

Yiftach Ziv
Agrometeorology
R&D Department
Israel Meteorological Service

Agrometeorologists for Farmers In Hotter, Drier, Wetter Future

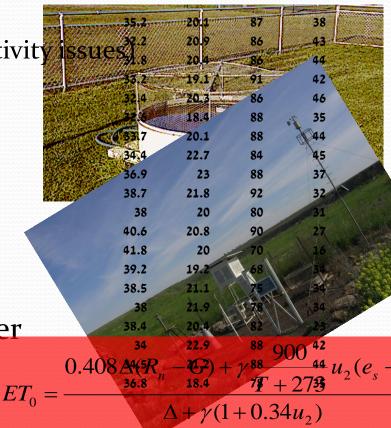
9 -10 November 2016

Ljubljana, Slovenia

Pan to Penman-Monteith

- Motivations
- Making the change
- Conclusions

IMS Motivations:


• 20th century:

- ➤ Widespread Pan-A use (Representativity issues
- ➤ Irrigation coefficients (late 1960's)
- > P-M equation growing use

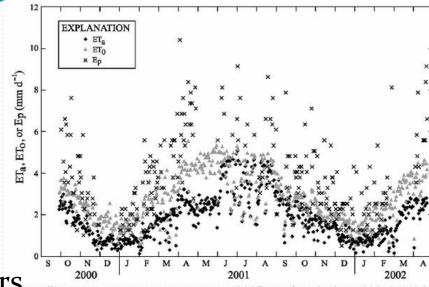
• 21st century:

- > AWS become wide spread
- ➤ Automatic Irrigation systems
- > Abundance of data available to user (ASCE/FAO/PAN/Grass/Alfalfa)

Tower of Babel

IMS Making the change

- Recognizing the confusion Extension Service
- Commitment of all organizations to process:
 - ➤ Ministry of Agriculture
 - > Extension Service
 - > ARO (Agriculture Research Organization)
 - > Regional R&D Organizations
 - > Academia
 - > Farmers
 - ➤ Israel Meteorological Service (IMS)
 - > Private Sector


UNIFORMITY

IMS Making the change

Chosen ETo method – FAO-56

- > International standard
- ➤ Robustness
- > Easy transition can be compared to the pan.
- > On line real time data.
- ➤ Direct connection to computers and communication systems
- ➤ Can be gridded and modeled GIS, forecast

Sumner, D.M., and J. M. Jacobs, 2005. J. of Hydrology, 308, 81-104.

IMS Making the change

- Seamless transition "transparent" to farmer
- Quick transition
 - > No time for new experiments
 - ➤ Use available data
 - > Irrigation amounts not to be changed
 - ➤ Replace ETo → Replace crop coefficients

IMS

Making the change - Technically

- Irrigation amounts not to be changed
- Changing ETo and crop coefficients only:

$$I = K_{cpan} * ET_{pan} = K_{cpm} * ET_{pm}$$

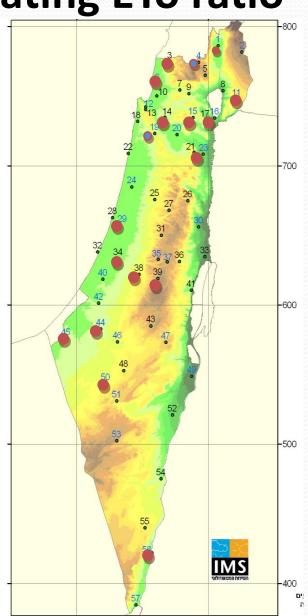
$$K_{cpm} = K_{cpan} / Ratio_{ET}$$

- I Irrigation under optimal conditions
- K_{cpan} Pan irrigation coefficient
- E_{pan} Pan evaporation
- K_{cpm} Calculated PM coefficient.
- E_{pm} Calculated PM evapotranspiration.
- $\left[\text{Ratio}_{\text{ET}} \text{E}_{\text{pm}} / \text{E}_{\text{pan}} \right]$

