

Potential Health Effects of Climate Change

Climate change:

- Weather extremes
- Sea level rise
- Ecosystem changes

Source: Howard Frumkin (CDC)

HEAT

SEVERE WEATHER

AIR POLLUTION

ALLERGIES

VECTOR-BORNE DISEASES

WATER-BORNE DISEASES

WATER AND FOOD SUPPLY

MENTAL HEALTH

ENVIRONMENTAL REFUGEES

- Heat stress, cardiovascular failure
- Injuries, fatalities
- Asthma, cardiovascular disease
- Respiratory allergies, poison ivy
- Malaria, dengue, hantavirus, encephalitis, Rift Valley fever
- Cholera, cryptosporidiosis, campylobacter, leptospirosis
- Malnutrition, diarrhea, harmful algal blooms, pesticides
- Anxiety, post-traumatic stress, depression, despair
- Forced migration, civil conflict

Heat Wave Health Vulnerability Mapping

(Reid CE, O'Neill MS, Gronlund C, Brines SJ, Brown DG, Diez-Roux AV, & Schwartz J. "Mapping Community Determinants of Heat Vulnerability." Submitted for publication in *Environmental Health Perspectives*)

EPA Science to Achieve Results (STAR) grant, #RD832752

- Used nationally available datasets for heat wave vulnerability.
- Mapped for urban census tracts with air conditioning prevalence data with pop >1,000 (n=39,794).
- Conducted factor analysis with four vulnerability factors.
 - Social and environmental vulnerability (poverty, educational attainment, minority population, lack of vegetation)
 - Isolation (population living alone)
 - Air conditioning prevalence
 - Health status (diabetes prevalence, elderly population)
- Combined these factors and created a vulnerability index.

Example Impact: Human Health - Waterborne Diseases

- Climate variability may cause extremes of the hydrologic cycle.
- Example: Climate models predict that extreme precipitation events will become 10-40% stronger in southern Wisconsin. This may result in greater flooding and an increased presence of waterborne diseases that often accompanies high discharge into Lake Michigan (J. Patz et al., 2008).

WEATHER AND CLIMATE RISKS ARE BEST MANAGED AT LOCAL & REGIONAL SCALES

TWO 500-YEAR FLOODS IN 15 YEARS (1993 & 2008)

June 14, 2008 Historic Gage Records in 9 States

Source: Josh Foster (Center for Clean Air Policy)

FLOOD FREQUENCY CHANGES

10% increase in flow = 2.5 times chance of failure

Consequences of "modest" changes to the flood-frequency relationship

Source: Derek Booth (Univ. of Washington & Stillwater Science, Inc.) 6

Combined Sewer Overflow in the Great Lakes Region

(Final Report: Summer 2008)

EPA

Key Questions:

- ✓ Does climate change matter to the redesign of combined sewer systems in the Great Lakes Region?
- ✓ When the climate changes, how might CSO event frequency change, and in how many cases will the four CSO events per year threshold be exceeded?
- If combined sewer systems are designed to meet the EPA's CSO Control Policy design standard of 4 events per year, but fail to plan for climate change:
 - climate change may result in failure to meet the standard
 - ✓ there could be an average of 237 events per year above the control policy's objectives across 182 communities

Source: Joel Scheraga (EPA)