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Agricultural Monitoring Requires a Holistic View
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Schematic diagram depicting processes
represented in the Community Land Model
(http://www.cesm.ucar.edu/models/cim/)

Lawrence and Fisher (2013) The Community Land
Model Philosophy: model development and science
applications. ILEAPS Newsletter, 13, 16-19.
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Earth Observation

More satellites than ever and better than ever
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Belward and Skgien (2015) Who launched what, when and why; trends in global land-

cover observation capacity from civilian earth observation satellites. ISPRS Journal of
Photogrammetry and Remote Sensing, 103, 115-128.
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Sentinel-1 — A Game Changer

C-band SAR satellite in Solar panel and SAR antenna of Sentinel-1

continuation of ERS-1/2 and 'auntchhed ?’ﬁ-‘l”-' 20181- 'ﬂ:jage was a@C)uniszd by
e satellite’'s onpoard camera.
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High spatio-temporal coverage
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- Spatial resolution 20-80 m . - ==

j’/ :

- Temporal resolution < 3 days
over Europe and Canada

—- with 2 satellites
Excellent data quality

Highly dynamic land surface
processes can be captured

- Impact on water management,
health and other applications
could be high if the challenges
in the ground segment can be
overcome




Sentinel-1 Time Series
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Sentinel-1 Cross-Pol (VH) Images

Red — June
Green — July
Blue — August

False-colour image of Sentinel-1
VH monthly image mosaics




Operational EO Data Services

Copernlcus Global Land Service
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Home Products News Product Access Viewing

Overview

Versioning
Development stages

== > Vegetation
Burnt Area
Dry Matter Productivity
Fraction of Absorbed Photosynthetically Active Radiation
Fraction of green Vegetation Cover
Leaf Area Index
Normalized Difference Vegetation Index
Vegetation Condition Index
Vegetation Productivity Index
> Energy

Land Surface Temperature
Surface Albedo
Top Of Canopy Reflectances

7. > Water

- Soil Water Index
Water Bodies

About ’ Contact us

(opernicus
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TU Wien’s Soil Moisture Data Services

Hydrology SAF ,
- Cooperation with EUMETSAT, ZAMG and ECMWF to deliver é
- 25 km ASCAT surface soil moisture data in near-real-time
_ Assimilated ASCAT soil moisture profile EUMETSAT

- Disaggregated 1 km ASCAT/ASAR soil moisture maps
Copernicus Global Land

Cooperation with ZAMG and VITO to deliver .
- Daily 25 km Soil Water Index (SWI) product based on Op?ﬂiﬂ!&}gﬁ
H-SAF soil moisture data

- Evolution activity to produce 1km ASCAT/Sentinel-1 SWI data

CCI Soil Moisture

Cooperation with Vandersat and many others to deliver
- Long-term (1978 up to present) 0.25° merged active/passive

\\k&k&kk\i
microwave soil moisture product &G esa

International Soil Moisture Network
AN
eodc &)

Global data hosting facility for in situ soil moisture data



ESA CCI Soil Moisture

= Merging active and passive microwave Level 2
soil moisture data sets

ASCAT Level 2 data provided by H-SAF
Passive data processing supported by NASA

= Latest release: v02.2 in 2015
3 datasets: Merged active, merged passive, and combined active-passive data
Longer time period: 1978/11-2014/12

= New release cycle
February: Internal for project team
August: Early release for key users
December: Public release

: *ﬁ soil moisture @
: cci \_,/




BAMS State of the Climate in 2015

(b) Lower Tropospheric Temperature (f) Soil Moisture

“Drier-than-average conditions
were also evident over the global
landmass. Soil moisture was
below average for the entire
year, and terrestrial groundwater

L T an o ¢ oo o storage was lower than at any
Anomalies from 1981-2010 (°C) Anomalies from 1991-2014 (m® m?)

other time during the record,
which began in 2002. Areas in
“severe” drought greatly
increased, from 8% at the end of
2014 to 14% by the end of 2015.”

(c) Surface Temperature (g) Terrestrial VWater Storage
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Anomalies from 1981-2010 (°C) Difference between 2015 and 2014 Equivalent Depth of Water (cm)

() Verm Days (") Precipiaton Yearly anomalies for selected

variables in 2015. Extract of Plate
2.1 of BAMS State of the Climate
2015 report. Figure f shows soll
moisture anomalies derived from
ESA CCI soil moisture data set.
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CCI Soil Moisture Data Users

= Already over 2600 users

= Scientific users dominate, but already 20 % of all users come from public
and commercial sector

m Agriculture Application Domains

Climate
W Disasters Agriculture has grown by
m Ecosystems 2% in the past years

M Energy
M Health
B Water
B Weather

® Undefined
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Impact on Agrometeorological Applications

Remarkably, the proliferation of earth observation technology has had
only modest impacts on agrometeorological applications yet

Simple indices such as the Normalised Difference Vegetation Index
(NDVI) continue to be the main EO data type

- Quantitative applications (e.g. assimilation of biogeophysical variables in crop
yield models) still rare

What has become of the
dream of EO-powered
Precision Agriculture?

