Introduction to the WMO Integrated Global Observing System (WIGOS);

Lars Peter Riishojgaard WMO Secretariat, Geneva

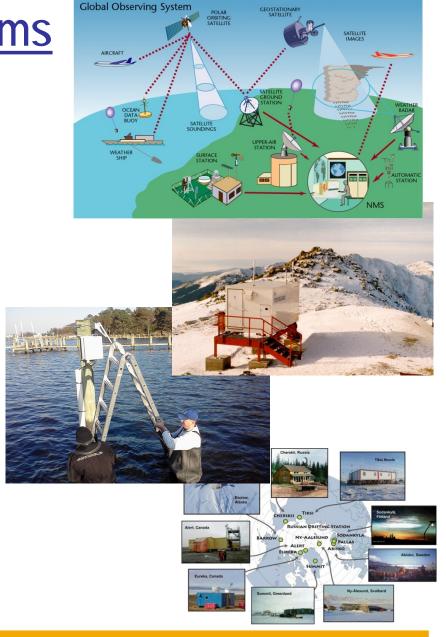
WMO OMM

World Meteorological Organization
Organisation météorologique mondiale

Outline

- Introduction to WIGOS
- The WIGOS Pre-operational Phase (2016-19)
- The Rolling Review of Requirements (RRR)
- The Observing Systems Capabilities and Review tool (OSCAR)
- The WIGOS Data Quality Monitoring System (WDQMS)
- Regional WIGOS Centers
- Summary and conclusions

What is the WMO Integrated Global Observing System (WIGOS)?


- WMO foundational activity addressing the observing needs of the weather, climate, water and environmental services of its Members
- A framework for integrating all WMO observing systems and WMO contributions to co-sponsored observing systems under a common regulatory and management framework
- WIGOS is not:
 - Replacing or taking over existing observing systems, which will continue to be owned and operated by a diverse array of organizations and programmes, national as well as international.

WIGOS homepage

WIGOS Component Systems

- Global Observing System (WWW/GOS)
- Observing component of Global Atmospheric Watch (GAW)
- WMO Hydrological Observations (including WHYCOS)
- Observing component of Global Cryosphere Watch (GCW)

Why do we need WIGOS?

- I. NMHS mandate typically broader now than when the World Weather Watch and the GOS were created, including e.g.
 - Climate monitoring, climate change, mitigation
 - Air quality, atmospheric composition from urban to planetary scales
 - Oceans
 - Cryosphere
 - Water resources
- II. Technical and scientific advances:
 - Observing technology
 - Telecommunications
 - Numerical modeling and data assimilation
 - Increased user demand to access and use observations in decision making

Why do we need WIGOS?

III. Economic realities

- Budgetary pressure on many NMHS, in spite of expanding mandates and increasing demand for services
- Efficiency by exploiting synergies
 - Integration of observing networks across disciplines (e.g. weather and climate)
 - Integration across organizational boundaries, e.g. between different national ministries/departments operating observing systems
 - Integration across technological boundaries, e.g. between surfaceand space-based systems

A few key WIGOS principles

- Design observing systems to meet specific requirements
 - Requires structured inventory of requirements and existing and planned capabilities
- Design observing systems with a view toward synergies between different application areas
 - Do not install separate systems for weather and climate measuring of e.g. atmospheric temperature
 - One observation, many applications, many users
- Space- and surface-based observing networks seen together as one integrated system
 - Complementary capabilities, designed based on information about what the other component can/will provide

What do we mean by Integration?

I. Integrated network design, e.g. across national borders:

- Radar and lightning detection networks
- Radiosonde networks designed together with those of neighboring countries

II. Integration across disciplines: Multi-purpose networks

 No separate networks for application areas that rely on measurements of the same variables, e.g. weather and climate

III. Integration across organizational boundaries:

 Take advantage of other organizations outside the NMHS that operated observing systems; partner with them where possible

What do we mean by Integration? (II)

IV. Integration across technological boundaries; spaceand surface-based observing system as one

- Space-based components provide excellent spatial and temporal coverage
- Ground-based components provide fine-scaled structure, in situ validation and can provide measurements not possible from space
- V. Integration across different levels of performance; concept of tiered networks can include e.g.
 - Crowd-sourced data, IoT observations (massive amounts of data, poor or unknown quality)
 - Standard networks; routine, operational quality data
 - Reference networks with data traceable to SI standards (fewer data, very high quality)

