1960s and 1970s 
differed from that in the 1980s and 1990s. Second-generation models such as ERA-40 address some of 
the problems of first-generation models like NCEP/NCAR and tend to outperform these models 
(Trenberth et al., 2009). ERA-40 incorporates data from NCEP/NCAR (Uppala et al., 2005). Instead of 
updating ERA-40, ECMWF has developed ERA-Interim for 1989 to present, a period for which many 
more data sources are available (ECMWF, 2010). New reanalysis models, such as CFSRR under 
development by NCEP, will continue to address problems of previous models. 

Many data products use one of these main reanalysis models as a component but add other important 
variables, depending on the purpose of the data product. For example, CMAP is a data product 
specializing in rainfall, and CHARM is a regional rainfall product for Africa. 
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CMAP provides full global coverage and is intended to improve large-scale rainfall estimates. It uses 
rain gauges, satellite data, and NCEP/NCAR (Xie and Arkin, 1997). CHARM uses interpolated rain gauge, 
topographical, satellite imagery, and NCEP/NCAR reanalysis data. The U.S. Agency for International 
Development Famine Early Warning Systems Network (FEWS NET) uses CHARM to predict the 
development of famine in several African countries.  

There are other reanalysis data series and many other data for the types of weather-related variables 
described above. The University Corporation of Atmospheric Research (UCAR) houses an inventory 
with basic descriptions of these data products at (http://dss.ucar.edu/). 
A Table adapted from Trenberth et al. (2009). 
B Reanalysis models are spectral models and so are measured in terms of spectral resolution, not 
kilometers; however, considering the spatial specificity of these models in terms of approximate 
kilometers is most useful for our purposes. For more on spectral models see Krishnamurti et al. (2006). 
C Funk et al. (2003) note that CHARM data are “generated with a 0.1° [10 km] resolution to facilitate 
integration with satellite-based [rainfall estimates]…the actual resolution of CHARM data are 
considerably courser than 0.1°.” 

4.2.4   Summary of Satellite-based Data Sources 
With the exception of some specific perils in particular locations (e.g., NDVI in some large 
rangeland areas), satellite-based data sources are not currently exploited for index insurance 
products. However, because these technologies continue to improve and because satellites 
have the potential for providing a consistent source of data that covers much of the globe, 
satellite applications could become more prevalent. Two advancements in these technologies 
would be particularly important for index insurance offers. The first is higher spatial specificity in 
the data routinely collected and in the methods to use this data for insurance purposes. For 
certain types of risk aggregator products, high special specificity may not be needed depending 
on the environment. The second is improvements in calibrating data collected from satellites 
with ground-level weather or other in situ data — especially for extreme events. The latter will 
likely be a significant challenge. Calibration is conducted using available data and far more data 
are available for typical events than for extreme events. 

More opportunities exist for using satellite-based data and reanalysis data for estimating the 
pure risk. While reanalysis data may not perfectly match ground-level data, they can provide a 
much longer time series, making these data especially useful for identifying trends. One 
reinsurer reported that his firm uses reanalysis data regularly for this reason. These alternative 
data sources can also be useful when extreme events disrupt ground-level data sources (e.g., if a 
flood washes away a weather station). Satellite-based and reanalysis data sources can also serve 
as a quality check if weather stations provide an unusual data value, can be used to roughly 
price a weather station with little history, and to assess the extent of basis risk around a 
weather station during an extreme event. In sum, these data sources provide more information 

 

Spatial 
Specificity 

(Approximate) 
Temporal 
Specificity Time Series Vintage 

Main Reanalysis 
Model Used 

CMAP 275 km 5-day 1979–2006 1997 NCEP/NCAR 

CHARM UnclearC Daily 1961–1996 2003 NCEP/NCAR 

 

http://dss.ucar.edu/�
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to practitioners, which can reduce ambiguity about the risk and allow insurers and reinsurers to 
price the pure risk more sustainably. Because insurers and reinsurers charge a premium for 
ambiguity, this added information can also lower the cost of the insurance. 

If the market for weather index insurance in lower income countries is going to expand greatly 
beyond current pilot programs, offers will need to use cost effective data sources other than just 
weather stations as the index for settlement. While the satellite-based alternatives will no doubt 
continue to improve, each will have strengths and limitations. Thus, it seems likely that indexes 
will need to be based on data collected from multiple sources — similar to reanalysis data. As 
the market for weather index insurance evolves, commercial firms are already investing 
resources in developing and improving such measures — much as the catastrophe bond market 
stimulated the development of private-sector firms that provide hurricane modeling services. 
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Chapter 5   State of Practice: Evaluation of Current Index Insurance 
Program Practices in Meeting Customer Demands and 
Overcoming Data Constraints 

To this point, the focus is on providing an overview intended to be an objective assessment of 
the state of knowledge regarding data. In this chapter, we provide our synthesis of how the 
current state of available data systems influences future development of index insurance. Our 
analysis is based on knowledge of practices that have been employed in developing index 
insurance products in recent years. As we are likely not fully informed regarding all aspects of 
every index insurance product implemented in recent years, there are limitations that must be 
acknowledged as well as acknowledging that our assessments are influenced by our own 
experience in developing new index insurance products.  

Most of the index insurance applications have been targeted to low-income households. 
Nonetheless, we believe that many of our observations about these applications can be applied 
to risk aggregator products. The conceptual model presented in this SKR provides the theoretical 
framework for evaluating index insurance given real-world constraints. Based on the tension 
between that theoretical framework, our analysis of where index insurance may best fit in lower 
income countries, and our knowledge of current practices, we begin by critiquing two common 
practices: 1) insuring against moderate losses; and 2) designing index insurance products solely 
to protect against crop-yield losses for a single crop.  

5.1   Insuring against Moderate Losses 
In recent years, at least two developments have led practitioners to design products that insure 
against moderate losses.17

We have a number of concerns with offering index insurance protection against moderate 
losses. First, we have some expectation that basis risk problems may be more problematic when 
insuring against moderate losses. As a simplistic example, assume that there is a 95 percent 

 First, some practitioners have come to the conclusion that 
households will only maintain interest in insurance if the insurance makes frequent payments. 
This concern relates to research suggesting that individuals have difficulty understanding the 
probability of, or the potential magnitude of, catastrophic events (Kunreuther, 1996, 1976; 
Kunreuther and Slovic, 1978; Tversky and Kahneman, 1973). Thus, in some cases, individuals 
make decisions by essentially assigning zero probability to low-probability, high-consequence 
events. This cognitive failure almost certainly contributes to the challenge of maintaining 
household interest in a product that pays infrequently. Experience with the specific weather 
index insurance products being offered in India seems to confirm this finding (Giné, Townsend, 
and Vickery, 2008). Second, some practitioners have insured against moderate loss events to 
facilitate the bundling of index insurance with other services. For example, some index 
insurance programs are bundling insurance with loans that facilitate the purchase of yield-
increasing inputs. Typically, the sum insured by the index insurance is for the value of the loan 
and the lender has first rights to any indemnity payment to cover the outstanding loan. Thus, 
the index insurance acts as a type of loan guarantee. In some cases, lenders, who are concerned 
that even moderate losses could cause loan defaults, have encouraged practitioners to offer 
high levels of index insurance coverage relative to the expected value of the index.  

                                                 
17 We consider products that pay as frequently as 1 in 3 or 1 in 5 years as paying for moderate losses. 
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chance that an index can estimate losses within plus or minus 5 percent of the actual value (i.e., 
the 5 percent error can be referred to as the basis risk). For this illustration, we make an 
additional simplifying assumption (which we will relax below) that the 5 percent error does not 
change depending on the size of the loss.18

losses of eMisestimat
triggerInsurance

riskBasis
=

 Consider two contracts, one that protects against 
extreme losses when the insured has experienced a roughly 25 percent loss, and another that 
protects against moderate losses when the insured has experienced a roughly 10 percent loss. 

 

For insurance against the extreme loss, the misestimate of loss is 20%25%
5% = . For insurance 

against the moderate loss, the misestimate of loss is 50%10%
5% = . Because the moderate risk 

contract is attempting to insure smaller deviations from the mean, opportunities for 
misestimating the loss are much greater. Additionally, because moderate risks occur more 
frequently, inaccurate indemnities will occur more frequently. As a result, practitioners 
developing products that pay frequently may feel that it is more important to reduce basis risk 
and may engage in practices such as overfitting, which as we outline in Chapter 1, can actually 
increase basis risk. 

