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Abstract 

Economic analysis of weather risk often depends on accurate assessment of the probability (P) of tail 
quantiles (Q) and extreme value theory can provide a promising estimation of the tail part risk. In this 
article, we apply statistical techniques to quantify weather tail risk and compare the results from standard 
statistical distributions with extreme value models for risk estimation and premium setting. We 
demonstrate that extreme value models can provide more statistically robust estimation in modeling 
weather tail risk and premium ratemaking of weather-based contingent claims. Rainfall data across 
selected regions in India during the 1871–2001period is used in the empirical analysis. 
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Weather Risks, Ratemaking, and Modeling the Tail Distribution: 
An Application of Extreme Value Theory 

 
 

Economic analysis of weather risk often depends on an accurate estimation of the probability (P) or 
patterns depicting the stochastic nature of a random weather variable, especially the tail quantiles (Q). 
For example, accurate actuarial rates, which depend on the precise measurement of low tail risk, are 
essential elements of an actuarially sound insurance program. A few low-probability, high-consequence 
events often have dominant impacts on risk assessment and thus commercial investors often use the 
Value-at-Risk method to assess the risk in their portfolio that has a low probability at the tail part. 

This article applies statistical techniques to quantify weather tail risk and compares the results from 
standard statistical distributions with an innovative approach — the use of extreme value theory for risk 
estimation and premium setting. The objective of this article is to provide evidence for the feasibility of 
applying extreme value models in modeling weather tail risk and to evaluate its effectiveness over 
alternative distribution models with regards to its economic impact on risk assessment and premium 
ratemaking. 

This article is divided into five sections: The first section provides a strong motivation for why it is 
important to consider alternative statistical procedures for examining tail risk when pricing weather 
insurance products. The second section provides a description of tail distribution estimation for modeling 
and assessing weather risk. In the third section, the statistical model for modeling the tail distribution — 
extreme value theory — is introduced along with the statistical properties. The fourth section develops a 
research procedure that compares the estimation and actuarial performance of the standard distributions 
and the extreme value model using monthly rainfall data across different regions in India over the period 
from 1871 through 2001. The power and efficiency of the extreme value model are further demonstrated 
by modeling the tail risk. Finally, policy implications are developed in the fifth section. 

Background and Motivation  

Accurate ratemaking and efficient weather risk assessment depend on the precise forecasting of a future 
occurrence, especially for the tail-part risk. Until today, the most common method of forecasting is still to 
use historic records to derive the probability distribution of related variables (e.g., temperature, 
precipitation, crop yield, etc.) associated with various weather events, that is, the probabilistic method. 
Considerable disagreement exists about the most appropriate characterization of risk distributions. The 
approaches that have been used to represent risk distributions can be segmented into two primary 
methodologies: parametric and non-parametric.  

When using the parametric approach, a specific family of distributions (e.g., normal, beta, gamma, etc.) is 
selected and parameters of this family are estimated based on observed data using either the maximum 
likelihood method or generalized method of moments. This approach works well when the underlying 
population distribution family is correctly assigned. In agriculture, parametric techniques have been 
extensively applied for estimating crop-yield distributions and premium ratemaking, such as the normal 
distribution (e.g., Day, 1965; Botts and Boles, 1958), beta distribution (e.g., Babcock and Hennessy, 
1996; Nelson and Preckel, 1989), gamma distribution (e.g., Gallagher, 1986), lognormal distribution (e.g., 
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Stokes, 2000), the Su family (e.g., Ramirez, Misra, and Field, 2003), and a mixture of several parametric 
distributions (Goodwin and Ker, 2002). Different parametric distributions vary in terms of their flexibility 
and ability to capture the crop-yield process. Sherrick, et al. (2004) discusses the modeling of alternative 
distributional parameterization (i.e., the beta, the logistic, the lognormal, the normal, and the Weibull 
distribution) and their economic importance on crop insurance valuation. Parametric techniques are also 
commonly used in catastrophic risk modeling. For example, the Poisson distribution is often used to 
model rare and random events (e.g., earthquake occurrence, etc.); the Pareto distribution is used to 
estimate the flood frequency or fire loss; and the lognormal distribution is frequently used to track the 
earthquake motion, raindrop size, or tornado path (Woo, 1999). However, the prerequisites of functional 
form and distribution assumptions for the parametric approach may result in imprecise predictions and 
misleading inferences when the underlying distribution choice is incorrect. 