WIGOS Network Design Principles

(from WMO 1160 « Manual on WIGOS »)

According to the Manual on WIGOS, networks should be designed with a view toward:

- 1. Serving many application areas
- 2. Responding to user requirements
- 3. Meeting national, regional and global requirements
- 4. Designing appropriately spaced networks
- 5. Designing cost-effective networks
- 6. Achieving homogeneity in observational data
- 7. Designing through a tiered approach
- 8. Designing reliable and stable networks
- 9. Making observational data available
- 10. Providing information so that the observations can be interpreted
- 11. Achieving sustainable networks
- 12. Managing change

Rolling Review of Requirements (RRR)

- WMO Congress: All WMO and WMO co-sponsored observing systems shall use the RRR to design networks, plan evolution and assess performance.
- The RRR is the process used by WMO to collect, vet and record user requirements for all WMO application areas and match them against observational capabilities

Observing capabilities **User requirements** for observations **Gap Analyses** (Statements of Guidance) Long-term Vision for Implementation global observing systems Plan Programmes of Members and Agencies

Rolling Review of Requirements

WMO Application Areas listed in the RRR

(January 2017)

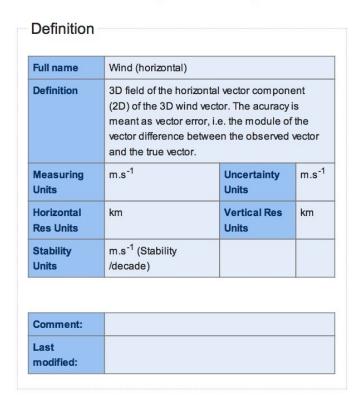
- 1. Global numerical weather prediction
- 2. High-resolution numerical weather prediction
- 3. Nowcasting and very short range forecasting
- 4. Seasonal and inter-annual forecasting
- 5. Aeronautical meteorology
- 6. Forecasting atmospheric composition
- 7. Monitoring atmospheric composition
- 8. Atmospheric composition for urban applications
- 9. Ocean applications
- 10. Agricultural meteorology
- 11. Hydrology
- 12. Climate monitoring (currently under revision by GCOS and WCRP)
- 13. Climate applications (currently under revision by GCOS and WCRP)
- 14. Space weather

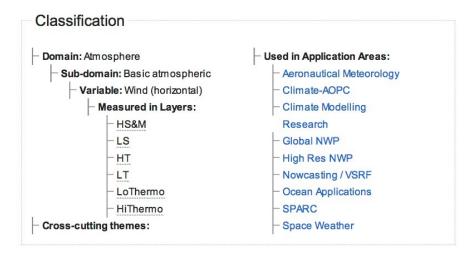
OSCAR

- The RRR is supported by three key databases of OSCAR, the Observation Systems Capabilities and Review tool:
 - OSCAR/Requirements, in which "technology free" requirements are provided for each application area, expressed in units of geophysical variables (260 in total currently), not measurands; not just atmosphere, also terrestrial, ocean, cryosphere, ...
 - OSCAR/Space, listing the capabilities of all satellite sensors, whether historical, operational or planned
 - OSCAR/Surface, list surface-based capabilities; developed by MeteoSwiss for WMO, operational since May 2016

OSCAR homepage

OSCAR/Requirements


- The following requirements are listed for each of the (currently 14 application) areas and for all relevant geophysical variables (currently more than 200):
 - Spatial (horizontal and vertical) and temporal resolution, uncertainty, data latency, required coverage area, source, and level of confidence
- Each requirement is expressed in terms of three separate values:
 - Threshold (observations not useful unless this is met)
 - Break-through (optimum cost-benefit ratio)
 - Goal (exceeding this provides no additional benefit)
- OSCAR/Requirements information content is assembled by CBS and other WMO Inter-Program Expert Teams and Task Teams and is informed by the broader scientific community



OSCAR

Observing Systems Capability Analysis and Review Tool

Variable: Wind (horizontal)

Requirements defined for Wind (horizontal) (25)