Second, in contrast to our simplifying assumption in the example above, we believe that basis 
risk may change depending on the magnitude of the insured event. Specifically, underlying 
physical processes of both weather events and specific types of losses may result in lower basis 
risk for insuring against extreme events than insuring against moderate risks. It may be the case 
that basis risk changes depending on the severity of the weather risk due to changes in the 
spatial presentation of the weather risk. 

In support of this hypothesis for drought, we cite the work of Bravar and Kavvas (1991) who 
describe the physical processes of rainfall to demonstrate that when regions experience 
drought, it becomes much less likely to rain in that region. In brief, evaporating soil moisture 
increases humidity. At a certain level of humidity, the air becomes saturated causing passing 
clouds to rain. If evaporating soil moisture is insufficient to elicit rain, then this soil moisture is 
not replaced, resulting in lower humidity and a decreased chance of rainfall. Thus, drought 
causes a positive feedback loop, which must be broken by a weather front with sufficient 
moisture that develops in another region. This positive feedback loop is a physical process much 
different than those in patterns of moderately low rainfall.  

A research agenda motivated by this SKR is to examine how spatial correlations of drought and 
excess rainfall change depending on the severity of the risk (Appendix B). It is also the case that 
extreme values of rainfall tend to be a much better predictor of losses than rainfall values close 
to the mean, for specific types of loss events. Two examples may make the point. First, in flood-
prone regions, extreme flooding is a much better predictor of extreme losses than moderate 
flooding is of moderate losses. Second, extreme drought is a much better predictor of extreme 
crop failure than moderate drought is of moderate crop failure. Moderate shortages in rainfall 
will affect crops in the same region in different ways depending on the soils, crop varieties, and 
other input variables. However, beyond certain thresholds of depleted soil moisture, 
                                                 
18 More fundamentally, we are assuming that the variance of losses is constant across all values of rainfall. 
With a constant variance, the relative risk increases as the expected value of rainfall goes down.  
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photosynthesis slows and plants stop growing. Additionally, when plants do not meet water 
satisfaction requirements, inputs such as fertilizer have little impact on plant growth. Thus, 
under many conditions extreme rainfall deficits are a better predictor of extreme crop losses 
than moderate rainfall deficits are of moderate crop losses. 

Third, due to basis risk, index insurance provides a rather imperfect loan guarantee — especially 
for moderate losses. By incorrectly suggesting that index insurance can provide a loan guarantee 
against moderate losses caused by more frequent but less extreme weather events, 
practitioners run the risk of eventually losing credibility with lenders and insureds. We strongly 
support the concept of bundling index insurance with other services as a more efficient delivery 
mechanism. Our concern is that, instead of advancing an agenda with lenders about the optimal 
use of weather index insurance given its limitations, practitioners who design contracts that pay 
frequently with the intent of protecting individual loans, may be overlooking the data limitations 
and giving potential users a false sense of security about the protection that these products 
provide.  

Fourth, due to high transaction costs, insurance is a rather expensive financial instrument and is 
designed to protect against low-probability, extreme losses, while savings and credit are 
generally more economically efficient mechanisms for managing small to moderate losses.19

Fifth, it can take years for households and firms to recover from extreme catastrophic events. 
For example, our analyses with data from lenders in northern Peru indicate it took roughly five 
years for households and firms to recover from the 1997–98 El Niño (Collier, Katchova, and 
Skees, 2010). Experience with Hurricane Mitch in Honduras indicates that, for many years 
afterwards, some households continued to struggle due to losses from that event (Carter et al., 
2007). The literature related to poverty traps suggests that in some cases the working poor may 
not be able to recover from these events (Barnett, Barrett, and Skees, 2008; Sachs and Arthur, 
2005). The most efficient use of insurance is to protect against extreme catastrophic events that 
can threaten long-term wealth positions. When, instead, weather index insurance is designed to 
protect against more moderate losses, the price of insurance is high compared to a catastrophic 
policy. As a result of the higher price, households and firms purchase less insurance and, when a 
catastrophe occurs, are not as well protected. Thus, insuring moderate risks tends to divert 
resources away from the most effective use of weather index insurance — transferring 
catastrophic weather risk. 

  

5.2   Emphasis on Crop Yields 
Another common practice among many researchers and practitioners is to think of weather 
index insurance as a form of crop insurance. To those in the insurance industry, this may not be 
surprising. Much of the innovation that led to weather index insurance was motivated by 

                                                 
19 It is important to note that while market-based insurance products are not social programs, indexes can 
be used to finance social programs that protect against catastrophic weather events. However, it is critical 
that such social programs be designed so that they crowd-in, rather than crowd-out, complementary 
market-based insurance products. For example, if governments or donors wish to subsidize weather index 
insurance offers, they should consider doing so by funding a social program that protects against the most 
extreme layer of risk —those extremely rare loss events (e.g., a frequency of 1 in 25). If carefully 
constructed, such social programs can actually facilitate market-based offers of weather index insurance 
for relatively more frequent (e.g., 1 in 10 year) catastrophic events.  
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problems with traditional crop insurance programs that focus on farm-level crop yields (Skees, 
Black, and Barnett, 1997; Martin, Barnett, and Coble, 2001). Such models were developed for 
higher income countries where many farmers specialize in specific crops and where data on 
crop yields and household income are abundant. Furthermore, the input packages used to grow 
crops in higher income countries are also significantly more homogenous than those used to 
grow crops in lower income countries.  

Weather index insurance programs for specific crops are available in the United States and 
Canada. It is not surprising that much of the development of index insurance in lower income 
countries follows processes used in developed countries. However, this approach ignores data 
constraints in lower income countries and, to a large extent, is inconsistent with risk assessment 
findings regarding household livelihoods. Regarding data constraints, we return to our 
conceptual model for illustrative purposes. In our model, practitioners strive to identify the 
relationships between 

Index  cause of loss  losses of the insured 

and this process requires both an understanding of each of these distributions and of the 
relationship between distributions. An implicit assumption of the conceptual model is that the 
index around which the insurance is designed captures the loss exposure of the insured due to 
the cause of loss. When practitioners emphasize crop yields in lower income countries, they are 
using a (potentially poor) approximation for losses of the insured. Said differently, yield losses 
are simply one indicator of household well-being. While the relationship between yields of a 
specific crop and the well-being of the insured may be highly related for many farmers in 
developed countries where crop specialization has led to highly specialized farms, it is less clear 
that the yield of a specific crop is as important to households in developing countries (more on 
this below). Thus, these practitioners have added another step by focusing on yields. 

Index  cause of loss  yield losses  losses of the insured 

As we discuss in Chapter 1, each distribution and each relationship that practitioners must 
estimate introduce additional basis risk. Thus, the emphasis on yields can also increase basis risk. 
The reader will also remember that quantitative loss data — for yields and for household losses 
more generally — often do not exist in lower income countries. Thus, practitioners emphasizing 
yields are put in the difficult position of working across several distributions for which they have 
no quantitative data. Compounding the problem: it is not clear that the relationship between 
crop yields and losses of the insured is necessarily linear, making it more difficult to estimate. In 
addition, the relationship will differ between individuals in the target market due to 
heterogeneity in their income strategies. 

Risk assessments reveal the many concerns of households and firms. When these stakeholders 
talk about natural disasters, the most salient effects in the community are losses to well-being 
— households losing assets and depleting savings, increasing food prices, families starving, and 
loved ones dying. The second topic stakeholders identify includes the many diverse 
complications of the event. Floods in Peru are a good example. Household crops are destroyed; 
fertile topsoil is washed away; pest problems increase significantly; infectious diseases increase 
due to sedentary water; bridges and roads are destroyed and take months to repair; many 
households are isolated without access to food for extended periods, firms cannot transport 
goods nor receive supplies; etc. Clearly, losses caused by extreme weather events extend well 
beyond the impact on crop yields. 
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Broader research and risk assessments also tend to indicate that most smallholders in lower 
income countries do not rely on the yield of a single, specific crop (World Bank, 2007). Instead, 
they plant a variety of crops and often have livelihood portfolios that are diversified across labor 
activities besides farming. Berg and Schmitz (2008) demonstrate that weather index insurance 
for a specific crop is a much less effective risk management tool for households with a 
diversified portfolio than for those that specialize in a specific agricultural commodity. 
Therefore, insurance with a focus on a specific crop is likely of limited value for smallholders in 
the majority of the developing world. 