Nonparametric methods have been developed for situations where no knowledge of a specific distribution 
family of the underlying population is assumed. The simplest nonparametric technique is the histogram 
and the most commonly used nonparametric methods are based on empirical distribution. Compared to 
the parametric approach, the nonparametric approach is free of functional forms and distribution 
assumptions and relatively insensitive to outliers. Therefore, this approach is invulnerable to specification 
errors and might result in more accurate and robust models (Featherstone and Kastens, 1998). In 
agriculture, in addition to empirical distribution methods and histograms, a variety of kernel functions have 
been used to estimate crop-yield distribution and rate crop insurance contracts, such as Goodwin and Ker 
(1998), Ker and Goodwin (2000), and Ker and Coble (2003). However, some nonparametric procedures 
(e.g., the kernel procedure) have relatively slow rates of convergence to the true density (Silverman, 
1986) and results can be indeterminate when measuring rare events. Some efficiency might also be lost 
when some prior knowledge of the underlying distribution form is available or the sample is small.  

When modeling weather risk and properly pricing weather risks whether it is in weather markets or in the 
development of stand-alone weather insurance products, the principle concern is not in estimating the 
whole distribution, but only the tail risk. The use of standard parametric or nonparametric methods might 
be misleading or biased when modeling the tail risk since traditional statistical methods mostly focus on 
the laws governing averages and are driven by data clustered in the center. This bias can further cause 
imprecise ratemaking when designing weather-based contingent claims. To overcome the disadvantage 
of applying standard methods in modeling tail risk, extreme value theory (EVT), which is grounded by the 
laws governing tail events, could provide a promising solution since it primarily quantifies the stochastic 
behavior of a process usually at the largest event, the smallest event, or at events over a threshold in a 
sample.  

Extreme Value Theory — Let the Tails Speak for Themselves! 

Basic statistical measures of risk, such as, mean, variance, and the third or fourth central moments, are 
all based on the center of the observed data. However, in weather risk estimation, a few low probability 
events will exert a high, or even dominant impact on risk assessment and the quantification of (P, Q) 
combinations needs to rely on the (asymptotic) form of tail distribution. Estimation and inference based on 
the whole distribution might be inaccurate since the data clustered in the center of the distribution will 
have too much influence over the estimators. Furthermore, alternative distributions that fit the observed 
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data well might have different performances in a tail estimation, which can, in turn, bias the calculation of 
the insurance premiums and indemnity payments.  

Recently, some researchers (e.g., Ker and Coble, 2003) have noticed this problem and suggest modeling 
the conditional risk distribution instead of the whole distribution in risk assessment. However, the risk 
estimation and economic analysis of alternative distribution specifications on modeling conditional 
weather risk have not been well documented. Specifically, the performance of alternative distributions on 
conditional tail-part risk valuation has not been addressed in most of the literature. 

Extreme value theory (EVT) dates back to the late 1920s and early 1940s with the pioneering work of 
Fisher and Tippett (1928), and Gnedenko (1943). In 1958 Gumbel laid out the theoretical framework of 
the extreme value model in his classical book. Extreme value techniques have been extensively applied 
in many disciplines during the last several decades. Generally, there are two principal approaches to 
modeling extreme values, the block maxima model (BMM) and peak-over-threshold model (POT).  

The first approach (BMM) models the largest or the smallest values for a series of identically distributed 
observations (i.e., annual maximum precipitation level, daily minimum temperature, the largest insurance 
claim, etc). In modeling weather risk and designing an efficient risk management system, it might be of 
particular interest when asking such a question as: “What is the probability that the maximum event for 
next year will exceed all previous levels?” In the actuarial industry, such information might be especially 
important in determining the buffer fund and probability of ruin that can jeopardize the position of the 
insurance or reinsurance company due to catastrophic loss. 

Statistically, assume nM  to be the maximum of the process over n independent random variables with a 

common distribution function F, that is, },,max{ 1 nn XXM = . 

In theory, the distribution of nM  can be derived by  
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where µ  and )0(>σ  are location and scale parameters, and ξ  is a shape parameter. We can further 

divide the GEV family into Gumbel ( 0→ξ ), Frechet ( 0>ξ ), and Weibull ( 0<ξ ) distributions. 

The GEV family can be easily transformed to model the smallest value by changing the sign. 
Furthermore, the GEV family can be extended to model the rth largest or smallest order statistics and the 
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parameters of the GEV family can be estimated in the presence of covariates, such as trends, cycles, or 
actual physical variables (e.g., the Southern Oscillation Index in the rainfall process). Maximum likelihood 
procedures can be employed to estimate the GEV parameters ξσµ ,, . These estimators are unbiased, 

consistent, and asymptotically efficient. Although there is not always a straightforward analytical solution, 
the estimators can be found using standard numerical optimization algorithms.  