Rodericks Oisebe (2012)
Geospatial Technologies in
Precision Agriculture, GIS Lounge,
https://www.gislounge.com/
geospatial-technologies-in-
precision-agriculture/
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Hurdles to Using EO Data

Added value of using EO data in agrometeorological applications often
difficult to demonstrate

What is the unique information provided by the EO data? For whom?
EO data services are often not fit for purpose
Using EO data should be simple, not requiring expert knowledge
Consistency between near-real-time and historic off-line data
Parallel data streams for operations and testing
Spatiotemporal uncertainty estimates and quality flags
Complexity of problem
Relationship between EO data and crop yield not straight forward
Existing agrometeorological models have not been built for using EO data
Data assimilation schemes are complex and costly
Lack of high quality reference data
Understanding scaling and representation problems
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Soil Moisture from Models, In Situ and Satellites

Gross-Enzersdorf
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. Comparison of different soil moisture data sets over

an agricultural region east of Vienna.
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Yield Modelling using Scatterometer SWI Data

= Assimilation of SWI in crop model WOFOST

- Crop model data assimilation with the Ensemble Kalman filter with the goal of
improving regional crop yield forecasts
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de Wit and van Diepen (2007) Crop model data assimilation with the Ensemble Kalman filter
for improving regional crop yield forecasts, Agricultural and Forest Meteorology, 146(1-2), 38-
56.




Towards a New Era in Earth Observation

= Volume and diversity of EO data is growing fast

= Bringing the users and their software to the data rather than vice versa
becomes inevitable

9 Petabyte

Predicted Growth of
Sentinel-1/2/3 Raw

Data Volume ,
6 M Sentinel-3B

B Sentinel-3A
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W Sentinel-1B
3 M Sentinel-1A
W Envisat ASAR
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Earth Observation Ground Segment
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Earth Observation Ground Segment

Future




Google Earth Engine FAQ

TIMELAPSE DATASETS CASE STUDIES PLATFORM SIGNUP

A planetary-scale platform for Earth
science data & analysis

Powered by Google's cloud infrastructure

» WATCH VIDEO

Meet Earth Engine

Google Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and
makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.

s SRR S

SATELLITE IMAGERY YOUR ALGORITHMS REAL WORLD APPLICATIONS

https://earthengine.google.com/




Earth Observation Data Centre

EODC works together with its partners from science, the public- and the
private sectors in order to foster the use of EO data for monitoring of
water and land

Central Goals
- Bring users and their software to the data m
- Organise cooperation & enable specialisation

Facilitate Joint Developments
Cloud infrastructure, platform services, data services, software, etc.

Processing of Big Data

From satellite raw data to biogeophysical data products up to model forecasts
- Sentinel-1, Sentinel-2, etc.

Organisation
The EODC GmbH was founded in May 2014 as Public Private Partnership
Interested organisations can join the EODC Partner Network by becoming

Principal- or Associated Cooperation Partners
D
eod:



EODC Infrastructure @ TU Wien’s Science Centre

=  Shared, multi-owner infrastructure

Science Integration and
Development Cloud Platform

Cloud Plattform Supercomputer
>40 VMs in OpenStack >2'000 Nodes
2.25 TB RAM >128 TB RAM
122 TB Private Storage 600 TB Parallel FS
200 vCPUs

Infiniband
Fabric
4 x 56

EO-Storage GBit

Ethernet
2 x 10 GBIt

EO-Compute

Compute Cluster Hard Drive Disks
30 CPUs 2 PB Parallel FS — | Petabyte-Scale

3.5 TB RAM + 1 PB Tape Storage Disk Storage

1.1 PB Object Storage 2 Drives / 100 Tapes (DiSkS & Tap es)
3.2TB SSD

Dedicated EO Data
Processing Cluster




Data Avallability @ EODC

= Data are received via the Sentinel National Mirror Austria \ |
= EODC aims to store complete Sentinel data record Vi
. ZAMG
Sentinel-1
_ GRDH: 212.569 scenes > 650 TB of Raw Data
~ SLC: 10.936 scenes (Status October 2016)

Sentinel-2: 151.616 scenes
Sentinel-3: 1600 scenes

Data coverage until 2016-11-02: Sentinel 1 IW

Up-to-date coverage maps:
https://www.eodc.eu/
sentinel-la-coverage-maps/
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Supercomputing Experiment. SAR Geocoding

Test n. 1 n.2 n. 3 n. 4
SAR product mode ASAR GM ASAR WS ASAR WS S-11W GRDH
Spatial resolution 1 km 150 m 150 m 20m
Total number of data files 189,621 31,199 31,199 1,075
Number of images for job / Total 8 /23,703 2 /15,600 2 /15,600 1/1,075
Number of jobs
Input data file size range 1-73MB 12 - 692 MB 12 - 692 MB 0.8-1.7GB
Total input data files size 1.579TB 5401 TB 5401 TB 1.27TB
Max._number of simultaneous 417 454 612 396
running nodes
Number of cores used by Sentinel-1 4 3 3 g
Toolbox
Input data caching on node False False True True
Output data caching on node True True True True
Averaged processing time
(seconds/MB) 9.18 5.65 2.39 2.69
Elapsed time including SLURM - - - -
queusing = 3.5 days = 4 days = 8 hours = 3.5 hours
Estimated elapsed time using only 1
node P gony =167 days | =353 days | =353 days = 37 days

Elefante et al. (2016) High-performance computing for soil moist

estimation, BiDS'2016, EUR 27775 EN, 95-98.
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Sentinel-1 Surface Soil Moisture
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A)  Sentinel-1 SSM product, 2015-04-05 05:1:15
B) Monthly average of SSM, February
C) Monthly average of SSM, April.




Conclusions & Outlook

Scientific, technical and organisational challenges for building EO-based
agrometeorological services are often underestimated

Cooperation is essential

- if one wants to avoid becoming dependent on a handful of big commercial ITC
companies

- to build processing chains covering all steps from raw EO data to final app
interface for agrometeorological users

EODC offers not just the infrastructure but also the framework within
which joint EO-based service can be developed

- E.g. agricultural drought apps based upon multi-sensor soil moisture and
vegetation data products
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