Even within the limited realm of production agriculture, presenting index insurance only as a 
means of protecting crop yields can miss some of the more important production risks and the 
potential value of such products. For example, in the central highlands of Vietnam, smallholder 
coffee farmers are exposed to drought, but when drought occurs, these farmers often manage 
yield losses by increasing irrigation. However, when they extend the irrigation season, they also 
incur significantly higher costs as the water table is depleted and irrigation becomes more 
expensive. Some coffee plants also suffer from lower amounts of water resulting in coffee beans 
that are perhaps one-third the size of normal beans and prices that are less than one-half what 
they would be under normal weather conditions. In the worst conditions, coffee trees also die. 
In a pilot project supported by the Ford Foundation, the Vietnam insurance regulator has 
approved a drought business interruption insurance product designed to compensate for the 
consequential losses associated with severe drought conditions. A traditional crop insurance 
product would only pay for crop-yield losses and would not be interesting to these growers.  

If practitioners conceptualize weather index insurance as a form of business interruption 
insurance to compensate for consequential losses associated with severe weather events, they 
could view data constraints and basis risk in a very different fashion, thus influencing their 
product design and marketing strategies. In many cases, weather index insurance will be the 
first form of weather-related insurance offered in rural areas of lower income countries. The 
views of the target market toward the insurance are likely to be significantly influenced by the 
marketing and education efforts of practitioners. If practitioners take the view that weather 
index insurance is a replacement for crop insurance, it may prevent the target market from 
recognizing the full value of the insurance. For example, if the drought insurance product in 
Vietnam would have been limited to yield losses only, farmers would likely have reported that 
they had means of managing yield losses associated with drought and so had no need for the 
insurance. By framing index insurance in a broader context, risk assessment interviews with 
Vietnam farmers demonstrated that they were interested in the product.  

5.3   SKR Key Recommendations 
As an extension of our analyses presented in this SKR and in response to the concerns described 
above, we present an alternative approach to the design and marketing of index insurance. How 
one frames a problem is critical to finding solutions. We believe that the approaches we 
recommend will expand the potential uses of weather index insurance, increase its potential 
application in data-constrained regions, and help overcome the cognitive failure problems 
described above. We propose the following three main premises, which emerge from our 
conceptual development presented above, our own experience with developing index insurance 
products, and the empirical findings presented in this document: 1) weather index insurance is 
best suited for consequential losses; 2) weather index insurance is best suited for catastrophes; 
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and 3) data constraints are lowest for risk aggregator products. These premises are interrelated 
and form the basis for much of our current work on index insurance products.  

5.3.1   Index Insurance Is for Consequential Losses  
Considering weather index insurance as an alternative to traditional crop insurance is an 
important first step in the evolution of the weather index insurance market. However, weather 
index insurance should now be recast in a much broader context. In short, the ways that 
extreme weather events retard economic growth in lower income countries extend far beyond 
crop-yield losses. Thus, index insurance products should be designed to protect against the 
variety of consequential losses that may occur during the critical period when an extreme 
weather event is most likely to occur rather than being designed only around the vulnerabilities 
of a specific crop. This product design should make the insurance more relevant to protecting 
the wealth positions and portfolio of activities of households and firms. Such an index insurance 
product would be designed in an encompassing fashion around the critical periods of the 
catastrophic event rather than the key vulnerabilities of a specific crop. 

The discussion of consequential losses is quite relevant for risk aggregators as well. For example, 
for banks in northern Peru, El Niño is associated with borrowers having problems repaying their 
loans and depositors withdrawing savings. These difficulties create liquidity constraints, increase 
provisioning requirements, and cause higher administrative costs. These banks must optimize 
between the opportunity cost of maintaining poorly performing loans for months or years after 
their maturity date and taking large losses as a result of forgiving these debts. Risk aggregators, 
as well, may need assistance in capturing a vision for the variety of benefits associated with 
weather index insurance designed for consequential losses of a catastrophic weather risk. 

Designing and marketing index insurance in terms of the consequential losses of an extreme 
weather event can have several benefits. First, insureds have the flexibility to purchase a sum 
insured to manage a variety of risks to which they are exposed. Insureds can use insurance 
payments for what they consider most important. The challenge of a heterogeneous target 
market is largely addressed by having such a flexible product.  

Second, in some cases, such a flexible design may reduce basis risk when compared to weather 
index insurance contracts designed for crop yields. As discussed earlier, extreme weather events 
are context-specific; even the same weather peril in the same region may differ significantly 
from one event to the next, resulting in different types of loss across events. While the target 
market may expect to experience several types of loss associated with a catastrophic event, it is 
often unclear how the event will affect specific aspects of the wealth position and the portfolio 
of activities. Thus, a more general product designed to allow the insured to address a host of 
potential problems may more suitably match losses of the target market than a product based 
on one specific investment outcome such as crop yield.  

Third, weather index insurance designed around consequential losses likely creates a much 
greater recognition of the value of index insurance among the target market than insurance 
designed around one crop. To determine the sum insured and potential uses of the insurance, 
practitioners marketing these products are likely to engage in a rich discussion with stakeholders 
in the target market regarding their exposure to the event and improving their strategies for 
managing consequences of the event.  
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Fourth, a focus on consequential losses also has important data implications. In particular, 
practitioners need not be so concerned about proving high in-sample correlations between the 
proposed index and yields for a specific crop. Instead, high-quality qualitative data obtained 
through carefully structured interactions with local experts are likely to be more useful for 
understanding the relationship between the index and the variety of consequential losses. 

Finally, a design based on consequential losses would likely also increase demand for the 
insurance. We use a simplified version of the conceptual model from Chapter 1 to illustrate. For 
weather index insurance designed and marketed for a specific crop, individuals would be asked 
to determine the level of insurance they would like to purchase based on the weather risk for 
that crop 
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where iπ  is the probability of a specific bad weather outcome, 0W is initial wealth, gR is the net 
return on investment in good years for all activities including, but not limited to, net returns for 
the specific crop, p is the premium rate, I is the sum insured, iYL is the monetary value of yield 
losses associated with a specific bad weather outcome, and iq is the insurance indemnity rate 
associated with a specific bad weather outcome. Notice that in this model individuals are 
considering yield losses as the only negative consequence of the bad weather outcome. 

Alternatively, consider a weather index insurance contract designed and marketed based on the 
many consequences of an extreme weather event. Suppose that, beyond yield losses iYL , the 
insured also experiences asset losses iAL (e.g., losing property, home equipment, savings, etc.), 
health losses iHL , reduced profits due to increased costs iPL , losses in other labor opportunities 

iLL (e.g., decreased employment in labor on other farms), and other losses iOL associated with 
the disaster. In this case, individuals would make their insurance purchasing decisions based on 
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The optimal level of insurance can be determined by taking the first derivative of the expected 
utility function with respect to I , setting this derivative equal to zero and solving for I . So for the 
crop-specific product 
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while for the consequential loss product 
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The optimal sum insured depends on several factors (e.g., premium rate, magnitude and 
frequency of losses, basis risk, etc.), but the most relevant for this discussion is the recognition 
of consequential losses. To see this, note that, if the sum insured is the same, then equations for 
the crop-specific product and the consequential loss product are the same, except in bad years, 
ending wealth, and thus the utility, is lower for consequential loss product. The only way to 
increase wealth in the bad years for the consequential loss product is by increasing the sum 
insured. But increasing the sum insured also decreases wealth in the good years because the 
premium cost increases. However, by definition, risk-averse decision makers (and only risk-
averse decision makers would purchase insurance) value additional wealth in the bad years 
(from receiving an indemnity) more than the loss of wealth in the good years (from paying the 
premium). More formally, for risk-averse decision makers, the marginal utility of wealth is 
higher in bad years than in good years (risk aversion implies concave utility functions or 
diminishing marginal utility of wealth). So considering not just yield loss but also other 
consequential losses should increase the sum insured. 

Thus, this model suggests that individuals would be expected to have higher demand for index 
insurance if the insurance were designed and marketed not just to protect against crop-yield 
losses but also for the various other consequential losses of an extreme weather event. The 
model actually demonstrates a simple notion — if buyers can see that an insurance product can 
be used to protect against more types of losses, they will be willing to purchase more of the 
insurance. 

5.3.2   Index Insurance Is for Catastrophes 
There are at least two interesting data issues that relate to the question of whether index 
insurance should be used to protect against moderate loss events or only against catastrophic 
loss events. The first focuses on the variability of returns from a business’s or household's 
portfolio of activities. We hypothesize that the pairwise covariances of returns among the 
various activities are not linear throughout all possible weather outcomes.20

Second, we hypothesize that the spatial covariance of some weather variables is not linear with 
respect to severity. A specific research agenda motivated by this SKR examines whether the 

 Specifically, we 
believe that the covariance of returns is greater for more extreme weather events. In other 
words, steps to diversify a portfolio by investing in several activities may be ineffective for 
extreme weather events. If so, this further supports our view that weather index insurance 
should focus primarily on addressing the range of consequential losses that result from 
catastrophic weather events.  