Modeling only the extreme values can only be applied when the particular interest is in the largest or 
smallest event, and this method is also an inefficient approach if other data on the tail are available and of 
interest. POT can compensate for such shortcomings and be used to model all large (small) observations 
that exceed (fall below) a high (low) threshold, which are important in determining insurance or 
reinsurance premium rates, claims, and buffer funds. This approach might be more useful for practical 
applications since it is more efficient to use limited resources on extreme values instead of only the 
largest or smallest observation.  

Assume u is the threshold, then the stochastic behavior of the events whose values are greater than u 
can be represented by the following conditional probability function: 

(3) 0,
)(1

)()()|()( >
−

−+
=>≤−= y
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Pickands (1975) and Balkema and de Haan (1974) have shown that if block maxima have an 
approximate GEV distribution, then threshold excesses have a corresponding approximate distribution 
within the Generalized Pareto Distribution family (GPD) and the parameters of GPD are uniquely 
determined by those of the associated GEV distribution of block maxima. For a large enough threshold 
u , the distribution function of )( uX − conditional on uX > can be approximated by 

(4) ξ

σ
ξ /1)1(1)( −+−=

u

yyH  where )( µξσσ −+= uu . 

If 0<ξ (Weibull), the distribution of excesses has an upper bound; If 0>ξ (Frechet), the distribution of 

excesses has no upper limit; If 0→ξ  (Gumbel), the distribution can be simplified as an exponential 

distribution with parameter uσ/1 . Similar to the GEV distribution, maximum likelihood procedures can be 

utilized to estimate the GPD parameters given the threshold u.  

The determination of the threshold u is crucial to perform the POT method. There always exists a tradeoff 
between variance and bias in determining the threshold. For example, too high a threshold will generate a 
few observations to estimate the parameters and may cause high variance while too low a threshold is 
likely to violate the asymptotic basis and may lead to a bias. Graphically, the mean residual life plot and 
Hill-plot (Coles, 2001) can be performed to determine the crucial threshold u. The goodness-of-fit test 
suggested by Gumbel (1958), and the Bootstrap methods suggested by Dekkers and de Haan (1989) can 
also be used to approach this problem.  



 7 

Research Design 

This study provides an empirical analysis of modeling weather risk using alternative parametric 
distributions and EVT. Premium rates of a hypothetical weather index with varying strikes are calculated 
and a statistical comparison is performed. 

Data 

Indian agriculture accounts for 24 percent of the GDP and provides work for almost 60 percent of the 
population. Monsoons in India can bring damaging cyclones and floods to the coastal plain. Heavy 
flooding in 2000 caused about 1,200 deaths in southern India and Bangladesh (Swiss Re, 2001). Officials 
in Andhra Pradesh report that by August 30, 2000 the floods had affected 3,080 villages and towns and 
submerged 177,987 hectares of farmland, causing damage officially estimated at 7.7 billion rupees. The 
real destruction may far exceed these figures (Peiris, 2000). 

Parchure (2002) estimates that about 90 percent of the variation in the crop production of India is due 
either to inadequate rainfall or to excess rainfall. Generally, excess rain is concentrated in the months of 
June to September. However, the performance of the current crop insurance program in India can be 
considered disappointing (Skees and Hess, 2003; Parchure, 2002), and developing rainfall-based 
insurance can be considered an economically viable instrument (Veeramani, Maynard, and Skees, 2005).  

In this study, historic monthly rainfall data from the months of June–September over the 1871–2001 
period across 14 different subdivisions are used (Indian Institute of Tropical Meteorology, 2001). The time 
series data used to estimate an underlying distribution need to be identical and independent, thus a 
series of tests are necessary. 

1) Deterministic trend or stochastic trend 

The augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests were used to test for the existence of 
a stochastic trend on a region-by-region basis. The rainfall series for all 14 regions were found to be trend 
stationary and the unit root tests were rejected in all cases. The results suggest that a deterministic trend 
might be appropriate for the rainfall series. 

2) Linear trend or higher order trend 

The possible trend order was examined by regressing time series rainfall data against a possible time 
trend (e.g., linear, quadratic, cubic, or higher order) based on the significance of the F-test. Greene 
(2003) notes the conservative nature of this test in cases of non-normal errors. The results indicate that 
only two of the 14 regions were found to have significant linear trends (Region COAPR with a 10 percent 
significant level and Region SASSM with a 5 percent significant level). Region TELNG has a significant 
quadratic term and a fifth order term at the 10 percent level and a fourth term at the 5 percent level. 
Regions WMPRA and SHWBL have significant cubic terms at the 5 percent level and the 10 percent 
level, respectively. But none of them have significant lower order terms. 