This tables shows all related requirements. For more operations/filtering, please consult the full list of Requirements Note: In reading the values, goal is marked blue, breakthrough green and threshold orange

23/2014					VVIVIO	SCAR Det	alls for varial	ie: wina (no	orizontai)				
			Area		decade	Res	Res	Сус			Level	Date	
119	Wind (horizontal)	HS&M	Climate- AOPC	2 m.s ⁻¹ 3 m.s ⁻¹ 7 m.s ⁻¹		100 km 200 km 500 km		3 h 4 h 6 h	3 h 6 h 12 h	Global	firm	2007-07- 19	AOPC
120	Wind (horizontal)	нт	Climate- AOPC	2 m.s ⁻¹ 3 m.s ⁻¹ 5 m.s ⁻¹		100 km 200 km 500 km		3 h 4 h 6 h	3 h 6 h 12 h	Global	firm	2007-07- 19	AOPC
121	Wind (horizontal)	LS	Climate- AOPC	2 m.s ⁻¹ 3 m.s ⁻¹ 5 m.s ⁻¹		100 km 200 km 500 km	0.5 km 0.65 km 1 km	3 h 4 h 6 h	3 h 6 h 12 h	Global	firm	2007-07- 19	AOPC
122	Wind (horizontal)	LT	Climate- AOPC	2 m.s ⁻¹ 3 m.s ⁻¹ 5 m.s ⁻¹		100 km 200 km 500 km		3 h 4 h 6 h	3 h 6 h 12 h	Global	firm	2007-07- 19	AOPC
22	Wind (horizontal)	НТ	Aeronautical Meteorology			50 km 63 km 100 km	0.15 km 0.238 km 0.6 km	5 min 6 min 10 min	60 min 84 min 3 h	Global	firm	2000-06- 23	ET ODRRG0
23	Wind (horizontal)	LS LT	Aeronautical Meteorology			50 km 70 km 100 km	0.15 km 0.3 km 0.6 km	5 min 7 min 10 min	60 min 90 min 3 h	Global	firm	2000-06- 23	ET ODRRG0
239	Wind (horizontal)	HS&M	Climate Modelling Research	3 m.s ⁻¹ 4 m.s ⁻¹ 5 m.s ⁻¹		50 km 100 km 500 km	2 km 3 km 5 km	3 h 6 h 12 h	30 d 45 d 60 d	Global	reasonable	1998-10- 29	WCRP
240	Wind (horizontal)	LS HT LT	Climate Modelling Research	1 m.s ⁻¹ 2 m.s ⁻¹ 4 m.s ⁻¹		10 km 50 km 250 km	0.2 km 1 km 3 km	60 min 3 h 6 h	30 d 45 d 60 d	Global	reasonable	2012-12- 01	WCRP
310	Wind (horizontal)	HS&M	Global NWP	1 m.s ⁻¹ 5 m.s ⁻¹ 10 m.s ⁻¹		50 km 100 km 500 km	1 km 2 km 3 km	60 min 6 h 12 h	6 min 30 min 6 h	Global	firm	2009-02- 10	John Eyr
311	Wind (horizontal)	нт	Global NWP	1 m.s ⁻¹ 3 m.s ⁻¹ 8 m.s ⁻¹		15 km 100 km 500 km	0.5 km 1 km 3 km	60 min 6 h 12 h	6 min 30 min 6 h	Global	firm	2009-02- 10	John Eyr
312	Wind (horizontal)	LS	Global NWP	1 m.s ⁻¹ 3 m.s ⁻¹		15 km 100 km	0.5 km 1 km	60 min 6 h	6 min 30 min	Global	firm	2009-02- 10	John Eyr

OSCAR/Space

- Repository of metadata about <u>all satellite sensors (past, present</u> and future) relevant to WMO Programs and Application Areas
 - Instrument type, measurement technique, high-level characteristics (mass, power, data rate)
 - Programmatic information, e.g. agency, measurement program, operating period, heritage, etc.
 - Orbit, coverage, repeat frequency, resolution
 - Capabilities, expressed in terms of geophysical variables that can be derived from the measurements provided by the sensor, listed in order of decreasing fidelity
- OSCAR/Space 2.0 released in June 2016
 - Objective, rule-based assessment of conchilities.