                                                 
20 Miranda develops a conceptual model to investigate these questions further. That model is presented 
in Appendix A. We plan to test this model with some empirical examples in the United States, where good 
data are widely available.  
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spatial correlation of drought or excess rainfall increases with severity. If spatial correlations do 
increase with severity, this suggests that the spatial specificity of data required for developing 
index insurance that protects against moderate loss events is greater than that required for 
developing index insurance that protects against catastrophic, extreme loss events. 

A number of important research questions emerge from our concerns regarding the design of 
products that pay for frequent, moderate, losses. The dilemma remains that of the index 
insurance products developed thus far, most are designed to pay for losses that occur more 
frequently than 1 in 7 years. Users of these products express a strong preference to be paid 
frequently. While this may indicate they will gain more confidence in the product if they can see 
payments being made, we have raised questions about how long this confidence will last if they 
experience a large percentage of small payments and only a moderate payment when there is a 
catastrophe. Again, there is a clear tradeoff of premium. The tendency is to purchase a low sum 
insured given the higher price for a product that pays frequently. We tested this explicitly with 
livestock index insurance in Mongolia. Herders were given a choice between two policies; one 
that would pay when mortality rates exceeded 6 percent and one that would pay when 
mortality rates exceeded 10 percent. The premium rate was nearly 2 times higher for the 6 
percent threshold than for the 10 percent threshold. Some educational effort was targeted at 
getting the herders to take the 10 percent catastrophic policy because with the same total 
premium they could purchase a higher sum insured given that the typical purchase was for only 
30 percent of the value of animals. Yet, in the one year that this experiment was run, over 90 
percent of the insured herders selected the 6 percent threshold policy. Similarly, many of those 
purchasing health insurance select low deductibles or co-payments rather than catastrophic 
health insurance. A counterexample seems to occur with life insurance. People in lower income 
countries are demonstrating a clear willingness to pay for market-based life insurance, which 
protects against a low-frequency, catastrophic event. Considerably more work is needed on the 
psychology of insurance purchase decisions, but it is interesting that life insurance protects 
against shocks to long-term wealth caused by loss of an important human asset. 

The psychology and behavioral economics literatures clearly indicate that how people 
conceptualize an uncertain outcome (e.g., a loss, variable returns, a gamble, etc.) affects their 
strategies for managing it (Kahneman and Tversky, 1979). This research leads us to the 
conclusion that individuals likely evaluate risks to their long-term wealth positions (i.e., risks that 
affect the well-being and future opportunities of the household) differently from risks to current 
period returns (e.g., crop-yield risks). Many of the index insurance pilots have been marketed as 
a sort of pseudo crop insurance — that is, a way to reduce the variability in returns for a specific 
activity. Given the highly diversified portfolios of many households (and firms) in lower income 
countries, crop-yield losses in a single year may not significantly affect long-term wealth. If this 
is true, it is not surprising, given that insurance is a relatively expensive financial mechanism, 
that households would lose interest in insuring against weather risks designed to protect crop 
production.  

In contrast, catastrophic insurance is about preserving the long-term wealth position of the 
household. By framing weather index insurance as protecting long-term wealth, it becomes 
much more akin to life insurance. As a starting point, we return to our expected utility theory 
model.21

                                                 
21 Psychology and behavioral economics researchers are often critical of an expected utility framework 
and provide many other suggestions for modeling the way individuals assess uncertain outcomes (e.g., 

 It seems consistent with the behavioral economics literature on framing that 
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individuals may use different utility functions based on how the problem is framed — 
specifically, individuals may have one utility function for wealth wealthU  and another for net 
investment returns returnsU . We postulate that individuals may be more risk averse to losses in 
their long-term wealth position, losses that may mean a lower quality of life for themselves or 
their family, than to losses in current period returns for a specific activity (i.e., 
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Thus, we can rewrite our expected utility model without insurance as 
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current period returns experienced by the individual. Where does insurance fit into this model? 
We again suggest that it depends on how the insurance is designed and framed to the target 
market (Kahneman and Tversky, 1979). When individuals are more risk averse to losses in 
wealth than to losses in returns, they will purchase more insurance when they expect it to 
protect their wealth position than if they expect it to protect their net returns on investment. 
More directly, individuals are likely to have a higher demand for weather index insurance if it is 
intended to protect against catastrophic risks that threaten the long-term well-being of the 
household than if it protects only against current period returns.  

Thus, designing and marketing index insurance for catastrophes may overcome the demand 
problems experienced by some weather index insurance pilots. Furthermore, it may be that if 
insureds believe that they are protected from such a disaster, they will be more likely to change 
their behaviors in the fashion predicted by insurance theory — engaging in higher-risk, higher-
return activities that would contribute to increased growth in household wealth in the long term 
(Barnett, Barrett, and Skees, 2008). 

5.3.3   Data Constraints are Lowest for Risk Aggregator Products 
This report highlights the importance of risk aggregator products, especially in data-constrained 
regions.22

                                                                                                                                                 
Kahneman and Tversky, 1979; Quiggin, 1991). These researchers identify many biases that influence risk-
taking behavior (e.g., judgment bias, hindsight bias, availability heuristics, gambler fallacy, etc.). We 
believe that future research on weather index insurance should more fully integrate these paradigms.  

 To reiterate, products for these firms require assessment of a catastrophic weather 
event at a community or regional level, whereas household products require an assessment of 
the weather event at a specific geographic point. As a result, the risk aggregator product 
requires fewer data sources (e.g., fewer weather stations) in a region than products for 
households. As demonstrated by Ali, Lebel, and Amani (2005), combining the estimation of 

22 This topic is directly addressed in Section 4.2.1. Data Constraints Are Less Binding for Risk Aggregator 
Products than Household Products, following the general review of weather station infrastructure in 
lower income countries.  
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several weather stations tends to lower estimation error of the weather event more than using 
a single weather station. Thus, basis risk associated with mismatches between the cause of loss 
and the index (cause of loss  index) should be reduced. In sum, risk aggregator products 
should require a less developed weather station infrastructure and increase opportunities for 
satellite-based products. 

Risk aggregator products are likely the only feasible mechanism for extending weather index 
insurance into many regions of the world. Because weather station infrastructure is so 
underdeveloped in many regions of the world (WMO, 2008) and satellite data are too coarse for 
many household risks (with a few notable exceptions), household products are simply 
inadvisable in many regions. Pursuing weather index insurance products for households despite 
inadequate data is likely to lead to 1) higher insurance prices by insurers and reinsurers due to 
uncertainty about the risk, and 2) products that poorly capture the risk of the target market and 
therefore contribute little to disaster risk management. As a result, risk aggregator products 
would seem to provide a better return on investment for economic development efforts in data 
constrained regions. 

Some practitioners may question whether products designed for risk aggregators such as rural 
banks and agricultural value chain members substantially benefit the poor and would rather see 
insurance products that can be purchased by households. It is worth remembering that the 
highest poverty rates in lower income countries almost always occur in rural areas. While there 
are certainly risk aggregating firms that will only work with better-off households, many 
financial institutions, agricultural value chain members, etc., do work with poor populations. 
Moreover, one reason that some risk aggregator firms limit the services they provide to the 
poor is that they cannot manage the catastrophic weather risk associated with serving these 
clients. As we ourselves consider this question, we return to the risk management axiom: when 
losses occur, someone must pay for them. For example, households may pay banks higher 
interest rates because the bank is unable to efficiently manage the catastrophic risk exposure in 
the region. Also, agricultural input suppliers, commodity processors, and lenders alike may limit 
their presence in regions where households are vulnerable to catastrophic risk because these 
risk aggregators are unable to manage this correlated risk themselves. Weather index insurance 
products for risk aggregators that enhance the ability of these firms to manage catastrophic risk 
can increase household access to the services of these firms. Increased access to credit, inputs 
that increase crop productivity, and commodity export markets have all been shown to have 
important developmental outcomes (World Bank, 2007) and are the ultimate goal of many 
development projects. 