3) Autocorrelation and Normality 

Durbin-Watson (DW) tests are used to indicate the incidence of a first order autocorrelation for lag one 
series (monthly autocorrelation) and lag four series (yearly autocorrelation). The results showed that the 
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DW test was only rejected in one region, SASSM, at a 5 percent significant level. A normality test 
(Kolmogorov-Smirnov test) failed to reject in only one region, NASSM, at a 5 percent significant level and 
in two regions, BHPLT and SASSM, at a 10 percent significant level. Since only two regions have a 
deterministic trend (CORPA and SASSM), a heteroscedasticity test is not performed in this study. 

Given the sporadic violations of the i.i.d. assumptions, a linear trend was imposed for regions COAPR 
and SASSM and the time series rainfall data were detrended by a linear term to a base year of 2001. The 
raw rainfall data were used for the twelve other regions. The summary statistics of rainfall data are shown 
in Table 1. 

Table 1. Summary Statistics of Rainfall in Selected Regions of India 

 
N Mean Median Standard 

Deviation 
Skewness Kurtosis Maximum Minimum 

BHPLN 524 2592 2457 1098 0.440 -0.193 5949 355 
BHPLT 524 2750 2725 1051 0.340 0.273 7309 340 
COAPR 524 1905 1827 818 0.678 0.395 4894 382 
EMPRA 524 2983 2961 1325 0.139 -0.753 6780 177 
EUPRA 524 2269 2298 1151 0.271 -0.414 5845 109 
GNWBL 524 2887 2775 987 0.573 0.135 6158 700 
NASSM 524 3628 3648 1038 0.212 0.040 7307 845 
ORISS 524 2916 2842 1084 0.368 -0.218 6038 552 
SASSM 524 3919 3749 1107 0.591 0.393 7892 1531 
SHWBL 524 5014 4896 1655 0.444 -0.065 10129 1241 
TELNG 524 1784 1707 779 0.743 0.783 5107 255 
VDPBH 524 2357 2225 1068 0.388 -0.224 5969 170 
WMPRA 524 2283 2277 1175 0.307 -0.496 5824 108 
WUPPL 524 1915 1912 1142 0.244 -0.905 4949 4 
Average  2800 2736 1106 0.410 -0.089 6439 484 
Minimum  1784 1707 779 0.139 -0.905 4894 4 
Maximum  5014 4896 1655 0.743 0.783 10129 1531 

 
 

The mean of monthly cumulative rainfall during the period from June to September across the 14 regions 
averages 2,800mm, indicating that excess rainfall can be a significant risk. The sample means vary 
considerably ranging from a low of 1,784mm (TELNG) to a high of 5,014mm (SHWBL). Sample medians 
are slightly smaller than sample means in all regions except EUPRA and NASSM, ranging from 1,707mm 
(TELNG) to 4,896mm (SHWBL) with an average of 2,736mm. The variability of monthly rainfall is also 
different across the regions, with standard deviations ranging from 779 (TELNG) to 1,655 (SHWBL). The 
coefficients of skewness range from 0.139 (EMPRA) to 0.743 (TELNG), with an average of 0.41 across all 
regions. Positive skewness calls into question the use of symmetric distribution (e.g., normal distribution) 
to model rainfall. The coefficients of sample kurtosis range from -0.905 (WUPRL) to 0.783 (TELNG), with 
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an average of -0.089. Both negative kurtosis (sub-Gaussian) and positive kurtosis (super-Gaussian) 
appear across the different regions, showing the possibility of both “less peaked” and “more peaked” 
density functions. Monthly cumulative rainfall levels vary significantly across regions. For example, the 
maximum rainfall ranges from as low as 4,894mm in COAPR to 10,129mm in SHWBL; the minimum 
rainfall fluctuates from 4mm in WUPRL to 1,531mm in SASSM. The summary statistics indicate that 
rainfall across regions displays significantly different distributions but predominantly positive skewness. 