 Unique to OSCAR/Space

	SCAR serving Systems Cap	pability Analysis ar	nd Revi	Variable	Relevance for measuring this variable	Operational limitations	Explanation
Overview Programmes		Space-based Coments Frequence		Cloud top height	1 - primary	Discontinuous coverage.	MWIR and TIR spectrometry in window and water vapour band (for emissivity) to estimate cloud top height from its temperature
Instrument details				Cloud top temperature	1 - primary	Discontinuous coverage.	TIR spectrometry in window and water vapour band (for emissivity)
Acronym Full name Purpose	name Atmospheric Infra-Red Sounder		one pro	Sea surface temperature	1 - primary	Cloud sensitive.	MWIR and TIR spectrometry (inclusive of several narrow-bandwidth windows and absorption bands for atmospheric corrections)
Short description	green-house gases Grating spectrometer, 2378 channels, resc supporting channels in VIS/NIR [see detail			Atmospheric temperature	2 - very high	Cloud sensitive.	MWIR spectrometry in the CO2 4.3 micrometer band; TIR in the CO2 15 micrometer band
Background	below] New development			Cloud cover	2 - very high	Discontinuous coverage.	MWIR and TIR spectrometry
Scanning Technique Resolution Coverage / Cycle	Technique one 13.5-km line Resolution 13.5 km IFOV for channels			Land surface temperature	2 - very high	Cloud sensitive. Coarse spatial resolution.	MWIR and TIR spectrometry (inclusive of several narrow-bandwidth windows and absorption bands for atmospheric corrections)
Mass	177 kg Powe	er 220 W	Data	Specific humidity	2 - very high	Cloud sensitive.	TIR spectrometry in the water vapour band around 6.3 micrometers
Providing Agency Instrument Maturity Utilization Period:		NASA Flown on an R&D satelli 2002-09-01 to ≥2016		Integrated Water Vapour (IWV)	2 - very high	Cloud sensitive.	TIR spectrometry in the bands around 6.3 and above 11 micrometers
Last update: 2012-09-05			Upward long- wave irradiance at Showing 1 to 30 o	2 - very high of 33 entries	Spectral interpolation	MWIR and TIR spectrometry in the windows regions around 3.7 and 11 micrometers, and in	

OSCAR/Surface ("What is WIGOS?")

- Implementation layer of the WIGOS Metadata Standard:
 Modern, electronic, searchable inventory of metadata for all observing stations/platforms under WIGOS
 - OSCAR/Surface will replace WMO Pub. 9, Volume A, but will also include information from similar inventories for other (non-GOS) components of WIGOS
 - Developed jointly by WMO and MeteoSwiss, with the Swiss government providing the major part of the funding
 - Operational since May 2016
 - Education and training Members in populating, editing and using OSCAR/Surface is a major priority for 2016-2019 financial period

Regional WIGOS Centers (RWC)

Why?

- Many WMO Members requesting support from Secretariat for national implementation efforts
- Can be addressed more efficiently and effectively at regional level

What?

- Initial role or RWC will be to support national WIGOS Implementation efforts, in particular as concerns
 - OSCAR/Surface; ensuring metadata input and QC
 - WDQMS; especially fault management component

How?

- To be decided by individual WMO Regions will likely take place primarily at the sub-Regional level, aligned with existing cultural, linguistic and/or political groupings of countries
 - Pilot RA-VI (Europe) RWC implemented in pilot mode around existing EUMETNET activities; approved by EUMETNET STAC/PFAC in March 2016
 - This covers primarily Western Europe; the purpose of this meeting is to discuss how to implement RWC for Russian speaking parts of RA-II and RA-VI

Summary and Conclusions

- WIGOS is a global framework for integrating all WMO and cosponsored observing systems under a common regulatory and management umbrella
- Purpose is to help WMO Members provide and gain access to more observational data at reduced cost by taking an integrated approach
- Regulatory material and technical systems to facilitate has been implemented by WMO and is still undergoing further development
- Strong involvement from Members is necessary
- Regional WIGOS Centers to provide important support functions for Members
 - This Workshop will discuss how RWC(s) can be implemented among participating Members