An added benefit of working with risk aggregators is that these stakeholders, due to their 
professional experiences, could be expected to engage in a risk management discussion in a 
more sophisticated way than households. These firms seem prepared to understand weather 
index insurance more fully as they likely already use other financial contracts to manage risks. 
For example, banks coordinate bond holdings, interbank debt, loan maturity, certificates of 
deposit, etc., in asset-liability management. Also, commodity exporters often use forward (and 
sometimes futures) contracts. As a result, these risk aggregators may be more comfortable with 
evaluating weather index insurance contracts, and may also have more knowledge and 
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experience with managing basis risk.23

5.3.4   Summary of the Key Premises for Our Recommended Framework 

 Since data requirements for risk aggregator products are 
relatively low and the market is relatively sophisticated, the potential for products using satellite 
data increases. Opportunities emerge for products that either: 1) use information from atypical 
sources (e.g., infrared sensors on orbiting satellites); or 2) integrate information from a variety 
of sources to create an index (combining data from weather station, satellite, SST, etc.). More 
sophisticated buyers should also be in a stronger position to understand more complex models 
that use combined data to capture the underlying catastrophic risk. 

In closing this discussion, we recommend a framework based on the three key premises: 1) 
weather index insurance is for consequential losses; 2) weather index insurance is for 
catastrophes; and 3) data constraints are lowest for risk aggregator products. We suggest that 
this framework be considered priorities that guide a process for developing sustainable 
insurance markets for disaster risks. Weather index insurance products addressing the 
consequential losses of catastrophic risks that improve the ability of risk aggregators to serve 
the poor may be a cost-effective entry point for new weather index insurance markets. Starting 
with risk aggregator products that cover consequential losses for disasters creates a foundation 
for future insurance products by building capacity among local insurers, the insurance regulator, 
and the target market. This foundation may also motivate data system investments as insurance 
awareness increases and local stakeholders develop a vision for extending products to other 
firms and to households.  

We recognize that in some regions, conditions may motivate practitioners to deviate from the 
above recommendations — e.g., the presence of rich data sources, very specialized agricultural 
production, highly spatially correlated weather risk, etc. We are certain that there are many 
special cases where sound economic thinking and consideration of the data constraints should 
motivate a departure from these recommendations. Rather, the recommendations are general 
guidelines and are borne out of our evaluation of significant data constraints and of our goal of 
making weather index insurance more efficient, effective, sustainable, and scalable to more 
regions.  

 

                                                 
23 Weather index insurance products for risk aggregators are typically designed with a small number of 
firms as the potential target market so it is much more feasible to address the specific needs for capacity 
building of each potential buyer. 
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Chapter 6   Important Research Areas and Vision for the Future 
This SKR discusses data needs for weather index insurance and the challenges associated with 
offering index insurance in data sparse environments. We began this investigation with the 
recognition that, after several years and many pilot projects, practitioners, donors, and 
researchers are still searching for effective models to make weather index insurance scalable 
and sustainable. Index insurance has captured the attention of many new donors and new 
groups are venturing into the technically difficult process of index insurance product 
development. These stakeholders seem to recognize the several positive aspects of index 
insurance, but a number of unanswered questions exist that should rightly concern donors and 
multilateral agencies. For example: 

1. Weather index insurance products have often been conducted as one-off 
demonstrations and, in some cases, have not clearly identified how these activities tie to 
a coherent framework of reducing poverty or developing sustainable markets. What 
implementation models should the development community prioritize for index 
insurance to enhance its effectiveness for increasing economic stability and long-term 
growth? 

2. Throughout some regions of the world, including much of Africa, data constraints limit 
the development of weather index insurance products. These regions are often among 
those that could benefit the most from improved disaster risk management. The same 
data that can be used for index insurance will clearly also enhance disaster risk 
management efforts on a broader scale. Nonetheless, without investments in the 
establishing and maintaining data systems, it is not clear how index insurance can be 
developed and scaled in these regions.  

3. Some of the index insurance products that currently appear to be gaining traction have 
been in regions where households engage in highly specialized means of production. For 
example, Mongolia relies so heavily on livestock production that it has an annual 
livestock mortality census. Many lessons can be learned from the Mongolia experience 
(e.g., designing markets and social programs so that they are complementary), but its 
data source is likely unique to Mongolia. As another example, index insurance in Malawi 
has been designed around specialty crops (e.g., tobacco) with vertically integrated value 
chains. Yet, we know that many of the world’s poor do not engage in specialized 
agricultural production. How can these models be extended to reach more potential 
insureds? 

4. Finance and economic theories suggest that index insurance is best suited for protecting 
against long-term wealth impacts of extreme natural disasters. Yet, based on their 
experiences, some practitioners have concluded that households will only remain 
interested in insurance if it covers moderate risks so that insureds receive frequent 
indemnities. How can index insurance markets be sustainable if theory posits that 
extreme risks should be prioritized while experience indicates households prefer 
insurance for moderate risks? 

It is critical that these hard questions be addressed. Currently, index insurance is on the pathway 
of innovation. Proof of concept is only part of the innovation process. Next, it is imperative that 
products be designed that appeal to a wide range of stakeholders; otherwise, index insurance 
will not be scalable or sustainable. If donors believe the theoretical foundations and the models 
for implementation are sound, then further investments may lead to more effective and 
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efficient models in the future. Yet, donor investments must be tempered by opportunity cost 
given the many unmet development needs. Thus, priority should be given to models of index 
insurance that seem likely to lead toward something that is efficient, effective, scalable, and 
sustainable.  

Our initial intention in this document was to discuss how to assess and overcome data 
constraints to index insurance. Given the data constraints that we encountered as our 
investigation advanced and given our own experience with index insurance, we soon learned 
that we could not analyze and discuss data constraints in the absence of product design issues. 
Product design is predominantly affected by two important factors: 1) data constraints; and, 2) 
the practitioner’s conceptual model for how index insurance contributes to economic growth. 
Implementation models with relatively high data requirements will not generally be scalable; 
models that seem to have a relatively minor effect on economic growth will not generally be 
sustainable. Our journey of review and analysis, which began long before writing this document, 
leads us to recommend three areas of focus for product design: consequential losses, 
catastrophes, and risk aggregator products (see conclusion of Chapter 5). We believe that these 
three areas of focus both reduce data constraints and are generally the best means for index 
insurance to contribute to economic growth. We recognize that our three recommendations run 
counter to most approaches that have been used in implementing index insurance to date. 
While these recommendations are grounded in theory and based on our experiences, we also 
recognize that they need to be tested more widely and rigorously. 

In the next two years, our team will perform research with regard to some of the questions and 
research areas we put forth in Section 6.1. Our second SKR focuses on legal and regulatory 
component of developing weather index insurance, in particular, the legal and regulatory 
challenges of creating index insurance products designed to protect against consequential 
losses. We have experience designing consequential loss index products in two very different 
jurisdictions: Peru and Vietnam. The third SKR focuses on evaluating the scalability and 
sustainability of index insurance products.  When our project is complete, we intend to integrate 
key analyses, recommendations, and themes from all SKRs into a single document to advance 
the ideas presented in the individual SKRs. While we hope to make our own contributions to the 
research needed to more fully understand the potential role of index insurance in helping lift 
rural people out of poverty, our efforts will not exhaust the researchable questions. Thus, we 
intend to widely distribute our work so as to motivate additional research on these important 
questions.  

6.1   Research Questions Surrounding Demand for Index Insurance 
Given our view that many important questions regarding the demand for index insurance are 
critical to understanding data needs, we develop the following important areas for research: 

1. Will framing index insurance around the many consequential losses of a weather 
event (not just yield losses) increase demand? It seems rather obvious that decision 
makers are likely to purchase more insurance if the insurance product protects against 
more of their potential losses. But is it also possible that decision makers are more risk 
averse for some losses caused by extreme weather than they are for other losses? For 
example, decision makers may exhibit higher risk aversion with regard to loss events 
that destroy assets and thus affect the growth path of long-term wealth than they do to 
loss events that affect only some portion of current period net returns.  
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2. Will framing index insurance as catastrophe insurance to protect against reductions in 
long-term wealth increase demand? We have noted a common concern among 
practitioners that buyers will lose interest in weather index insurance unless they 
receive frequent indemnities. While there is certainly some research on the psychology 
of risk that would support this view, there is also widespread empirical evidence that 
people routinely purchase various types of insurance that will rarely pay an indemnity 
because the insurance protects against very low probability loss events (e.g., life 
insurance, flight insurance, earthquake insurance). Based, in part, on some of the 
psychology and behavioral economics literatures, we hypothesize that demand for 
weather index insurance depends in part on how the underlying risk problem is framed. 
There are many possible explanations for framing effects. As mentioned previously, 
decision makers may exhibit higher risk aversion with regard to loss events that destroy 
assets and thus affect the long-term trajectory of wealth accumulation than they do to 
loss events that affect only some portion of current period net returns. In addition, 
behavioral economists and psychologists have demonstrated that decision makers 
employ many biases and heuristics (e.g., judgment bias, hindsight bias, availability 
heuristics, and gambler’s fallacy) in making risky decisions. Perhaps the nature of these 
biases and heuristics vary depending on whether the risky decision is defined in terms of 
wealth or annual returns (Quiggen, 1991; Quggin and Horowitz, 1995). This is another 
important area of research.  

