

OLJOPRIVREDNI FAKULTET Meteorologija

AGRICULTURE IN CHANGING CLIMATE

Branislava Lalić Faculty of Agriculture, University of Novi Sad Novi Sad, Serbia

> branka@polj.uns.ac.rs; lalic.branislava@gmail.com

LJOPRIVREDNI FAKULTE Meteorologija

CC assessment studies

CHANGE IN NUMBER OF DAYSCHANGE IN NUMBER OF DAYS **IN RESPECT TO 1971-2000** WITHOUT PRECIPITATION **DURING VEGETATION** WITH PRECIPITATION >10mm **IN RESPECT TO 1971-2000 DURING VEGETATION**

Agrometeorological conditions

Vujadinovic M., et al. 2016: Climate change projections in Serbian wine-growing regions, XI Terroir Congress, 10-14 July, Willamette Valley, Oregon, USA

Agrometeorological conditions

Vujadinovic M., et al. 2016: Climate change projections in Serbian wine-growing regions, XI Terroir Congress, 10-14 July, Willamette Valley, Oregon, USA

POLJOPRIVREDNI FAKULTET Meteorologija **CC** assessment studies

Crop yield – winter wheat

Relative change of winter wheat yield in Serbia for 2030 under the A1B scenario (a) and for 2100 under the A2 scenario (b) against the 1971–2000 period.

D.T. Mihailović, B. Lalić, N. Drešković, G. Mimić, V. Djurdjević, M. Jančić, 2015: Climate change effects on crop yields in Serbia and related shifts of Köppen climate zones under the SRES-A1B and SRES-A2, *International Journal of Climatology* <u>35(11)</u>, 3320–3334.

METEOROLOGIJA

CC assessment studies

Harmful organism appereance - Aedes albopictus

Petrić, M., Lalić, B., Ducheyne, E., & Petrić, D. (2016). *Modelling the impact of climate change on the suitability of the establishment of the Asian tiger mosquito (Aedes albopictus) in Serbia. Climatic Change.* Manuscript submitted.

OLJOPRIVREDNI FAKULTET Meteorologija

Adapt to climate change = Face with weather

Land–Only Temperature Anomalies Dec 2013–Feb 2014 (with respect to a 1981–2010 base period)

Data Source: GHCN-M version 3.2.2

Land–Only Temperature Departure from Average Dec 2014–Feb 2015 (with respect to a 1981–2010 base period)

Data Source: GHCN-M version 3.2.2

Land–Only Temperature Departure from Average Dec 2015–Feb 2016 (with respect to a 1981–2010 base period)

Data Source: GHCNM v3.3.0

OLJOPRIVREDNI FAKULTET Meteorologija

OBSERVED CHANGES IN PHENOLOGY DYNAMICS

Region	Dates	Change (days)	
Novi Sad	13.03.2015.	- 58	
	14.01.2016.		
Bačka Topola	19.03.2015.	- 58	
	20.01.2016.		
Pančevo	12.03.2015.	- 26	
	15.02.2016.		
Ruma	22.02.2015.	- 53	
	31.12.2015.*		
Sombor	03.03.2015.	- 73	(
	21.12.2015.*		i

GROWING PROBLEM

Shift in appearance of "four tillers detectable" - growing stage of winter wheat n Serbia (Source: PIS Serbia).