Research Procedure 

The aim of this article is to provide evidence for the feasibility of applying EVT in modeling weather tail 
risk and to evaluate its efficiency over alternative distribution models with regards to its economic impact 
on risk assessment and premium ratemaking. In this study, four alternative distributions are selected as 
the parametric candidates and the GPD model is chosen as the extreme value candidate. The research 
procedure includes the following five steps: 

Step 1. Fitting the Alternative Parametric Distributions 

In selecting the parameterization of rainfall distributions, several considerations were given to 1) Stylized 
features of cumulative rainfall (i.e., non-negativity, skewness); 2) Flexible parameters to adequately 
characterize cumulative precipitation over time periods across different regions; 3) Previous studies and 
empirical evidence from climatological research (Ison, Feyerherm, and Bark, 1971; Woo, 1999). Four 
candidate distributions are considered in this study: the beta distribution1, gamma distribution, lognormal 
distribution, and Weibull distribution.  

Maximum likelihood methods were applied to solve for the parameters of the four distributions for each 
region sample. If any of the cumulative precipitation observations in the historical data serials are equal to 
zero, a censoring estimation suggested by Martin, Barnett, and Coble (2001), could be applied. The 
parameters for all four distributions were estimated separately across the 14 regions, and the fitted 
distributions differ meaningfully across regions. 

Step 2. Rank alternative distributions 

Each of the alternative distributions has two parameters to be estimated in this study and thus there are 
the same degrees of freedom when performing the maximum likelihood functions for the rainfall series.  

Alternative distributions can be ranked for the goodness-of-fit according to some standard tests and visual 
Q -Q plot. SAS 8.2 provides several goodness-of-fit tests for the appropriateness of candidate 
distribution, such as the Kolmogorov-Smirnov test, Cramer-von Mises test, Anderson-Darling test, and 
Chi-Square test. A large p-value fails to reject the null hypothesis, suggesting that the candidate 
distribution might be appropriate to fit the sample data. However, these goodness-of-fit tests are not 
informative for comparing the tail behavior of the distributions and thus the Q-Q plot was also generated. 
The Q-Q plot provides the visual evidence of disparity in the tail part and it should be close to the unit 

diagonal if F̂ is a reasonable model for the population. 

Based on the standard goodness-of-fit tests and Q-Q plot, the appropriateness of the four distributions in 
fitting the rainfall series for each region can be ranked. The following example illustrates how to rank 
alternative distributions for the rainfall series in the WMPRA region. The plot of alternative distributions is 
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shown in Figure 1. The statistics of standard goodness-of-fit tests are reported in Table 2. Q-Q plots of 
alternative distributions are provided in Figure 2. 

Figure 1. Fitting rainfall at WUPPL by alternative distributions in WMPRA 
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Table 2. Goodness-of-Fit Tests for Alternative Distributions in WMPRA 

 
  Tests Statistics P-Value 

Beta Kolmogorov-Smirnov D 0.0314 Pr>D >0.250 
 Cramer-von Mises W-Sq 0.0780 Pr>W-Sq 0.242 
 Anderson-Darling A-Sq 0.5204 Pr>A-Sq 0.2 
  Chi-Square Chi-Sq 12.5061 Pr>Chi-Sq 0.253 

Gamma Kolmogorov-Smirnov D 0.0771 Pr>D <0.001 
 Cramer-von Mises W-Sq 0.7494 Pr>W-Sq <0.001 
 Anderson-Darling A-Sq 4.4289 Pr>A-Sq <0.001 
  Chi-Square Chi-Sq 45.0614 Pr>Chi-Sq <0.001 

Lognormal Kolmogorov-Smirnov D 0.1012 Pr>D <0.010 
 Cramer-von Mises W-Sq 1.8238 Pr>W-Sq <0.005 
 Anderson-Darling A-Sq 10.8661 Pr>A-Sq <0.005 
  Chi-Square Chi-Sq 133.2238 Pr>Chi-Sq <0.001 

Weibull Cramer-von Mises W-Sq 0.2435 Pr>W-Sq <0.010 
 Anderson-Darling A-Sq 1.5594 Pr>A-Sq <0.010 
  Chi-Square Chi-Sq 18.0760 Pr>Chi-Sq 0.054 
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Figure 2. QQ-plots of alternative distributions for the rainfall data in WMPRA 

 

 
 

Both the Q-Q plot and the standard goodness-of-fit tests suggest that the beta distribution should be the 
most appropriate candidates since all four tests fail to reject the null hypothesis at a 10 percent significant 
level and the Q-Q plot is almost an ideal unit diagonal. The Weibull distribution should be considered 
second after the beta distribution. The lognormal and the gamma distribution both appear to be poor 
candidates for fitting the rainfall series by the goodness-of-fit tests. However, the tail behavior in the Q-Q 
plot suggests that the gamma distribution still provides a slightly better fit than the lognormal distribution. 