A related research question emerges from our concerns regarding the long term 
sustainability of insurance products that pay more frequently. To what extent will 
experience with small and frequent payments for moderate losses and low payments 
for catastrophic events dampen the demand for these products over time?  

3. How will buyers react to index insurance products based on novel data sources? As 
more complex models are developed using a combination of data sources, research will 
also be needed to assess buyer response to insurance products based on such novel 
data systems. This research should assess buyer response across different target 
markets (e.g., households, risk aggregators, etc.). We have argued that risk aggregators 
may be in a better position to understand sophisticated modeling efforts that lead to 
more complex indexes. Some analysis of potential buyer response has been conducted 
as part of the product development for an NDVI product in northern Kenya (Chantarat 
et al., 2009). To our knowledge, no other buyer response to satellite-based index 
insurance products has been conducted. Additionally, no fieldwork has been conducted 
comparing reactions to satellite-based index insurance products across different target 
markets. 

6.2   Research Questions Surrounding Data 
Because basis risk is such an important issue with index insurance, we first propose four 
different avenues of research pertaining to basis risk and product design.  

6.2.1   Research Questions: What Product Designs Might Reduce Basis Risk? 
1. Does the spatial distribution of specific weather events change depending on the 

severity of the event? This is a question of the physical presentation of weather. As we 
have suggested at various points in this SKR, it seems likely that for some weather 
events the spatial covariance is higher for more extreme weather occurrences. The 
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results of Bravar and Kavvas (1991) seem to support a hypothesis that extreme drought 
conditions are more spatially covariate than moderate drought conditions. This implies 
that an index insurance product designed to protect against drought would have lower 
basis risk for extreme droughts than for moderate droughts. This, in turn, has important 
implications for weather index insurance design, especially in data-sparse environments. 
Ultimately, this question requires good empirical research that employs advanced 
statistical procedures. We need to better understand the spatial presentation of 
weather variables and how that changes depending on the severity of a weather event. 
Appendix A describes an emerging research agenda designed to address these issues.  

2. Does the relationship between a specific weather event and realized losses change 
depending on the severity of the weather event? Said differently, is the covariance 
between severe weather events and severe losses higher than the covariance between 
moderate weather events and moderate losses? This is a question of the physical 
processes underlying losses. The classic discussion of basis risk implicitly assumes that 
the covariance between a weather index and the realized loss is linear throughout the 
range of outcomes — that is, that the beta coefficient does not vary with the severity of 
the weather event. Again, the research findings on this question would have important 
implications for weather index insurance design. 

3. Does the covariance in investment returns change depending on the severity of the 
weather event? We have hypothesized that the covariance of returns across the 
activities in a diversified portfolio often increases when severe weather events occur. Of 
course, this depends on the activities in the portfolio and how geographically 
concentrated they are. For example, if households have a family member working in 
another region and providing remittances, these returns would be unaffected by local 
weather events. Still, rural households invest in many activities exposed to the same 
extreme weather risks. For example, drought affects all rain-fed crops, reducing farm 
yields but also limiting opportunities for employment on other farms. At the community 
level, these aggregated losses hurt local businesses as well. If the covariance in returns is 
highest during extreme weather events, it is an indication that portfolio diversification is 
least effective under these conditions. Such an outcome would support using insurance 
to protect against extreme events and other risk management strategies, such as 
diversification, to protect against more moderate loss events. 

4. How does designing index insurance for consequential losses rather than for specific 
crops tend to affect basis risk? This is a question of the physical presentation of the 
disaster. For example, is a specific level of excess rainfall a better estimator of one type 
of loss (low crop yields) or several types of losses (low crop yields, reduced small 
business revenues, property damage)? This is a difficult question, and the answer will 
depend in part on the risk and the context. Keeping in mind that most index insurance 
products are developed around a single index, the answer also depends on the 
correlation in the estimation error across losses. Finance theory on portfolio 
management will help demonstrate principles underlying this problem and the effects 
this correlation has on designing appropriate index insurance products.  

6.2.2   Other Research Areas on Data Issues 
Beyond the research questions targeted to learning more about how product design may reduce 
basis risks, there are several other research areas around data issues that merit attention.  
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1. Improved risk assessment and qualitative data to enhance development of index 
insurance. We have argued that qualitative data obtained from scientifically informed 
risk assessment procedures with key stakeholders may be equally if not more valuable 
than detailed historic data. In large part, this argument is based on both data constraints 
and the critical need to focus on infrequent catastrophic events. We have made it clear 
that even in situations where twenty or thirty years of loss data are available, these data 
may be inadequate for understanding the consequences of extreme and infrequent 
events. Such data also provide little or no information regarding how risk exposure may 
have changed (e.g., due to infrastructure investments, changes in production strategies, 
etc.). Some in the economic research community are quick to dismiss qualitative data as 
being “unscientific.” Are there rigorous ways to examine using high quality but short 
time series of data to evaluate an extreme risk problem versus using qualitative data? 
How can protocols be improved to enhance the quality of risk assessment data for index 
insurance product development?  

2. Research that evaluates the value of emerging data systems needs to be supported. 
While it is beyond our expertise, we place a high value on research that is being 
conducted to evaluate more efficient and accurate systems of weather data. In this 
document we raised questions about the sustainability and scalability of ground level 
instruments for measuring weather variables. Due to the current limited availability of 
weather stations, we have emphasized that novel data sources will likely be required to 
significantly increase the number of weather index insurance products offered in lower 
income countries. In particular, we have focused on satellite-based sources of 
vegetation and weather data. The underlying index for a weather index insurance 
product might be based exclusively on data from one of these satellite-based sources or 
might be based on a combination of satellite-based and ground-based (e.g., weather 
station) data sources. However, many questions remain about the novel data sources. 
Much research is needed to determine where, and for what variables, satellite-based 
data are likely to provide the most accurate measurements. For example, challenges 
exist with building consistent time series of data across different time periods due to 
changes in technology, satellite drift and aging of sensors. Higher spatial resolutions will 
likely be required for satellite-based data to support many types of index insurance 
offers. All of the cautions we raise about overfitting for simpler index insurance products 
could also apply to those developing more complex models that use a combination of 
data systems.  

3. Identifying regions where estimates of oceanic anomalies such as ENSO can improve 
weather risk transfer. Many of the examples presented in this SKR have been based on 
our ongoing work developing ENSO-based insurance in Peru (see Appendix B for more 
description of this work). Oceanic anomalies can affect weather outcomes over large 
geographic areas. For example, ENSO affects weather in parts of South America, Central 
America, North America, and Australia but also affects weather in parts of Africa and 
Asia (Funk et al., 2003; McPhaden, 2003). Their widespread impact makes oceanic 
anomalies interesting candidates for weather index insurance but there is still much to 
learn. We have documented a strong relationship between sea surface temperatures off 
the coast of Peru and flooding in northern Peru due to El Niño. But how do ENSO 
measures affect other regions? What is the magnitude of the basis risk between ENSO 
measures and realized losses and (as discussed previously) does the magnitude of the 
basis risk depend on the severity of the oceanic anomaly? To what extent are extreme 
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weather events on the African continent associated with oceanic temperature 
anomalies measured in the north Atlantic or in the Gulf of Guinea? Are they strong 
enough to develop forecast insurance similar to what was developed in Peru?  