MS Making the change - Technically

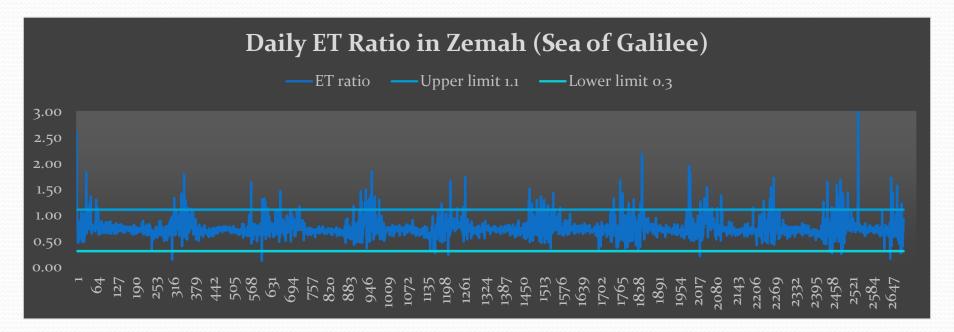
- Irrigation amounts not to be changed
- Changing ETo and crop coefficients only:

$$I = K_{cpan} * ET_{pan} = K_{cpm} * ET_{pm}$$


$$K_{cpm} = K_{cpan} / Ratio_{ET}$$

- I Irrigation under optimal conditions
- K_{cpan} Pan irrigation coefficient
- E_{pan} Pan evaporation
- K_{cpm} Calculated PM coefficient.
- E_{pm} Calculated PM evapotranspiration.
- $Ratio_{ET} E_{pm}/E_{pan}$

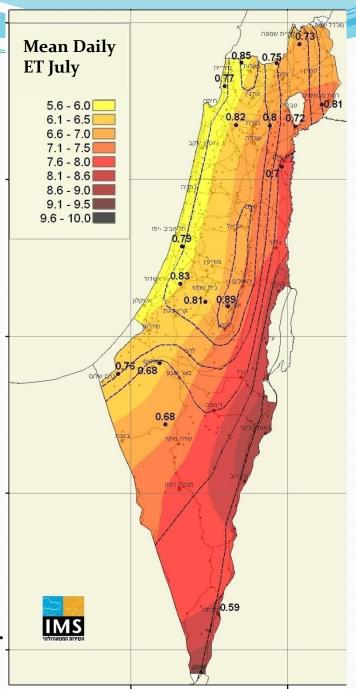
Making the change - Calculating ETo ratio


- Defining agro-climatic regions
- Sufficient PAN-A & AWS data
- 5-10 years data
- IMS & Ministry of Agriculture
- 57 AWS & 17 PAN-A sites
- Scrutinizing PAN-A data
- Averaging daily data over a month

Making the change - Calculating ETo ratio

- Scrutinizing PAN-A data
 - ➤ Missing data
 - > Rain days
 - > Accumulated data
 - > Measurement errors

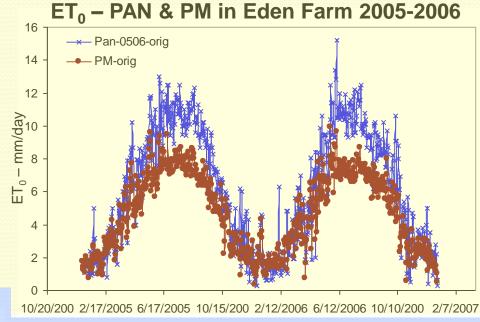
IMS Making the change - Calculating ETo ratio