After comparing the standard goodness-of-fit tests and Q-Q plots of these alternative distributions on a 
region-by-region basis, the number of times each candidate ranked first through fourth, along with the 
weighted average rank, and rank of average are summarized in Table 3. The results confirm that the 
appropriate distribution differs across the 14 regions and the Weibull distributions fit overall the best in the 
majority of the regions (5 regions in the first rank and 9 regions in the second rank, the weighted average 
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of rank is 2.3). The fitting performance is nearly the same for the gamma and beta distribution and the 
gamma outperforms the beta distribution and takes the overall second position. The lognormal distribution 
is much inferior to the other three candidates and ranks only third in 2 regions and fourth in most regions 
with a weighted average of 5.4. 

Table 3. Rankings of Alternative Distributions 

  Alternative Distributions 
  Beta Gamma Lognormal Weibull 

1st 3 6 0 5 
2nd 5 0 0 9 
3rd 4 8 2 0 
4th 2 0 12 0 

Weighted 
Average 

3.3 3 5.4 2.3 

Rank of 
Average 

3 2 4 1 

 

The results are not surprising considering the microclimate pattern across regions. Sherrick, et al. (2004) 
also find similar results when using alternative distributions in modeling corn and soybeans in the United 
States. Their results suggest that the Weibull and beta distributions are overall ranked first and second in 
fitting corn yield and the logistic and Weibull distributions perform first and second in modeling soybean 
yield for selected farms at the University of Illinois. 

Distributional choice has a tremendous impact on the risk assessment, and the selection of an 
appropriate underlying distribution can directly determine the economic effectiveness of risk hedging. 
Since the appropriate distribution differs across regions due to microclimate patterns, it might be best to 
find an appropriate candidate for each of the 14 regions based on the specification tests. However, such 
a method is time-consuming and costly for a large area. For example, crop-yield distributional modeling 
involves thousands of counties in the United States and rainfall series estimation includes hundreds of 
regions in most developing countries. Therefore, it is common to adopt the overall best distribution used 
in current crop insurance programs and weather index design. Unfortunately, even the overall best 
distribution can lead to misleading risk assessments and inaccurate premium ratemaking in some 
regions. For example, the Weibull distribution ranked best overall but only fit best in 5 out of the 14 Indian 
regions. Some efficiency in the other 9 regions may be lost when applying the Weibull distribution to 
model the rainfall series across the 14 regions. 

Step 3. Estimate the rainfall series using EVT model 

In this subsection, the POT model is used to model the excess rainfall risk and the GPD is chosen as the 
candidate distribution. First, the threshold (u) is decided, based on the mean residual plot on a region-by-
region basis. As discussed earlier, an ideal mean excess plot should be approximately a straight line 
against the threshold. Next, the scale and shape parameters are estimated by the maximum likelihood 
method, based on the procedures provided above. Finally, a variety of statistical techniques, such as the 
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P-P plot, Q-Q plot, return level, and density function, are plotted to check the appropriateness of the GPD 
in modeling excess rainfall.  

The estimated shape parameter is less than zero for all regions, suggesting that the excess monthly 
rainfall follows the Type III class of extreme value distribution, that is, the Weibull distribution. The various 
diagnostic plots for assessing the appropriateness of the GPD model fit to the rainfall data across the 14 
regions. None of these plots call into question the validity of the fitted models. 

Step 4. Compare the economic importance of estimations based on two methods 

Weather-based contingent claims can provide an effective cross-hedging mechanism against the revenue 
uncertainty due to weather, such as heat-based insurance (Turvey, 2001), index products with rainfall 
application (Martin, Barnett, and Coble, 2001). A weather derivative is a contract between two parties that 
stipulates how payment will be exchanged between the parties depending on certain meteorological 
conditions during the contract period. Recently, Turvey, Weersink, and Chiang (2006) have developed a 
new method under situations where returns depend on not only the occurrence of the weather events, but 
also the timing, to price weather insurance for ice wine in the Niagara Peninsula of southern Ontario. 

In this study, the design of the weather index follows the European precipitation options proposed by 
Zeuli and Skees (2005) but it is in the form of a call option, that is, indemnity payments are triggered 
when the actual monthly precipitation is above the pre-specified strike. The indemnity function is given by  

(5) )0),(()~(
c

c

x
xXMaxwI −

×= θ  

where cx is the pre-determined trigger for obtaining the indemnity, and θ  is the liability, that is, the 

maximum possible indemnity. 