4. Identifying other potential indexes that could be used to make insurance payments 
before weather-induced loss events occur. One of the interesting aspects of our 
ongoing work with El Niño Insurance in Peru is that extreme sea surface temperatures in 
November and December are indicators of flooding that generally does not occur until 
February or March. Thus, with an index insurance product based on sea surface 
temperature payments can be made before the extreme losses occur. We are calling this 
forecast insurance and, as we develop in Appendix B, this form of insurance can fit in the 
legal and regulatory environment as a form of consequential loss insurance. 
Policyholders can use the indemnities to fund loss mitigation efforts before flooding 
actually begins. There are significant economic efficiencies associated with policyholders 
being able to use indemnities to proactively prepare for a loss event rather than simply 
using the funds to recover after the loss occurs. Are there other regions of the world 
where oceanic anomalies or other measures could be used to make insurance payments 
before severe losses occur? 
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Chapter 7   Summary and Conclusions 
Even in developed countries with sophisticated financial systems, financial market innovation is 
typically a long and slow process. The challenges are even greater in lower income countries 
where only the most basic financial services are available outside of major urban areas. Weather 
index insurance is an innovative financial instrument that holds great promise for helping 
decision makers in lower income countries manage their exposure to extreme weather events. 
Though the conceptual underpinnings of weather index insurance are rather simple and 
straightforward, the real-world application of those ideas can be extremely difficult. This SKR 
demonstrates that many of these difficulties are the result of data limitations. 

Weather index insurance emerged from the need to develop agricultural insurance products 
that could be delivered to small-scale farmers in rural areas of lower income countries. After 
years of effort and failed experiments, development economists in the 1970s and 1980s 
essentially gave up trying to develop traditional crop insurance products for small-scale farmers 
in lower income countries. In the late 1990s a renewed interest in agricultural insurance for 
lower income countries stimulated research on weather index insurance as an alternative to 
traditional crop insurance. Since then, pilot programs have been instituted in several countries.  

Despite about a dozen years of conceptualizing and working toward pilot programs and 
experimentation, market-based weather index insurance has still not been scaled to a significant 
level. While there are many reasons for this, data constraints are among the most important. A 
challenge for scaling up weather index insurance is that weather stations are generally quite 
sparse in rural areas of lower income countries. Furthermore, while there can be many 
developmental benefits to improving weather information systems within a country, the cost of 
installing and maintaining a sufficient density of weather stations specifically to support index 
insurance offers is likely prohibitive. 

Alternative sources of weather data, generally collected from satellite platforms, have become 
available over recent decades. While these sources currently lack the spatial and/or temporal 
specificity required for many types of index insurance offers, the technologies are improving 
rapidly. At some point in the not too distant future, it may be feasible to base weather index 
insurance offers on weather measures collected from satellite-based platforms. More likely, 
weather measures will be available that integrate limited weather station data with more 
abundant data from alternative sources such as satellites. These advancements in sources of 
weather data will likely be spurred by developments in the market for weather index insurance. 
A comparison with the history of catastrophic modeling for earthquakes and hurricanes is 
insightful. Some thirty years ago insurers and reinsurers were challenged by the data and 
sophisticated modeling required to understand the underlying risk associated with insuring 
these major catastrophes. Academics from Stanford University were among the first to offer 
modeling services that met this emerging need. In 1988, the firm, Risk Management Solutions, 
emerged from these efforts. Others followed. There is evidence that a similar process is 
underway with weather index insurance modeling as part of the natural progression of market 
innovation.  

While a number of techniques can be used in data-sparse environments to model relationships 
between weather variables and realized losses, we advise practitioners to exercise caution in 
utilizing these techniques. For example, when weather index insurance is targeted to losses for a 
specific crop, practitioners sometimes fit complex statistical relationships between the limited 
available weather data and crop-yield data. In so doing, they can show that the index “explains” 
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a large part of the in-sample variability in crop yields. A concern with such approaches is that 
statistical relationships determined by overfitting the limited available in-sample data may not 
be supported when out of sample. Policyholders, who have been promised that the index is 
highly correlated with crop yield, are likely to end up being disappointed, frustrated, and, 
potentially, worse off for buying the insurance. 

When few or no loss data are available, practitioners have sometimes used crop growth 
simulation models to determine relationships between weather variables and yield losses. A 
concern with this approach is that these models are parameterized for very specific crop 
varieties and regions. One cannot simply assume that the parameters contained in the models 
are generalizable to other crop varieties, regions, or farming practices. Also, while crop growth 
models are quite useful for estimating the effects of a change in a variable around the central 
tendency of the distribution, they are much less useful for predicting the effects of extreme 
weather events on yields — and it is just such extreme weather events that are the primary 
focus of weather index insurance. 

We recommend a risk assessment process that utilizes both the limited available quantitative 
data and qualitative information collected from local sources. Those who have lived through 
previous extreme events tend to have a clearer picture of how households and businesses in the 
region were affected by those events. This risk assessment process operates under the 
recognition that weather risk and resulting losses occur in a larger system affected by many 
components: household livelihood strategies, geography, weather patterns, population 
dynamics, industry growth, cultural values, etc. As practitioners develop an understanding of 
risk in the local context, themes are likely to emerge that guide priorities in product 
development.  

Our experience with developing index insurance products and our evaluations of other such 
efforts, have led us to three major recommendations regarding the role of index insurance in 
economic development efforts.  

1) Weather index insurance is for consequential losses. Risk assessments indicate 
extreme weather events affect households and firms in many ways, reducing returns on 
investments (e.g., lower yields, reduced labor opportunities) and wealth positions (e.g., 
asset losses, household consumption demands). If weather index insurance is designed 
for a single aspect of the household portfolio of investments (e.g., crop risk), it may be 
of limited value to households. Because weather index insurance may be offered in 
regions where the target market has no previous experience with insurance, the onus is 
on practitioners to identify the needs of the target market through risk assessments and 
to design and market products with a vision for the ways in which extreme weather 
events are impeding growth for the target market. 

2) Weather index insurance is for catastrophic risk.24

                                                 
24 The focus of this SKR has been on developing market-based index insurance. Nevertheless, we 
acknowledge that an appropriate role for governments and donors may be needed for some catastrophic 
risk. GlobalAgRisk has made significant contributions to new thinking in this regard with our work in 
Mongolia.  

 Significant empirical evidence 
indicates that natural disasters can have extreme and long-term effects on poor 
households. The risk of low frequency, high severity, weather events can significantly 
hinder economic development. Insurance is a relatively expensive instrument so it is 
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best used to transfer extreme risks that cannot be managed using other methods. Other 
instruments such as savings and credit are more efficient mechanisms for managing 
moderate risks. Moreover, it seems likely that basis risk is higher for moderate weather 
risks than for extreme weather risks. 

3) Data constraints are lowest for risk aggregator products. Risk aggregators such as rural 
banks and members of the agricultural value chain can use risk pooling to manage their 
exposure to idiosyncratic risks but not their exposure to correlated weather risks. Thus, 
they tend to limit the services they provide in rural areas that are highly exposed to 
correlated weather risks. Weather index insurance is only feasible for correlated risks, 
making it particularly well-suited for risk aggregators. The data systems required to 
support the offer of risk aggregator products also require less spatial specificity than 
those required for household insurance products. Therefore, risk aggregator products 
are particularly promising for data-constrained regions. Not only could these products 
potentially be supported by limited weather station infrastructure, but in some cases, 
satellite data may be sufficient. 

We note that these recommendations address issues of index insurance product development 
and marketing, which may seem unusual in a document purportedly about data. However, as 
we have tried to emphasize throughout this document, data issues cannot be meaningfully 
separated from product development and marketing. Data limitations will inform what types of 
products are most feasible and for what target markets. Likewise, data requirements are always 
contextual and depend on the nature of the index insurance product being developed, its target 
market and application. 

In closing, our analyses indicate that weather index insurance investments should be prioritized 
toward natural disaster risks that are likely to be impeding economic growth for poor 
households. These products are likely most effective if designed for the many consequential 
losses the target market experiences during a disaster — a much broader vision for weather 
index insurance than practitioners’ historical focus on a specific crop, and, a considerable 
divergence from the practices of insuring moderate risks. Weather index insurance products 
that improve the ability of risk aggregators to serve the poor is consistent with this vision and 
may be a cost-effective entry point for new weather index insurance markets, especially in data-
constrained regions. Starting with risk aggregator products that cover consequential losses for 
disasters creates a foundation for future insurance products by building capacity among local 
insurers, the insurance regulator, and the target market. This foundation may also motivate data 
system investments as insurance awareness increases and local stakeholders develop a vision 
for extending products to other firms and to households. In the long term, increased product 
offerings and target market specialization may create the way for a variety of new insurance 
products.  
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New Approaches for Index Insurance — El Niño Insurance in Peru 

It is now possible for stakeholders in Peru to purchase a new form of insurance that pays in early 
January before catastrophic flooding created by an extreme El Niño begins in February through 
April in the northern regions of Peru. The El Niño Insurance product was introduced by a 
Peruvian insurance company in 2010. A major global reinsurer carries most of the risk. The 
Peruvian insurance regulator approved this insurance in May 2009. This new insurance product 
uses the U.S. National Oceanic and Atmospheric Administration (NOAA) measure of sea surface 
temperature known as ENSO (El Niño Southern Oscillation) as the event that triggers payments. 
This El Niño Insurance is the first regulated “forecast index insurance” product in the world. 
ENSO information from November and December is used to make payments in January. Opening 
the way for forecast insurance could enhance the overall progress associated with developing 
index-based insurance products for extreme weather events. Having early payments prior to an 
extreme weather event affords the opportunity to prepare and potentially adapt so as to lower 
the actual loss.  