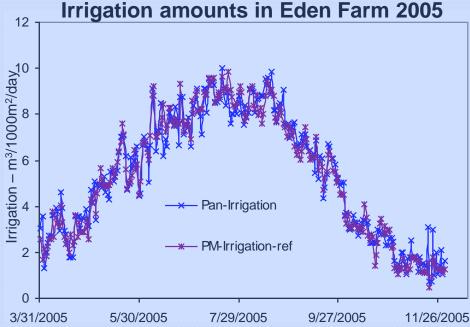

Acre	Newe Yaar	Gilat	Rosh Zurim	Yotvata	Eilon	Kefar Blum	Zemah	Eden Farm	Hafetz Hayim	Bet Dagan	Avne Etan	Negev Pl.	Besor	Month
	0.95	0.79	0.78	0.68	0.74	0.79	0.78	0.81	0.82	0.74	0.79	0.76	0.82	1
0.76	0.95	0.83	0.80	0.68	0.76	0.81	0.76	0.82	0.84	0.78	0.81	0.79	0.87	2
0.76	0.92	0.81	0.81	0.63	0.79	0.81	0.78	0.79	0.86	0.78	0.80	0.76	0.84	3
0.78	0.92	0.76	0.85	0.60	0.79	0.81	0.75	0.75	0.84	0.78	0.82	0.71	0.79	4
0.77	0.88	0.74	0.87	0.60	0.82	0.78	0.73	0.72	0.86	0.79	0.80	0.69	0.78	5
0.77	0.83	0.68	0.89	0.60	0.83	0.73	0.72	0.69	0.84	0.79	0.80	0.69	0.77	6
0.77	0.82	0.69	0.90	0.58	0.85	0.74	0.72	0.69	0.82	0.79	0.82	0.68	0.76	7
0.76	0.80	0.68	0.89	0.59	0.88	0.73	0.71	0.71	0.83	0.78	0.82	0.68	0.76	8
0.73	0.80	0.67	0.87	0.60	0.84	0.71	0.69	0.72	0.81	0.74	0.79	0.68	0.76	9
0.74	0.84	0.66	0.82	0.61	0.77	0.73	0.67	0.75	0.83	0.74	0.78	0.71	0.75	10
0.72	0.93	0.67	0.77	0.63	0.72	0.80	0.69	0.77	0.83	0.74	0.79	0.68	0.81	11
0.74	0.93	0.69	0.77	0.66	0.71	0.83	0.72	0.77	0.83	0.70	0.77	0.70	0.79	12

Making the change – Calculating ETo ratio

$K_{cpm} = K_{cpan} / Ratio_{ET}$

- I Irrigation under optimal conditions
- K_{cpan} Pan irrigation coefficient
- E_{pan} Pan evaporation
- K_{cpm} Calculated PM coefficient.
- E_{pm} Calculated PM evapotranspiration.
- Ratio_{ET} E_{pm}/E_{pan}


Making the change - Calculating crop coefficients


DATE	PAN COEFFICIENT	PM COEFFICIENT		
1-15 APRIL	0.35	0.46		
16-30 APRIL	0.4	0.53		
1-15 MAY	0.45	0.56		
16-30 MAY	0.5	0.67		
1-15 JUNE	0.55	0.71		
16-30JUNE	0.6	0.77		
JULY	0.6	0.79		
AUGUST	0.65	0.86		
SEPTEMBER	0.65	0.94		
OCTOBER	0.65	0.94		

Making the change – from ET₀ to Irrigation

Making the change - PM Based Water Chart

		Banana - Coastal	AWS	Total Irrigation (m³/Season)	Banana Irrigation Chart			
		Acre	Acre		Type in Weekly Calculated ET	Daily Irrigation Amount		
Month	Decada	PM Coefficient	Mean Daily ET	m³/day mm		M³/Dunam/Day		
8	1	0.00	3.40	0.0		0.0		
March	2		3.40	0.0		0.0		
	3	0.55 3.40		1.9	12.0	0.9		
	1	0.50	4.30 2.2		10.0	0.7		
April	2	0.50	4.30	2.2	15.0	1.1		
•	3	0.55	4.30	2.4	23.0	1.8		
	1	0.65	5.00	3.3	29.0	2.7		
May	2	0.75	5.00	3.8	28.0	3.0		
	3	0.80	5.00	4.0	30.0	3.4		
	1	0.90	5.50	5.0	32.0	4.1		
June	2	0.95	5.50	5.2		0.0		
	3	1.00	5.50	5.5		0.0		
July	1	1.15	5.60	6.4		0.0		
	2	1.20	5.60	6.7		0.0		
	3	1.30	5.60	7.3		0.0		
August	1	1.35	5.40	7.3		0.0		
	2	1.35	5.40	7.3		0.0		
	3	1.40	5.40	7.6		0.0		
*	1	1.35	4.80	6.5		0.0		
September	2	1.40	4.80	6.7		0.0		
	3	1.40	4.80	6.7		0.0		
	1	1.35	3.60	4.9		0.0		
October	2	1.25	3.60	4.5		0.0		
	3	1.15	3.60	4.1		0.0		
November	1	1.20	2.70	3.2		0.0		
	2		2.70	0.0		0.0		
	3	0.00	2.70	0.0		0.0		
	1	0.00	2.10	0.0		0.0		
December	2		2.10	0.0		0.0		
	3	0.00	2.10	0.0		0.0		