To formalize this study, the strike cx is defined as a fraction of the proven precipitation level, x , that is, 

xhxc *= . In this study, the mean of month rainfall during the 1871 – 2001 period is chosen as x  and 

the available fractions vary from 1.2 to 1.5. The break-even premium rate is the standard basis for 
establishing insurance actuarial policy and can be calculated as the average of the percentage shortfalls 
above the strike following Ker and Coble (2003) and Skees, Black, and Barnett (1997): 
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where the expectation operator and probability measure are taken with respect to the underlying 
distribution (i=1 means the beta distribution, i=2 means the gamma distribution, i=3 means the lognormal 
distribution, i=4 denotes the Weibull distribution, and i=5 denotes the GPD).  

Given a risk distribution and strike level, the pure premium rates can be easily obtained and Table 4 
presents the summary of actuarially fair premium rates estimated for the five rainfall distributions with 
varying strike levels. The paired t-tests for equality of means of alternative parametric distributions and 
GPD are also provided in this table.  
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Table 4. Pure Premium Rate of Weather Index under Alternative Distributions at Varying 
Strikes 

h=1.2. Mean 0.0787 0.0861 0.0779 0.1184 0.0763 
Std. Dev. 0.0293 0.0368 0.0288 0.0706 0.0292 

Min 0.0341 0.0368 0.0367 0.0414 0.0355 
Max 0.1323 0.1691 0.1368 0.3047 0.1409 

h=1.3. Mean 0.0531 0.0609 0.0508 0.0906 0.0502 
Std. Dev. 0.0234 0.0317 0.0239 0.0631 0.0250 

Min 0.0170 0.0203 0.0180 0.0242 0.0172 
Max 0.0973 0.1341 0.1010 0.2597 0.1079 

h=1.4. Mean 0.0353 0.0432 0.0324 0.0703 0.0328 
Std. Dev. 0.0187 0.0267 0.0191 0.0559 0.0205 

Min 0.0087 0.0106 0.0078 0.0142 0.0075 
Max 0.0751 0.1066 0.0744 0.2224 0.0822 

h=1.5. Mean 0.0221 0.0309 0.0202 0.0553 0.0213 
Std. Dev. 0.0141 0.0222 0.0145 0.0490 0.0163 

Min 0.0039 0.0055 0.0029 0.0082 0.0029 
Max 0.0541 0.0852 0.0534 0.1904 0.0623 

Paired t-test      
h=1.2  2.8438** -0.7391 3.3454*** -1.7576 
h=1.3  2.9118** -2.6339** 3.3207*** -2.3237** 
h=1.4  3.2401*** -6.2201*** 3.3816*** -3.1136*** 
h=1.5   3.7676*** -6.4180*** 3.4638*** -1.0549 

 
*: Significant at the 10% level;  **: Significant at the 5% level;  ***: Significant at the 1% level 

Among the four alternative distributions, the Weibull distribution, the overall best fitting candidate, tends to 
have lower pure premium rates, while the lognormal distribution, the overall worst fitting candidate, tends 
to have higher premium rates. Due to the diversified performance of the beta and gamma distribution, the 
pure premium rates obtained from these two candidates are generally between the lowest level obtained 
from the Weibull distribution and the highest level obtained from the lognormal distribution. The results 
suggest that some parametric distributions might underestimate the tail risk (e.g., the Weibull distribution) 
while other might overestimate it (e.g., the lognormal distribution). On the other hand, the pure premium 
rates obtained from the GPD lie in between those from the Weibull distribution and those from the beta 
and gamma distributions, suggesting that the GPD might be more appropriate in modeling tail-part risk. 
However, further statistical tests are needed. 

The strike levels that trigger the indemnity payment vary when h equals 1.2, 1.3, 1.4, and 1.5, 
respectively. The premium rates tend to be lower with a higher strike level, and higher with a lower strike 
level. Furthermore, paired t-tests are performed where the GPD is chosen as the reference sample. The 
results show that the premium rates obtained from the Weibull distribution at h =1.5 and h=1.2, and the 
beta distribution at h=1.2 are not significantly different from those obtained from the GPD. The premium 
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rates obtained from all the other distributions are all significantly different than those obtained from the 
GPD. The results demonstrate that alternative candidates have significantly different performances in 
economic implications. 