In recent years, there have been a growing number of pilot tests of index insurance for weather 
risk, motivated by an increased understanding of how natural disasters affect developing 
countries. Beyond immediate suffering (deaths, destroyed assets, lost income, etc.), the indirect 
effects are equally troublesome — economic growth can be disrupted, the poor are thrust into 
permanent poverty traps, and the mere presence of these risks constrain access to financial 
services and cause many decision makers to pursue low-return, low-risk strategies that impede 
economic progress.  

Much of the development of index insurance focuses on agriculture, as activities associated with 
agriculture remain the primary livelihood strategies for the rural poor in developing countries. 
Index insurance uses an objective measure (an index) of a natural event known to cause losses 
(e.g., excess or shortfalls in rain, river levels, extreme sea surface temperatures, etc.). Using an 
index as a measure of the insured event dispenses with expensive loss assessments of individual 
policyholders. Furthermore, moral hazard and adverse selection, problems that plague 
traditional forms of insurance, are diminished. Given these advantages, index insurance may be 
well-suited to developing countries where data are sparse and delivery of financial services to 
smallholder households increases the per-unit cost of traditional insurance.  

Despite the promise of index insurance, progress is slow at the micro level. Decision makers in 
smallholder households must still be educated about index insurance; demand can be low; cost-
effective systems to sell to smallholder households must be developed; legal and regulatory 
systems must be developed, etc. Presently, index insurance may be better suited for risk 
aggregators — those lending to farmers, firms in the value chain, and farmer associations. 
Focusing first on risk aggregators may also accelerate the potential to build linkages and 
sustainable products that will directly serve smallholder households.  

Index Insurance Is Suitable for Some Correlated Losses in Developing 
Countries 
As a precondition of index insurance, losses created by the natural disaster to be insured must 
be strongly correlated. A clear measure of correlated losses is when a large number of 
individuals and risk aggregators suffer losses at the same time. Correlated losses from natural 
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disasters constrain the development of credit markets for the rural poor, particularly for those 
involved in agriculture. Lenders cannot absorb the risk exposure of a large number of borrowers 
who may be unable to pay off loans after a major natural disaster.  

Likewise, an insurer deciding to write any form of insurance against extreme weather events 
must have a means to transfer these risks — generally via a global reinsurer. Insurers in 
developing countries rarely have business practices that allow them to access global reinsurers. 
If the index being used is fully transparent, the global reinsurer understands the systems that 
are used to estimate the index. This is the certainly the case for ENSO measures, which have 
been developed for over 50 years by the U.S. agency, NOAA.  

Extreme weather events such as drought and flooding can also have associated consequential 
losses that extend beyond what traditional crop insurance pays for losses of a specific crop. For 
example, in a number of African nations, where owning livestock is a form of savings, extreme 
droughts force large numbers of farmers to sell-off their livestock at the same time. These 
forced sales depress local prices compounding the losses. Floods and droughts also generally 
influence the quality of crops, not just the yields. And, strategies to diversify cropping 
enterprises to manage risk can quickly prove ineffective if the drought or floods negatively affect 
all of the crops at the same time. Processors, laborers, and any number of local businesses that 
depend on local crop production also suffer.  

El Niño Insurance as a Form of Business Interruption Insurance for 
Consequential Losses 
In Peru, where the El Niño Insurance is being tested, the consequential losses and problems 
associated with extreme rainfall (Figure A1) and catastrophic flooding are enormous — crops 
are lost, trees are killed, soils wash away, transportation systems break down, disease problems 
(e.g., malaria) increase, and markets are destroyed. When individuals and local markets suffer in 
this fashion, it is expected that firms in the value chain and the financial sector will also suffer.  

Given the levels of rainfall in the region, it is full understandable why there were major 
disruptions in the northern region of Peru (Figure A1). The volume of water in the Piura River 
was also about 40 times normal in these two extreme El Niño years. In 1998, with a clear 
indication that El Niño was coming, farmers simply did not plant crops, resulting in a 27 percent 
drop in fertilizer sales in northern Peru. Agricultural lending was growing at a significant pace 
before the 1997–98 El Niño. The growth completely stopped after the event. Microfinance 
institutions had a significant increase in problem loans. The total agricultural portfolio for all 
MFIs in Piura had an increase of over 10 percentage points for loans that were 60 days late or 
more. Caja Piura, a leading MFI in Piura, restructured an estimated 3.8 percent of its total loan 
portfolio due to this event. Additionally, the major source of capital for the MFIs (member 
deposits and savings) suffered as people withdrew funds to cope with the problems created by 
the event.  
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Figure A1  Extreme El Niño Events of 1982/83 : 1997/98 

 
Based on an increased understanding of these types of associated problems, the El Niño 
Insurance in Peru was presented to the Peruvian regulator as a form of business interruption 
insurance designed to pay for consequential losses that are linked to extreme flooding that is 
highly correlated with ENSO. Furthermore, given that extreme ENSO measures in November and 
December are clear signals of an impending disaster, it was also accepted that stakeholders such 
as microfinance institutions would be incurring additional expenses even before the actual 
disastrous flooding begins in February through April. Assessments of the consequential losses, 
which are estimated using the ENSO measure, are done before the event. Assessing 
consequential losses including business interruptions is extremely difficult; therefore, the form 
of loss adjustment for the El Niño Insurance can be as acceptable to regulators as more 
traditional loss assessment processes of business interruptions (e.g., business revenue losses 
created by an event like a building fire that disrupts normal business). There is precedent for 
special forms of insurance referred to as “valued policies.” In the case of valued policies, there is 
a pre-agreed value and a pre-agreed event that will create losses. Experience in Peru 
demonstrates that index insurance can be presented in the same manner. These were 
important developments in properly positioning index insurance in the legal and regulatory 
environment. 

The El Niño Insurance uses the monthly SST for ENSO Region 1.2 (0-10°South, 90°West-
80°West), measured and reported by the NOAA Climate Prediction Center (CPC, 2010). The basis 
for payment is the average of two months — November and December. Payments begin when 
this measure exceeds 24.5 degrees Celsius, and payments reach a maximum when the measure 
reaches 27 degrees. The payout function is linear between these two temperatures. Thus, the 
payout rate2

                                                 
2 Using this calculation, the payout rate in 1998 would have been 71 percent of sum insured. 

 is calculated as:  

1998 1983 
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24.5)(27
24.5)Index(ENSO

RatePayout
−

−
=  

The insured selects the sum insured. Indemnity payments are made by multiplying the payout 
rate times the sum insured. The selection of sum insured should be based on a risk assessment 
that estimates the largest losses that may occur under the worst flooding event. The regulator 
could require documentation of these estimates to serve as the maximum value of insurance 
allowed. Prudent insureds will be more likely to select a value that is less than these estimates 
given the expense of this type of catastrophe insurance.  

Since the El Niño Insurance pays before the catastrophe, educational efforts and workshops 
have been focused on helping the target markets understand how they might use the extra cash 
to mitigate the impending crisis to the extent possible. Farmer associations in remote regions of 
Piura, Peru, have expressed an interest in using the funds to clear drainage systems. Lenders are 
interested in using payments to ease the liquidity crisis as they work with problem loans at the 
same time that they see reductions in savings and deposits. Those in the value chain are 
interested in smoothing their losses. The El Niño Insurance is also being presented to local and 
regional governments to provide ready cash that may be able to mitigate some of the problems 
that are certain to emerge with catastrophic flooding.  

At this stage, the El Niño Insurance is not being made available to smallholder households. 
However, the product can be tied to other financial services in a fashion that give smallholders 
greater access to these services at better prices. Targeting the El Niño Insurance to the risk 
aggregator first has proven a highly valuable exercise. The interest and involvement of the 
Peruvian financial regulators increases the potential that a sustainable index insurance product 
is being developed.  
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