Making the change – The real challenge

משרד החקלאות ופיתוח הכפר

שירות ההדרכה והמקצוע The Agricultural Extension Service of Israel

Training activities

Professional information

- Agricultural Extension Service Units | - about |

Forms | - gallery | Professional communities

preliminary irrigation <- Themes <- Professional Information <- Home

Irrigation coefficients

There are several methods for calculating potential evaporation from meteorological stations. FAO 56 Is the accepted method by the Israeli Meteorological Service and the Ministry of Agriculture and the World. At the same time, there is a method to calculate daily evaporation (or during the day) accepted by the Northern R & D. All irrigation coefficients accompanying Excel files relate to evaporate calculated accepted by the Meteorological Service and the Ministry of Agriculture

Avocado irrigation coefficients

The author's name: which Eizenkot Date of publication: 31/12/2012 Type of content: walling

Irrigation coefficients Bugs

The author's name: which Eizenkot Date of publication: 01/02/2013 Type of content: walling

Irrigation coefficients peach

The author's name: which Eizenkot Date of publication: 04/03/2013 Type of content: walling

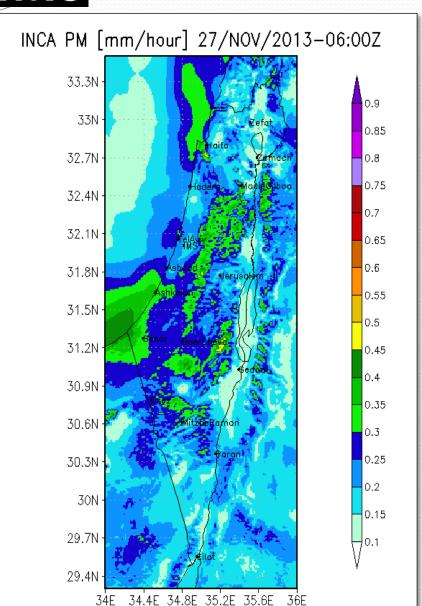
Professional information

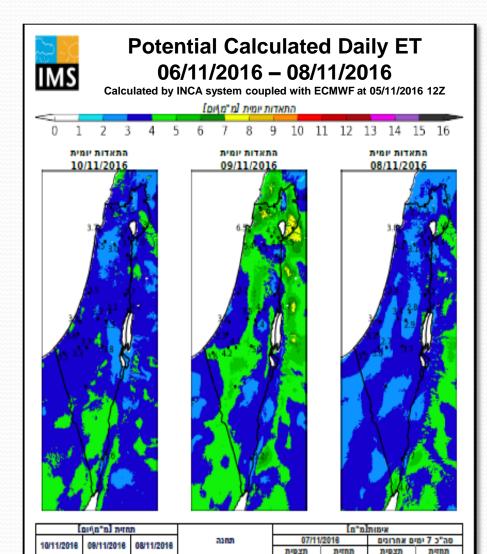
Professional publications farmers

Themes '

Shaham Research Foundation Irrigation coefficients

> Flower industry newsletters Fallow Calculations


> > Selected sites 4



IMS Further Utilizations:

מרום נולן פיכמן

תבור כדורי

4.2

5.4

21.1

IMS Conclusions:

- Recognize a mal-practice
- Cooperation:
 - ➤ All relevant sectors
 - ➤ Through entire product chain
 - > Preliminary phase to final product
- Seek how to contribute to the project:
 - ➤ Be pro-active
 - ➤ Adjust to client needs
 - > Professionalism
- Reach End-User:
 - ➤ Directly
 - > Indirectly

Water Management in Israel

Centralized Governance

Water Act (1951): All water resources belong to the people

Semi arid Climate

86%
Potable water recycled

~50%

Potable water from desalination

35%
Irrigation
potable water

14%
Decrease per capita domestic use