Step 5. Perform sensitivity analysis of different strike levels 

The last step compares the premium rates from the GPD and those from the first ranked candidate based 
on the goodness-of-fit test and the Q-Q plot. For each region, the pure premium rate based on the best 
candidate among the beta distribution, gamma distribution, or Weibull distribution, is chosen as the base 
case and compared with the performance of the GPD in modeling the tail risk. The results of the 
nonparametric sign test and Wilcoxon signed rank test applied to test the equality of means are shown in 
Table 5. 

Table 5. The Actuarial Performance of the GPD and the Best Candidate 

  h=1.2 h=1.3 h=1.4 h=1.5 
  Best GPD Best GPD Best GPD Best GPD 

BHPLN 0.0777 0.0824 0.0501 0.0566 0.0320 0.0362 0.0199 0.0212 
BHPLT 0.0647 0.0659 0.0397 0.0429 0.0236 0.0260 0.0135 0.0164 
COAPR 0.0825 0.0818 0.0573 0.0546 0.0393 0.0384 0.0268 0.0232 
EMPRA 0.0829 0.0918 0.0553 0.0625 0.0359 0.0387 0.0230 0.0228 
EUPRA 0.1089 0.1090 0.0770 0.0763 0.0533 0.0533 0.0360 0.0359 
GNWBL 0.0554 0.0564 0.0342 0.0349 0.0209 0.0200 0.0128 0.0114 
NASSM 0.0355 0.0341 0.0172 0.0170 0.0075 0.0087 0.0029 0.0039 
ORISS 0.0684 0.0669 0.0452 0.0416 0.0292 0.0259 0.0190 0.0133 
SASSM 0.0368 0.0380 0.0203 0.0221 0.0106 0.0113 0.0055 0.0054 
SHWBL 0.0527 0.0505 0.0321 0.0303 0.0196 0.0189 0.0116 0.0084 
TELNG 0.0853 0.0800 0.0595 0.0563 0.0412 0.0394 0.0284 0.0255 
VDPBH 0.0870 0.0921 0.0586 0.0668 0.0388 0.0435 0.0254 0.0299 
WMPRA 0.1114 0.1205 0.0786 0.0839 0.0548 0.0590 0.0370 0.0385 
WUPPL 0.1368 0.1323 0.1010 0.0973 0.0744 0.0751 0.0534 0.0541 
Mean 0.0776 0.0787 0.0519 0.0531 0.0344 0.0353 0.0225 0.0221 

Std. Dev. 0.0286 0.0293 0.0232 0.0234 0.0182 0.0187 0.0136 0.0141 
Min 0.0355 0.0341 0.0172 0.0170 0.0075 0.0087 0.0029 0.0039 
Max 0.1368 0.1323 0.1010 0.0973 0.0744 0.0751 0.0534 0.0541 

Paired t-Test P-value 0.3560 P-value 0.2999 P-value 0.1683 P-value 0.6107 
Sign Test  0.7905  0.7905  0.7905  0.4240 

Wixcoxon Test   0.6257   0.4631   0.2412   0.6698 
 

The means and variability of pure premium rates from the GPD are very close to those from the best 
candidate across different strike levels. Furthermore, all of these tests fail to reject the null hypothesis of 
the equality of pure premium rates based on the GPD and the best candidate with a high p value, 



 17 

demonstrating that the GPD performs as good as the best standard parametric method and is effective 
and robust in modeling and assessing tail risk and premium ratemaking  

Policy Implications 

Accurate estimation of tail events may be of particular interest to decision makers. The EVT can be 
considered the state-of-the-art procedure for estimating the downside risk of a distribution and provides 
promising potential for risk assessment and premium ratemaking of weather-based contingent claims.  

The results also demonstrate that large differences in actuarially fair premium rates for a rainfall-based 
contingent claim can arise solely from the parameterization chosen to represent the underlying risk 
distributions, and misspecification in the risk distribution (e.g., the lognormal distribution) may lead to 
economically significant errors in weather index assessment of expected risks and premium ratemaking.  

Furthermore, when modeling the tail risk, the GPD model is promising since it performs close to the best 
candidate chosen by different parametric distributions. What is evident from this study is that the 
distributional choice has a significant impact on rating and assessing weather-based contingent claims, 
and so the GPD model is effective and robust in modeling the tail risk. 

However, this study addresses a limited set of parametric distributions and only one potential weather-
based contingent claim (the rainfall index). Future work could consider a wide set of distributional choices, 
especially nonparametric techniques, and demonstrate the effectiveness of the GPD in a general case. In 
addition, the extreme value approach may involve a loss of information and the accuracy of estimation of 
a small sample size might be compromised in some realistic situations. 
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