Forecasting and Warning Service of Serbia in plant protection

Authors: Republic and Regional Centres, Forecast and Warning Service in Plant Protection, Republic of Serbia WWW.PISSRBIJA.COM · WWW.PISVOJVODINA.COM

DECISION SUPPORT

OLJOPRIVREDNI FAKULTE: Meteorologija **Facing weather**

BEST STRATEGY - TO BE A PART OF SOLUTION

Application of advanced meteorological products

 Numerical weather prediction of different scales: short range, monthly and seasonal forecast

Application through

- Plant & harmful organism phenology models
- Crop models

OLJOPRIVREDNI FAKULTET Meteorologija **Facing weather**

EXAMPLE OF SOLUTIONS - LOCATIONS

POLJOPRIVREDNI FAKULTET Meteorologija

Application of Seasonal & Monthly weather forecast

 AgM - forecasting : ♣ air temperature and humidity ♣ solar radiation ♣ soil temperature and moisture ♣ precipitation

 AgM forecasting application: ♣ No. of days with extreme temperatures ♣ sun burns ♣ No. of dry days

 ♦ CM - ensembl forecasting : ♣ crop dynamic ♣ soil moisture deficit ♣ evapotranspiration ♣ LAI development

CM ensembl forecasting application :
 • yield and biomass formation
 • N

uptake
scheduling of farm operations according to weather and crop
 conditions on monthly and seasonal scale
 • optimization of irrigation,

fertilization and plant protection application-spraying

RESULTS

MONTHLY WEATHER FORECAST

Source: Monthly EPS products of ECMWF (European Centre for Medium range Weather Forecast)

Forecast: March 1, 2005 - June 30, 2005; 51-member ensemble

RESULTS

PHENOLOGY MODEL

Model: **PIS_PHEN**

Source: Forecasting and Warning Service of Serbia in plant protection

Methodology: Continuous observation of plant growing stages according to BBCH scale

Cultivar: Winter wheat

Lalic, B., D. Jankovic, Lj. Dekic, J. Eitzinger, A. Firanj Sremac, 2016: Testing efficacy of monthly forecast application in agrometeorology: Winter wheat phenology dynamic, EOBAR Conference, Bejing, China, 16-17 May 2016, p. 8 (In press).

RESULTS - CALCULATED PHENOLOGY DYNAMIC

Application of short range weather forecast

 AgM - forecasting : ♣ leaf weatness and temperature ♣ canopy air temperature and humidity ♣ soil temperature and moisture ♣ precipitation ...

AgM - forecasting application : A fruit vegetation dynamic (in progress)
meteorological conditions for plant dissease appereance (done)

RESULTS

SHORT RANGE WEATHER FORECAST

Source: Work Eta Numerical weather prediction model

Forecast: 1 - 31 March 2011

Model: BAHUS biometeorological model

Methodology: Comparison of model outputs obtained using observed and simulated weather data

Cultivar: Apple

OLJOPRIVREDNI FAKULTE Meteorologija

Facing weather

Forecasting apple scab infection intensity: TEMPERATURE & LEAF WETNESS DURATION

Lalic, B. Francia, M., Eitzinger, J., Podrascanin, Z., Arsenic, I., 2015: Effectiveness of Short-term Numerical Weather Prediction in Predicting Growing Degree Days and Meteorological Conditions for Apple Scab Appearance, *Meteorological Applications*, DOI: 10.1002/met.1521.

RESULTS

SHORT RANGE WEATHER FORECAST

Source: WRF-ARW Numerical weather prediction model

Forecast: 9 - 29 May 2016 4 day runs

Model: BAHUS biometeorological model

Methodology: Comparison of model outputs obtained using observed and simulated weather data

Cultivar: Wine grape

Forecasting and Warning Service of Serbia

Downy mildew of wine grape

Plasmopara viticola, the causal agent of grapevine downy mildew, is a heterothallic oomycete that overwinters as oospores in leaf litter and soil.

Firanj Sremac, A., Lalić, B., Janković, D., 2016: The WRF-ARW application in predicting meteorological conditions for Downy mildew (*Plasmopara viticola*) appearance of wine grape. Abstract from 16th EMS Annual Meeting, 12–16 September, 2016, Trieste, Italy

EMS2016 | 12–16 September 2016 | Trieste, Italy

WRF-ARW temperature field

Downy mildew of wine grape - Results

Incubation period forcasting

End of incubation period calculated with Müller's method for observed and predicted meteorological values.

